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Abstract
Functional  rice  has  a  broad  market  prospect  and  represents  one  of  the  vital  developmental  directions  for  future  rice  production.  This  paper

summarizes  the  types,  breeding  and  cultivation  technologies  of  functional  rice,  as  well  as  prevention  and  control  of  pests  and  diseases.  We

conclude the following: (1) breeding for functional rice should focus on breeding rice varieties with an endosperm that is enriched with multiple

active  components  and  broad-spectrum  resistance  to  pests  and  diseases;  (2)  moderate  water  stress  and  optimized  fertilizer  management

practices  of  low nitrogen,  low phosphorus,  high potassium,  high silicon,  and moderate  micronutrient  fertilization,  as  well  as  timely  and early

harvest,  are conducive to improving the yield and quality of functional rice.  In addition, we stress the need to focus on the development and

application  of  polymerization  breeding  technologies  for  the  advancement  of  the  functional  rice  industry,  and  future  research  in  these  areas

should be reinforced.
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 Introduction

With  the  development  of  the  world  economy,  people's  life-
styles have changed dramatically, and long-term high-intensity
work has put many people's bodies in a sub-healthy state. The
increasing  incidence  of  various  chronic  diseases  has  not  only
put enormous pressure on society's healthcare systems but also
caused  endless  suffering  to  people[1].  Therefore,  people's
demands on the functionality and safety of food are increasing,
and it has become the consensus of people that 'not just eating
enough, but more importantly eating well'.

Rice is the staple food for more than half of the world's popu-
lation  and  the  main  economic  source  for  a  large  number  of
rural  people[2].  However,  due  to  the  rising  cost  of  rice  cultiva-
tion,  farmers  are  gaining less  and less  economic benefits  from
growing  rice,  which  seriously  undermines  their  incentive  to
grow  rice  and  poses  a  serious  threat  to  world  food  security.
Increasing  the  added  value  of  rice  not  only  helps  to  increase
farmers'  income  but  also  helps  to  ensure  world  food  security.
The presence of a large number of functional ingredients in rice
makes it possible to increase the added value of rice, and func-
tional rice has therefore been widely noticed.

Functional  rice  refers  to  rice  containing  certain  specific
components  that  play  a  regulatory  and  balancing  role  in
human  physiological  functions  in  addition  to  the  nutrients
necessary  for  human  growth  and  development  in  the  endo-
sperm, embryo, and rice bran. They can increase human physio-
logical  defense  mechanisms,  prevent  certain  diseases,  help
recovery,  delay aging, and boost physical  strength and energy
levels[3].  Rice  is  a  staple  food for  more than half  of  the  world's
population[4],  and  its  functional  components  have  a  great
potential  to  be  exploited  for  human  welfare.  Using  functional
rice  as  a  carrier  to  address  health  problems  and  realize

'medicine-food  homology'  is  an  excellent  motivation  for
promoting functional rice. The current typical functional rice is
introduced  in  this  paper.  It  also  summarizes  the  breeding  and
cultivation technologies of functional rice.

 Types of functional rice

 High resistant starch rice
Rice  has  a  high  glycemic  index.  Its  long-term  consumption

leads to obesity, diabetes, and colon disease in many people[5].
However,  the  consumption  of  rice  rich  in  resistant  starch  (RS)
can  greatly  reduce  the  risk  of  these  diseases[6].  Therefore,
breeding  rice  varieties  with  high  RS  content  has  attracted
considerable  attention  from  breeders  in  various  countries.
However,  the  variability  of  RS  content  between  different  rice
varieties  is  low,  and  there  are  few  germplasm  resources  avail-
able for selection, thus making it challenging to breed rice vari-
eties with high RS content using traditional breeding methods.
Combining  traditional  and  modern  molecular  breeding  tech-
niques  can  greatly  improve  the  successful  production  of  high
RS rice breeds. Nishi et al.[7] selected a high RS rice variety EM10
by  treating  fertilized  egg  cells  of  Kinmaze  with  N-methyl-N-
nitrosourea. However, its yield was very low, and it was not suit-
able  for  commercial  production.  Wada  et  al.[8] crossed  'Fukei
2032' and 'EM129' as parents and selected Chikushi-kona 85, a
high RS rice variety with a higher yield than EM10. Miura et al.[9]

