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Abstract
Marine plants contribute half  of the global organic carbon fixation, thus play a key role in global carbon cycles.  Tropical  biomes are the most

diverse  communities,  which  produce  numerous  value-added  compounds.  The  metabolites  from  tropical  marine  algae  and  plants  have  been

utilized for the therapy of the globally threatening diseases, such as acquired immune deficiency syndrome, Dengue fever, and cancer. However,

metabolite  treasure  underpinned  by  tropical  marine  plants  is  largely  untapped.  The  bioactive  nature  of  more  compounds  remain  to  be

discovered. This mini-review examines several aspects of value-added compounds from tropical marine plants, such as microalgae, macroalgae,

seagrasses, and mangroves. Biotechnological and pharmaceutical applications involving these compounds are also discussed.
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 Introduction

Tropical  biomes are  the most  diverse  plant  communities  on
the earth, and it is vital to quantify this diversity on large spatial
scales  for  many  purposes[1].  Tropical  marine  plants  mainly
include  mangroves,  seaweeds  and  microalgae[2].  Microalgae
refers to a group of microscopic photosynthetic organisms with
extensive and heterogeneous phylogeny, including autotrophs,
heterotrophs  (e.g.,  apicomplexans  and  dinoflagellates)  and
mixotrophs  (e.g.,  Chromeridophyta  and Chromera  velia).  They
are  usually  divided  into  at  least  two  major  phylogenetic
lineages:  Stramenopiles  (diatoms,  eustigmatophytes  and
brown  algae)  and  Archaeplastida  (or  Plantae,  including  red
algae,  blue-green  algae  and  green  algae,  which  have  a
common  ancestor  with  modern  land  plants)[3,4].  In  microbial
eukaryotes, the SAR clade includes Stramenopila (e.g., diatoms),
Alveolata  (e.g.,  dinoflagellates)  and  Rhizaria  (Chlorarachnio-
phyceae),  containing  an  immense  diversity  of  lineages[5].  The
ocean  is  a  rich  source  of  food,  minerals,  and  medicinal
commodities.  These  life  forms  support  the  diversity  of  the
ocean  and  provide  abundant  compounds  as  source  of  food,
minerals and medicinal commodities[6].

In  addition  to  tropical  marine  microalgae,  mangroves  and
seaweeds  receive  increasing  attention  as  'blue  carbon'[7].
Seagrass  beds  and  mangroves  can  provide  natural  and  func-
tional  products,  either  individually  or  through  ecological
networks[8].  On  one  hand,  mangroves  can  produce  a  large
number  of  antimicrobial  secondary  metabolites,  namely
antimicrobials, among which phytoanticipins are inactive direct
precursors  of  antimicrobials  or  phytoalexins  that  exist  in  plant
tissues prior to pathogen attack and have important medicinal
value[9].  On  the  other  hand,  seaweed  extract  can  significantly
reduce  plasma  glucose  level,  inhibit α-amylase, α-glucosidase,
protein tyrosine phosphatase 1B (PTP1B), etc.[10−12].

Tropical marine plant metabolites account for 13% of natural
products,  including  many  value-added  compounds,  such  as
sterols,  essential  fatty  acids,  polysaccharides,  terpenes,
lactones,  carotenoids,  proteins,  peptides,  vitamins and mineral
oxides  (Table  1[13−77]).  Moreover,  a  series  of  bioactive
substances  in  tropical  marine  plants  had  been  discovered  for
the  therapy  of  the  globally  threatening  diseases,  such  as
acquired immune deficiency syndrome[78,79], Dengue fever[80,81]

and cancer[82−86].  Therefore,  tropical  marine plants are of great
significance  for  the  development  of  biochemistry,  biomass
energy resources, and pharmacology[87]. Among marine plants,
microalgae, there are an estimated 72,500 species, which are of
great  ecological  importance,  as  they  contribute  nearly  half  of
the  global  organic  carbon  fixation[88].  However,  researches  on
the isolation and identification of high-value compounds from
diatoms,  dinoflagellates,  red  algae,  brown  algae,  green  algae,
seagrasses  and  mangroves  are  still  rough  now  (Fig.  1).  This
mini-review  examines  several  aspects  of  value-added
compounds  from  tropical  marine  algae,  including  current
knowledge on their  isolation,  measurement and identification.
Biotechnological  and  medical  applications  involving  these
value-added compounds are also discussed.