bred ultra-high RS BeI-BEIIB double mutant rice by crossing the
Abe I  and Abe IIB mutant strains,  and the content of  RS in the
endosperm reached 35.1%. Wei et al.[10] found that the simulta-
neous inhibition of starch branching enzyme (SBE) genes SBEIIb
and SBEI in  Teqing  by  antisense  RNA  could  increase  the  RS
content in rice to 14.9%. Zhu et al.[11] used RNAi technology to
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inhibit  the  expression  of SBEI and SBEII genes  in  rice,  which
increased the content of RS in rice endosperm from 0 to 14.6 %.
Zhou et  al.[6] found that  rice  RS formation is  mainly  controlled
by  soluble  starch  synthase  (SSIIA).  However,  its  regulation  is
dependent  on  the  granule-bound  starch  synthase  Waxy  (Wx),
and  SSIIA  deficiency  combined  with  high  expression  of  Wxa

facilitates  the  substantial  accumulation  of  RS  in  the  rice.  The
results  of  Tsuiki  et  al.[12] showed  that  BEIB  deficiency  was  the
main reason for the increased accumulation of RS in rice. Itoh et
al.[13] developed new mutant rice lines with significantly higher
levels  of  RS  in  rice  by  introducing  genes  encoding  starch
synthase and granule-bound starch synthase in the rice into the
BEIB-deficient mutant line be2b.

 Colored rice
The accumulation of anthocyanins/proanthocyanidins in the

seed coat  of  the rice grain gives brown rice a  distinct  color[14].
Most common rice varieties lack anthocyanins in the seed coat,
and so far, no rice variety with colored endosperm in its natural
state has been identified. However, Zhu et al.[15] bred rice with
purple  endosperm  using  transgenic  technology.  Red  rice
contains  only  proanthocyanidins,  while  black  and  purple  rice
contain  anthocyanidins  and  proanthocyanidins[16].  Red  seed
coat of rice was found to be controlled by the complementary
effects of  two central  effect genes Rc and Rd.  The loss of func-
tion of  the Rc gene prevented the synthesis  of  proanthocyani-
dins, while the Rd gene could enhance the effect of the Rc gene
in promoting proanthocyanidins synthesis[17].  Purple seed coat
color  is  controlled by two dominant  complementary  genes Pb
and Pp. Pb determines  the  presence  or  absence  of  seed  coat
color,  and Pp determines  the  depth  of  seed  coat  color[18].  In
addition,  phycocyanin  synthesis  is  also  regulated by  transcrip-
tion factors such as MYB, bHLH, HY5, and WD40[14], but the exact
regulatory mechanism is not clear. Colored rice is rich in bioac-
tive components,  such as flavonoids,  phenolic  acids,  vitamin E
(VE), glutelin, phytosterols, and phytic acid (PA). It also contains
large amounts  of  micronutrients  such as  Ca,  Fe,  Zn,  and Se[19],
and has a much higher nutritional  and health value than ordi-
nary white rice. In addition, Zhu et al.[20] successfully developed
rice  with  enriched  astaxanthin  in  the  endosperm  by  introduc-
ing  the  genes sZmPSY1, sPaCrtI, sCrBKT,  and sHpBHY.  This
achievement  has  laid  a  solid  foundation  for  the  further  deve-
lopment of functional rice industry.

 Giant embryo rice
Giant  embryo  rice  refers  to  rice  varieties  whose  embryo

volume is more than twice that of ordinary rice[21]. Rice embryo
contains  more  nutrients  than  the  endosperm;  therefore,  the
nutritional  value  of  giant  embryo  rice  greatly  exceeds  that  of
ordinary rice. Studies have found that the levels of γ-aminobu-
tyric acid (GABA), essential amino acids, VE, γ-oryzanol, phenols,
and  trace  elements  in  giant  embryo  rice  are  considerably
higher than that in ordinary rice[21]. Satoh & Omura[22] used the
chemical  mutagen  N-methyl-N-nitrosourea  to  treat  the  fertil-
ized  egg  cells  of  the  rice  variety  Kinmaze  to  obtain  a  'giant
embryo' mutant. The mutants’ embryo occupied 1/4–1/3 of the
rice  grain  volume  and  was  3–4  times  larger  than  normal  rice
embryo[23].  Its  GABA  content  increased  dramatically  after  the
rice  was  soaked  in  water.  Maeda  et  al.[24] crossed  the  giant
embryo  mutant  EM40  of  Kinmaze  with  the  high-yielding  vari-
ety  Akenohoshi  to  produce  the  giant  embryo  rice  variety
'Haiminori'.  The embryo size  of  'Haiminori'  is  3–4 times that  of

ordinary  rice,  and  the  GABA  content  of  its  brown  rice  is  3–4
times  higher  than  that  of  'Nipponbare'  and  'Koshihikari'  after
soaking for four hours in water.  A few genes that can regulate
the size of rice embryos have been identified, and GE is the first
identified rice giant  embryo gene[25].  Nagasawa et  al.[26] found
that the loss of GE gene function resulted in enlarged embryos
and smaller endosperm in rice. Lee et al.[27] found that the inhi-
bition of LE gene expression by RNAi technology could lead to
embryo  enlargement  in  rice,  but  the  regulatory  mechanism
remains to be investigated.

 Low glutelin rice
Protein  is  the  second  most  crucial  nutrient  in  rice,  account-

ing  for  7–10%  of  the  grain  weight,  and  glutenin  accounts  for
60%–80%  of  the  total  protein  content  in  rice  grains[28].
Compared  to  other  proteins,  glutenin  is  more  easily  digested
and  absorbed  by  the  body[29].  Therefore,  higher  glutenin
content  in  rice  can  improve  its  nutritional  value.  However,
people with renal disease (a common complication of diabetes)
have  impaired  protein  metabolism,  and  consumption  of  rice
with lower glutelin content can help reduce their protein intake
and  metabolic  burden[30].  Japanese  breeders  treated  Nihon-
masari with the chemical mutagen ethyleneimine and selected
the low-glutelin rice mutant NM67[31]. Iida et al.[31] developed a
new rice variety LGC-1 (Low glutelin content-1) with a glutelin
content of less than 4% by backcrossing the NM67 mutant with
the  original  variety  'Nihonmasari'.  According  to  Miyahara[32],
the  low  glutelin  trait  in  LGC-1  is  controlled  by  a  single  domi-
nant  gene Lgc-1 located  on  chromosome  2.  Subsequently,
Nishimura et al.[33] produced two rice varieties, 'LGC Katsu' and
'LGC  Jun'  with  lower  glutelin  content  by  crossing  LGC1  with  a
mutant line Koshikari  (γ-ray induction) lacking 26 kDa globulin
(another easily digestible protein).

 Golden rice
Vitamin A (VA) is one of the essential nutrients for the human

body[34].  However,  rice,  a  staple  food,  lacks  VA,  leading to  a  VA

deficiency  in  many  people. β-carotene  is  a  precursor  for  VA

synthesis and can be effectively converted into VA in the human
body[35].  Therefore,  breeding  rice  varieties  rich  in β-carotene
has attracted the attention of breeders in various countries. Ye
et  al.[36] simultaneously  transferred  phytoene  synthase  (psy),
phytoene desaturase (crt  I), and lycopene β-cyclase (lcy)  genes
into  rice  using  the Agrobacterium-mediated  method  and
produced the first  generation of golden rice with a β-carotene
content  of  1.6 µg·g−1 in  the  endosperm.  However,  due  to  the
low  content  of β-carotene  in  rice,  it  is  difficult  to  meet  the
human  body's  demand  for  VA.  To  increase β-carotene  content
in  rice,  Paine  et  al.[37] introduced  the  phytoene  synthase  (psy)
gene from maize and the phytoene desaturase (crt I) gene from
Erwinia  into  rice.  They  obtained  the  second  generation  of
golden  rice  with  37 µg  g−1 of β-carotene  in  the  endosperm,
with nearly 23-fold increase in β-carotene content compared to
the first generation of golden rice.