 Diatoms

Diatoms  (Bacillariophyta  phylum)  are  the  most  abundant
phytoplankton  on  Earth  and  play  a  crucial  role  as  the  main
producers  on  the  planet.  Diatoms  can  be  used  as  feed  for
aquatic  organisms  because  they  contain  various  bioactive
compounds,  such  as  chrysolaminarin,  eicosapentaenoic  acid
(EPA;  C20:5),  and  fucoxanthin.  On  one  hand,  diatoms  store
carbohydrate by chrysolaminarin, which has anti-tumor, antiox-
idant,  and  immune  modulatory  functions[89].  On  the  other
hand, diatoms contain abundant long-chain fatty acids, such as
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Table 1.    Natural products from tropical marine plant metabolites.

Class Species Metabolites Reference

Tropical microalgae Chlorophyceae Haematococcus pluvialis Astaxanthin [18]
Dunaliella salina β-carotene [19]

Chlorella zofingiensis Astaxanthin [20]
Scenedesmus almeriensis Lutein [21]

Muriellopsis sp. Lutein [22]
Chlorella sorokiniana Lutein [23]
Parietochloris incisa Arachidonic acid [24]

Chlorella pyrenoidosa Peptides [25]
Tetraselmis suecica Peptides [26]

Rhodophceae Porphyridium purpureum Arachidonic acid [27]
Porphyridium cruentum Eicosapentaenoic acid [28]

Porphyridium sp. Sulfated polysaccharides [29]
Stramenopiles Nannochloropsis sp. Eicosapentaenoic acid [30]

Nannochloropsis oculata Peptides [31]
Nannochloropsis sp. Phenolics [32]

Bacillariophyceae Phaeodactylum tricornutum Eicosapentaenoic acid [33]
Phaeodactylum tricornutum Sulfated polysaccharides [34]

Dinophyceae Crypthecodinium cohnii Docosahexaenoic acid [35]
Labyrinthulomycota Schizochytrium spp. Docosahexaenoic acid [36]

Ulkenia spp. Docosahexaenoic acid [37]
Oscillatoriaceae Arthrospira platensis Phycocyanin [38]

Tropical seaweeds Rhodophceae Porphyra sp. Desmosterol [39]
Platysiphonia miniata Icosatetraenoic acid [40]

Eucheuma cottonii Polyphenol [41]
Chlorophyceae Udotea flabellum Sulfated polysaccharide [42]

Codium fragile Sulfated polysaccharide [43]
Ulva lactuca Protein [44]

Phaeophyceae Ecklonia cava Phlorotannins [45]
Laminaria ochroleuca Fucosterol [39]

Padina antillarum Epoxyeicosatrienoic acids [46]
Ecklonia cava 6,6'-bieckol [47]

Ecklonia radiata Polysaccharide [48]
Sargassum swartzii Fucoidan [49]

Turbinaria turbinata Fucoidan [50]
Dictyota dichotoma Fucoidan [51]

Ascophyllum nodosum Phlorotannin [52]
Spatoglossum macrodontum Polyunsaturated fatty acid [53]

Fucus vesiculosus Laminarin [54]
Laminaria digitata Laminarin and fucoidan [55]

Undaria pinnatifida Fucoxanthin [56]

Hijikia fusiforme Carotenoids and curcumins [57]
Tropical mangroves Acanthaceae Acanthus ebracteatus Megastigmane [58]

Acanthus ebracteatus Bioactive polysaccharides [59]
Acanthus ilicifolius Phenylethanoids [60]
Acanthus illicifolius 2-benzoxazolinone [61]
Acanthus ilicifolius Lignan glucosides [62]
Acanthus ilicifolius Phenylethanoid glycosides [63]
Acanthus ilicifolius Benzoxazolinone glucoside [64]