 Fe and Zn fortified rice
Fe and Zn are essential trace elements for human beings. The

contents of  Fe and Zn in common rice are about 2 µg·g−1 and
16 µg·g−1,  respectively[38],  which  are  far  from  meeting  human
needs.  In  2004,  to  alleviate  micronutrient  deficiencies  among
underprivileged people in developing countries,  the Consulta-
tive Group on International Agricultural Research launched the
HarvestPlus  international  collaborative  program  for  improving
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Fe,  Zn,  and β-carotene  levels  in  staple  crops,  with  breeding
targets of 13 µg·g−1 and 28 µg·g−1 for Fe and Zn in rice, respec-
tively.  Masuda  et  al.[39] found  that  expression  of  the  nico-
tianamine  synthase  (NAS)  gene HvNAS in  rice  resulted  in  a  3-
fold  increase  in  Fe  and  a  2-fold  increase  in  Zn  content  in
polished  rice.  Trijatmiko  et  al.[38] overexpressed  rice OsNAS2
gene and soybean ferritin gene SferH-1 in rice,  and the Fe and
Zn content in polished rice of  rice variety NASFer-274 reached
15 µg·g−1 and 45.7 µg·g−1, respectively. In addition, it has been
found  that  increasing  Fe  intake  alone  does  not  eliminate  Fe
deficiency  but  also  decreases  the  amount  of  Fe  absorption
inhibitors in the diet or increases the amount of Fe absorption
enhancers[40]. The negatively charged phosphate in PA strongly
binds metal cations, thus reducing the bioavailability of Fe and
Zn  in  rice[41],  while  the  sulfhydryl  group  in  cysteine  binds  Fe,
thereby  increasing  the  absorption  of  non-heme  Fe  by  the
body[42].  To  improve  the  bioavailability  of  Fe  and  Zn,  Lucca  et
al.[40] introduced  a  heat-tolerant  phytase  (phyA)  gene  from
Aspergillus fumigatus into rice and overexpressed the cysteine-
rich  protein  gene  (rgMT),  which  increased  the  content  of
phytase  and  cysteine  residues  in  rice  by  130-fold  and  7-fold,
respectively[40].

 Breeding technology of functional rice

The  functional  quality  of  rice  is  highly  dependent  on
germplasm  resources.  Current  functional  rice  breeding  mainly
adopts  transgenic  and  mutagenic  technologies,  and  the  culti-
vated  rice  varieties  are  mainly  enriched  with  only  one  func-
tional  substance  and  cannot  meet  the  urgent  demand  by
consumers  for  rice  enriched  with  multiple  active  components.
The  diversity  of  rice  active  components  determines  the
complexity  of  multifunctional  rice  breeding.  In  order  to  culti-
vate multifunctional rice, it is necessary to strengthen the appli-
cation of different breeding technologies. Gene polymerization
breeding  is  a  crop  breeding  technology  that  can  polymerize
multiple  superior  traits  that  have  emerged  in  recent  years,
mainly  including  traditional  polymerization  breeding,  trans-
genic  polymerization breeding,  and molecular  marker-assisted
selection polymerization breeding.

 Traditional polymerization breeding
The  transfer  of  beneficial  genes  in  different  species  during

traditional  polymeric  breeding  is  largely  limited  by  interspe-
cific reproductive isolation, and it is challenging to utilize bene-
ficial genes between different species effectively. Gene transfer
through  sexual  crosses  does  not  allow  accurate  manipulation
and selection of a gene and is susceptible to undesirable gene
linkage,  and  in  the  process  of  breed  selection,  multiple  back-
crosses  are  required[43].  Thus,  the  period  of  selecting  target
plants  is  long,  the  breeding  cost  is  high,  and  the  human
resources  and  material  resources  are  costly[44].  Besides,  it  is
often difficult to continue the breakthrough after a few genera-
tions of backcrossing due to linkage drag. Thus, there are signi-
ficant limitations in aggregating genes by traditional  breeding
methods[45].