Acanthus mollis Hydroxamic acids [65]
Euphorbiaceae Excoecaria agallocha Diterpenes [66]

Excoecaria agallocha Diterpenoids [67]
Excoecaria agallocha Daphnane and tigliane [68]
Excoecaria agallocha Excoecarins [69]
Excoecaria agallocha Phorbol ester [70]
Excoecaria agallocha Excogallochaols [71]
Excoecaria agallocha Pentacyclic triterpenoids [72]

Lythraceae Penicillium sp. Meroterpenoid [73]
Pemphis acidula Galloyl flavonol glycosides [74]

Sterculiaceae Heritiera littoralis Heritonin [75]
Lamiaceae Clerodendron spp. Neoclerodane diterpenoids [76]

Scutellaria spp. Neoclerodane diterpenoids [77]
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EPA, which have been commercialized in improving cardiovas-
cular  function,  relieving  depression  and  reducing  blood  pres-
sure[15].  Compared  to  fish  oil,  algae  EPA  is  a  better  source  of
food  supplements  and  pharmaceuticals.  In  addition,  diatoms
also  contain  silica  nanoparticles,  which  had  been  applied  in
drug delivery and nanoparticle synthesis[90−92].

Diatoms  contain  a  large  amount  of  carotenoids,  such  as β-
carotene,  lutein,  zeaxanthin  and  violaxanthin,  providing  anti-
oxidant,  anti-obesity,  anti-diabetes,  anti-cancer  and  anti-
Alzheimer's disease effects[93]. To be specific, β-carotene, as the
most  effective  natural  quencher,  is  involved  in  scavenging
singlet  molecular  oxygen,  peroxyradicals  and  reactive  oxygen
species,  thus  preventing  lipid  peroxidation[94].  Meanwhile, β-
carotene  is  also  involved  in  cell  growth,  differentiation  and
apoptosis[95].  In  addition,  the  anticancer  activity  of β-carotene
has  been  demonstrated  in  lung  cancer  patients[96].  Lutein  and
zeaxanthin are responsible for the coloring of the macula in the
retina,  so  these  two  pigments  are  very  important  in  ophthal-
mology. Lutein and zeaxanthin are also filters that destroy blue
light  and  quenchers  of  excited  oxygen,  and  are  therefore  also
used to prevent age-related macular degeneration[97]. Violaxan-
thin has strong anti-proliferative activity on breast cancer cells,
which  makes  this  pigment  an  effective  drug  compound  to
induce apoptosis[98].

Due  to  the  broad  prospects  of  diatoms  in  aquaculture,
human health foods,  medicine and cosmetics,  the demand for
diatoms  derived  high-value  products  in  the  global  market  is
increasing.  Global  diatomite  market  production  is  as  high  as
2,640,000 tons in 2021. That is 110,000 tons (or 4.7%) more than
the  same  period  in  2020.  The  market  share  of  Melosira  was
42.9%,  while  Pinnularia  and  Coscinodiscus  account  for  31.5%
and 16.2%, respectively[99].

 Dinoflagellates

Dinoflagellates  (Miozoa  phylum,  Dinophyceae  class)  are
highly diverse, flagellated and unicellular algae, with reported-
to-date  4,000  living  and  fossil  species,  including  benthic,
epiphytic  and  planktonic  species.  Many  species  live  freely,
while  others  live  as  endosymbionts  with  marine invertebrates,

and  remains  are  parasitic.  Symbiotic  algae  related  to  c
echinocytes,  mainly  members  of  the  Dinoflagellata  superclass,
family  Symbiodiniaceae,  have  a  high  degree  of  phylogenetic
diversity[17]. A number of dinoflagellates can synthesize polyke-
tone  compounds[100].  Many  of  these  compounds  are  potent
toxins that have caused public health and ecological problems.
On  the  other  hand,  many  marine  toxins,  due  to  their  medical
and  commercial  value,  can  be  used  as  anti-cancer  agents  or
probes  of  cellular  processes,  increasingly  attracting  people's
interest[101].  Besides  that,  PCPs  (peridinin-chlorophyll α-
proteins)  is  a  water-soluble  light-trapping  complex,  which  is
only found in dinoflagellates. Its commercial product, peridinin-
chlorophyll-protein  complex,  has  been  widely  used  in  probe
development  due  to  its  unique  fluorescence  properties[102].
However,  the  challenge  in  pharmaceutical  applications  is  that
most flagellates are usually fragile and slow-growing, making it
difficult  to  provide  sufficient  amounts  of  toxins.  Therefore,
developing  large-scale  cultivation  strategies  is  critical  to
produce a  large amount of  bioactive compounds using flagel-
lates[103].  In  addition,  research  on  the  functional  genomic
genomes  of  flagellate  derived  polyketone  biosynthesis  is  still
limited,  partly  due  to  the  peculiarities  of  the  dinoflagellate
nucleus and the lack of the transformation system. However, a
basic  understanding of  the genetics  of  flagellate  toxin  biosyn-
thesis may be helpful for developing several fruitful avenues of
research[101].

 Red algae

Around  50%  of  tropical  marine  algae  belong  to  red  algae
(Rhodophyta  phylum).  The  Red  algal  genus Laurencia
(Rhodomelaceae family, Ceramiales order) is a prolific producer
of  halogenated  secondary  metabolites,  such  as  diterpenes,
triterpenes, sesquiterpenes and C15-acetogenins[104]. Kamada et
al.  had discovered three types of  bromoallenes and four types
of  C15-acetogenins  in L.  nangii[105−107].  They  also  isolated  two
new  non-halogenated  sesquiterpenes  from L.  snackeyi[108].  On
the  other  hand, L.  dendroidea-derived  (−)-elatol  and  (+)-obtu-
sol can provide inhibitory effects on the larvae of Aedes aegypti,

 
Fig. 1    Tropical marine plants of diatoms, dinoflagellates, red algae, brown algae, green algae, seagrasses and mangroves, as well as their uses
for medical, food, and cosmetic applications. PUFA: polyunsaturated fatty acid.
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which  is  the  insect  vector  of  Dengue  fever[80].  In  addition, L.
intricata-derived  laurenditerpenol  was  found  to  inhibit  tumor
cell growth under hypoxic conditions, without affecting normal
cell  growth  under  normoxic  conditions[82].  Moreover,  four
Laurencia sp. were discovered to produce six new compounds,
among  which  omaezol/hachijojimallene  showed  strong
inhibitory activity  against  the larvae of  barnacle Amphibalanus
amphitrite[81].

Phycobiliprotein  is  a  light-harvesting  complex,  which  is
found in  red and blue algae and plays  a  key role  in  photosyn-
thesis. In recent years, phycobiliprotein has been widely used in
the  development  of  food  and  cosmetic  colorants  and  fluores-
cent  probes,  because  of  its  bright  color  and  good  phototrap-
ping  activity.  In  addition,  Phycobiliprotein  has  attracted  wide
attention  in  pharmaceutical  and  biomedical  fields  due  to  its
antioxidant,  anti-inflammatory,  anti-tumor  and  photosensitive
properties[109].

As  for  other  red  algae,  in Rhodosorus sp.,  19.6%  sulfate  and
11.6%  uronic  acid  were  identified  in  polysaccharides,  which
shows potential  as  a  promising source of  antioxidants  applied
in  food,  medicine,  and  cosmetics[110]. Griffithsia-derived  grif-
fithsin is a novel anti-HIV protein and a new type of lectin that
binds  to  various  viral  glycoproteins  in  a  monosaccharide-
dependent  manner[79].  The  polyhalogenated  monoterpene,
which  is  isolated  from Plocamium  hamatum,  present  bacterio-
static  activity[111].  Furthermore,  a  new  lectin  KSL  was  found  in
Kappaphycus  striatus and  provide  anticancer  activity  against
carcinoma  cell  lines,  such  as  HT29,  Hela,  MCF-7,  SK-LU-1  and
AGS[112]. At the same moment, Vidalia sp.-isolated vidalenolone
can inhibit  SH2 activity,  making it  promising for the treatment
of proliferative disorders[113].