 Transgenic polymerization breeding
Transgenic  technology  is  an  effective  means  of  gene  poly-

merization  breeding.  Multi-gene  transformation  makes  it
possible  to  assemble  multiple  beneficial  genes  in  transgenic
rice  breeding  rapidly  and  can  greatly  reduce  the  time  and

workload  of  breeding[46].  The  traditional  multi-gene  transfor-
mation  uses  a  single  gene  transformation  and  hybridization
polymerization  method[47],  in  which  the  vector  construction
and  transformation  process  is  relatively  simple.  However,  it  is
time-consuming,  laborious,  and  requires  extensive  hybridiza-
tion and screening efforts. Multi-gene-based vector transforma-
tion methods can be divided into two major categories:  multi-
vector co-transformation and multi-gene single vector transfor-
mation[47].  Multi-vector  co-transformation  is  the  simultaneous
transfer  of  multiple target  genes into the same recipient plant
through  different  vectors.  The  efficiency  of  multi-vector  co-
transformation is uncertain, and the increase in the number of
transforming  vectors  will  increase  the  difficulty  of  genetic
screening, resulting in a reduced probability of obtaining multi-
gene co-transformed plants.  Multi-gene single  vector  transfor-
mation  constructs  multiple  genes  into  the  T-DNA  region  of  a
vector and then transfers them into the same recipient plant as
a  single  event.  This  method  eliminates  the  tedious  hybridiza-
tion and backcrossing process and solves the challenges of low
co-transformation frequency and complex integration patterns.
It can also avoid gene loss caused by multi-gene separation and
recombination in future generations[47]. The transgenic method
can  break  through  the  limitations  of  conventional  breeding,
disrupt  reproductive  isolation,  transfer  beneficial  genes  from
entirely  unrelated crops to  rice,  and shorten the cycle  of  poly-
merizing  target  genes  significantly.  However,  there  are
concerns  that  when  genes  are  manipulated,  unforeseen  side
effects  may  occur,  and,  therefore,  there  are  ongoing  concerns
about the safety of transgenic crops[48].  Marker-free transgenic
technology  through  which  selective  marker  genes  in  trans-
genic  plants  can  be  removed  has  been  developed.  This
improves  the  safety  of  transgenic  crops,  is  beneficial  to  multi-
ple  operations  of  the  same  transgenic  crop,  and  improves  the
acceptance by people[49].

 Molecular marker-assisted selection polymerization
breeding

Molecular marker-assisted selection is one of the most widely
used rice breeding techniques at present. It uses the close link-
age  between  molecular  markers  and  target  genes  to  select
multiple  genes  directly  and  aggregates  genes  from  different
sources into one variety.  This  has multiple  advantages,  includ-
ing a focused purpose, high accuracy, short breeding cycle, no
interference  from  environmental  conditions,  and  applicability
to  complex  traits[50].  However,  few  genes  have  been  targeted
for  the  main  effect  of  important  agronomic  traits  in  rice,  and
they are mainly focused on the regulation of rice plant type and
the prevention and control of pests and diseases, and very few
genes related to the synthesis of active components, which can
be  used  for  molecular  marker-assisted  selection  are  very
limited.  Furthermore,  the  current  technical  requirements  and
costs for analyzing and identifying DNA molecular markers are
high, and the identification efficiency is low. This greatly limits
the  popularization  and  application  of  functional  rice  polymer-
ization breeding.  Therefore,  to  better  apply  molecular  marker-
assisted  selection  technology  to  breed  rice  varieties  rich  in
multiple active components, it is necessary to construct a richer
molecular  marker  linkage  map  to  enhance  the  localization  of
genes related to functional substance synthesis in rice[51]. Addi-
tionally,  it  is  important to explore new molecular  marker tech-
nologies to improve efficiency while reducing cost.
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It  is  worth  noting  that  the  effects  of  gene  aggregation  are
not  simply  additive.  There  are  cumulative  additive  effects,
greater than cumulative epistatic effects, and less than cumula-
tive epistatic effects among the polymerization genes, and the
effects are often smaller than the individual effect. Only with a
clearer  understanding  of  the  interaction  between  different
QTLs  or  genes  can  functional  rice  pyramiding  breeding  be
carried  out  reasonably  and  efficiently.  Except  for  RS  and  Se,
other  active  components  of  rice  mainly  exist  in  the  rice  bran
layer, and the content of active components in the endosperm,
the  main  edible  part,  is  extremely  low.  Therefore,  cultivating
rice  varieties  with  endosperm-enriched  active  components
have broad development prospects. In addition, because crops
with high quality are more susceptible to pests and diseases[52],
the  improvement  of  rice  resistance  to  pests  and  diseases
should  be  considered  during  the  polymerization  breeding  of
functional rice.