 Brown algae (Ochrophyta phylum, Phaeophyceae
class)

It had been reported that tropical marine brown algal species
can  produce  promising  value-added  molecules.  Brown  algae-
derived natural polysaccharides, including algin, laminarin and
fucoidan,  have  attracted  extensive  attention  due  to  their
potential  application  in  the  field  of  medicine.  The  polysaccha-
rides and their derivatives have many biological activities, such
as  wound  healing,  anticoagulation,  antiviral  and  anticarcino-
genic[114].  For  example,  sulfated  polysaccharides,  polyphenols
and  diterpenes  are  the  most  important  ones[115]. Lobophora
variegata,  which  is  often  associated  with  tropical  coral  reefs,
exerts  strong  antiprotozoal  and  antibacterial  activities.  It  is
revealed that the extract of L.  variegata has a strong inhibitory
effect  on  HIV-1  strains  (including  drug-resistant/primary  HIV-1
isolates),  and  can  even  protect  primary  cells  from  HIV-1-infec-
tion,  thereby  indicating  a  promising  source  for  developing
novel HIV-1 inhibitors[78].  In addition, the common linear diter-
penes in brown algae have high chemotaxonomic and ecologi-
cal significance. It is reports that a new linear diterpene, named
as bifurcatriol,  was isolated from Bifurcaria bifurcata[116].  Mean-
while,  total  extract  of L.  variegata has  shown  antiprotozoal
activity against Trichomonas vaginalis[117].

Nutritional  studies  on  brown  seaweeds  indicate  that  they
could  be  used  as  an  alternative  source  of  dietary  fiber  and
protein[118].  On  one  hand,  dietary  fiber  in  seaweeds  is  mainly
composed  of  sulfated  polysaccharides,  which  are  resistant  to
human  digestive  enzymes  and  therefore  have  the  nutritional

properties  of  cellulose[119].  On  the  other  hand,  through  the
study  of  the  biochemical  and  nutritional  aspects  of  algal
protein,  it  was  found  that  the  degradation  of  algal  fiber  by
enzyme  can  prepare  bioactive  peptides  and  improve  the
digestibility  of  protein.  At  present,  antihypertensive  bioactive
peptides  from  seaweeds  have  received  much  attention,  and
these  bioactive  peptides  have  many  beneficial  effects  as
angiotensin-converting enzyme (ACE) inhibitors[120,121].

Cancer is the currently the second worst disease worldwide.
Natural  products  extracted  from  seaweeds  with  apoptotic
activity  have  attracted  widespread  attention  as  medcines  for
preventing  or  treating  cancer[122].  Methanol  extracts  from  13
tropical  seaweed  species  in  the  Northeast  of  Brazil  were
assessed  as  induced  apoptosis  agents  on  human  cervical
adenocarcinoma  (HeLa).  Among  these,  the  most  promising
ones,  MEDM  and  MEDC,  which  were  identified  from Dictyota
ciliolata and Dictyota menstrualis,  can inhibit SiHa (cervix carci-
noma)  cell  proliferation  (~20%)  at  higher  concentration  (200
µg/mL)[83].  Moreover,  five  new  bioactive  meroditerpenoids,  of
which  three  exhibited  moderate  cytotoxicity  to  NCI-H460
human  lung  cancer  cell  line  (LC50  ranges  from  2  to  11 µM),
were  isolated  from Stypopodium  flabelliforme in  Papua  New
Guinea[84].  On  the  other  hand,  three  new  terpenoids  were
isolated  from S.  zonale,  and  one  methyl  ester  presents in  vitro
cytotoxic activity on human lung and colon carcinoma[85].

 Green algae

Although the activity  of  bromoperoxidase is  highest  among
species  of  red  algae  (Rhodophyta),  a  large  number  of  green
algae  (Chlorophyta)  also  exhibit  bromoperoxidase  activities.
Furthermore,  bromoperoxidase  activity  can  reach  maximum
levels in some green algae species, and the enzymes responsi-
ble for bromoperoxidase activity have been isolated and identi-
fied  in  several  cases.  These  seaweeds  as  a  population  are  rich
source  of  linear  oxygenated  and  brominated  terpenes.  The
natural  products  of Avrainvillea  nigricans have  been  investi-
gated  and  reported  to  isolate  a  new  diphenylmethane,  which
possesses  moderate  antibiotic  activity  against  several  human
pathogens[123].  Then  Chen  et  al.  described  the  potential  anti-
cancer-type activity from A. rawsonii, using a mechanism-based
enzyme analysis based on inosine 5'-monophosphate dehydro-
genase  (IMPDH),  which  is  a  rate-limiting  enzyme  in  purine
biosynthesis[86].

It is well known that tropical green algae can synthesize large
quantities  of  sulphated  polysaccharides,  such  as  Caulerpa-
derived  sulphated  galactans,  Monostroma-derived  sulphated
rhamnans,  Codium-derived  sulphated  arabic  galactans,  Ulva-
and  Enteromorpha-derived  ulvans,  and  some  special  sulphate
acidified  mannan  from  different  species[43].  In  addition,
polyphenols, including carboxylic acids, hydroxycinnamic acids,
phlorotannins, catechins and flavonoids, had been identified in
tropical  green  algae,  such  as Chlorella sp.  and Rhodophyta
sp.[124].  Moreover,  green  algae  can  produce  high  amounts  of
polyunsaturated  fatty  acids,  such  as  arachidonic  acid,  eicos-
apentaenoic acid, α-linolenic, oleic and linoleic acid[125].

The genus Caulerpa, a marine green algae, is introduced into
the  Mediterranean  Sea  from  southwestern  Australia[126].  The
complex  composition  of  secondary  metabolites  is  considered
as one of the greatest advantages of the Caulerpa species. The
functional  groups  of  these  secondary  metabolites  provide
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various  biological  effects,  including  antifouling,  ichthyotoxic,
antimicrobial,  insecticidal,  feeding  deterrent,  anti-inflamma-
tory,  cytotoxic  and  growth  regulatory  properties[127−129].  In
addition, Paul et al. studied the effects of feeding deterrence on
brominated  sesquiterpenes,  which  are  produced  by  Pacific
collections  of Neomeris  annulata in  Guam.  It  is  reported  that
brominated  sesquiterpenes  provide  chemical  defenses  on
herbivory  by  reef  fishes[130].  In  addition,  considerable β-
carotenoids  and  zeaxanthin  were  isolated  from  pigments  of
Prochloron sp.,  which  was  collected  from  various  localities  in
the tropical Pacific Ocean[131].

 Seagrasses and mangroves

Seagrasses  represent  one of  the coastal  tropical  ecosystems
of  greatest  importance,  because  of  their  multiple  ecological
and  economic  benefits[132].  Since  seagrasses  have  to  adapt  to
changing tropical marine circumstances, their metabolites that
could be very useful for therapeutical purposes[133]. The marine
angiosperm Thalassia testudinum, usually known as turtle grass,
is a dominant seaweed that grows on the Caribbean shelf  and
is related to Syringodium filiforme. The hydroalcoholic extract of
T.  testudinum contains  abundant  polyphenols,  among  which
the richest metabolite in this extract is thalassiolin B, a glycosi-
lated  flavonoid  with  properties  such  as  repairing  skin  damage
and  antioxidant  activity[134].  In  addition,  seagrasses  form  a
good, durable and nearly inexhaustible source for polyunsatu-
rated  fatty  acids,  with  an  (n-6)  FA:  (n-3)  FA  ratio  of  about  1.0,
which is much lower than the suggested counterpart from the
World Health Organization to prevent inflammation, cardiovas-
cular  and  nervous  system  disease.  Some  marine  macroalgae,
such as Palmaria palmata (Rhodophyta), which contains a high
proportion  of  eicosapentaenoic  acid  (EPA,  C20:5,  n-3).  On  the
other  hand,  docosahexaenoic  acid  (DHA,  C22:6,  n-3)  was
detected in Sargassum  natans (Phaeophyceae)[135].  In  addition,
the  biological  characteristics  of  seagrass  and  its  rich  complex
sugars indicate its potential as renewable energy. For example,
the  low  lignin  content  in  seagrass  makes  it  easy  for  the  enzy-
matic  hydrolysis  of  cellulose.  Seagrasses  does  not  need  to
transport  nutrients  or  water  internally,  which  saves  energy.
Moreover,  many  seagrasses  have  a  higher  biomass  productiv-
ity  (13.1  kg  dry  weight  m−2 over  7  months)  than  land  plants
(0.5−4.4 kg dry weight m−2 year−1)[136]. Therefore, it is potential
to use seagrass as raw material for ethanol industry[137].

Mangroves provide crucial  resources to humanity,  including
food,  fisheries  support,  coastal  protection  and  carbon  seques-
tration[138].  On one hand, the physicochemical and antioxidant
properties  of  edible  mangrove  fruits  had  been  identified  in
many  studies.  In  the  Sundarbans  mangrove  forest  of
Bangladesh,  ten  edible  fruits  were  evaluated  for  their  anti-
bacterial,  anti-diarrheal,  and  cytotoxic  activities. Sonneratia
caseolaris (mangrove  plant)  ethanol:  methanol  (1:1)  extract
presents  the  highest  antibacterial  activity,  thus  facilitates  the
potential  of  diarrhea  treatment  and  useful  nutraceuticals[139].
Budiyanto et al. reviewed the nutritional composition of several
edible  mangrove  fruits,  and  suggested  the  usage  of Avicennia
marina fruit  as  an  alternative  food  to  support  the  sustainable
development  goal  of  eradicating  world  hunger[140].  On  the
other  hand,  mangrove-associated  microorganisms,  including
endophytic  fungal  and  bacterial,  as  well  as  microorganisms
from soil samples, have been proven to be abundant sources of

bioactive secondary metabolites. In the early 2000s, Xylaria sp.-
derived xyloketal  B and Salinospora tropica (marine Actinobac-
teria)-isolated salinosporamide A revealed a great potential for
drug  discovery  and  inspired  studies  in-depth  on  mangrove
microbes[141,142].  Further  investigation  of  mangrove  microbes
focused on natural product chemistry, biotechnology, bioactiv-
ity  and  chemical  synthesis  of  their  bioactive  metabolites,  thus
demonstrating  the  potential  of  mangrove  microbes  as  a  rich
source  of  lead  compounds[143].  In  particular,  over  the  last
decade, research on these microorganisms has led to character-
ization  of  nearly  1,000  new  metabolites,  of  which  approxi-
mately  850  derived  from  fungi  (most  of  which  obtained  as
endophytes), and ~120 from bacteria[144]. Therefore, the overall
trend  in  the  number  of  experimental  articles  dedicated  to
describing  new  bioactive  mangrove-derived  metabolites
remains promising.

 Conclusions

This  mini-review  concludes  current  studies  of  value-added
compounds  in  tropical  marine  plants,  including  microalgae,
seagrasses  and  mangroves.  So  far,  tropical  marine  plant
extracts are mostly used for the therapy of the globally threat-
ening diseases, such as acquired immune deficiency syndrome,
Dengue  fever  and  cancer.  Moreover,  many  active  compounds
are isolated and identified from total extracts of tropical marine
plants  for  further  research  and  development  of  medicines.
These  findings  crucially  suggest  tropical  marine  plants  as  a
promising source in the fields of biochemistry, biomass energy
resources, and pharmacology.
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