 Cultivation and regulation technology of
functional rice

The  biosynthesis  of  active  components  in  rice  is  influenced
by rice  varieties  but  also  depends on cultivation management
practices and their growth environment.

 Effect of light on the accumulation of active
components in rice

Environmental  conditions  have  a  greater  effect  on  protein
content  than  genetic  forces[53].  Both  light  intensity  and  light
duration  affect  the  synthesis  and  accumulation  of  active
components in rice. Low light intensity in the early stage of rice
growth is not conducive to the accumulation of glutelin in rice
grains but favors the accumulation of amylose, while the oppo-
site  is  true  in  the  late  stage of  rice  growth[54].  Low light  inten-
sity during the grain-filling period reduces the accumulation of
total  flavonoids  in  rice[55] and decreases  Fe ions'  movement in
the transpiration stream and thereby the transport of Fe ions to
rice grains[56]. An appropriate increase in light intensity is bene-
ficial to the accumulation of flavonoids, anthocyanins, and Fe in
rice,  but  the  photostability  of  anthocyanins  is  poor,  and  too
much light will cause oxidative degradation of anthocyanins[57].
Therefore,  functional  rice  is  best  cultivated  as  mid-late  rice,
which  would  be  conducive  to  accumulating  active  compo-
nents in rice.

 Effect of temperature on the accumulation of active
components in rice

The  temperature  has  a  great  influence  on  the  synthesis  of
active  components  in  rice.  An  appropriate  increase  in  the
temperature  is  beneficial  to  the  accumulation  of γ-oryzanol[58]

and flavonoids[59] in rice. A high temperature during the grain-
filling period leads to an increase in glutelin content in rice[60],
but  an  increase  in  temperature  decreases  the  total  phenolic
content[61].  The  results  regarding the  effect  of  temperature  on
the content of PA in rice were inconsistent. Su et al.[62] showed
that high temperatures during the filling period would increase
the  PA  content,  while  Goufo  &  Trindade[61] reported  that  the
increase in temperature would reduce the PA content. This may
be  due  to  the  different  growth  periods  and  durations  of
temperature stress  on rice in the two studies.  The synthesis  of
anthocyanins/proanthocyanidins in colored rice requires a suit-
able  temperature.  Within  a  certain  range,  lower  temperatures

favor  the  accumulation  of  anthocyanins/proanthocyanidins  in
rice[63].  Higher  temperatures  will  lead  to  degradation,  and  the
thermal  stability  of  proanthocyanidins  being  higher  than  that
of  anthocyanins[64].  In  addition,  cold  or  heat  stress  facilitates
GABA  accumulation  in  rice  grains[65].  Therefore,  in  actual
production,  colored rice and low-glutelin rice are best  planted
as  late  rice,  and  the  planting  time  of  other  functional  rice
should be determined according to the response of its enriched
active components to temperature changes.

 Effect of water management on the accumulation of
active components in rice

Moderate water stress can significantly increase the content
of glutelin[66] and GABA[67] in rice grains and promote the rapid
transfer of assimilation into the grains, shorten the grain filling
period,  and  reduce  the  RS  content[68].  Drought  stress  can  also
induce the expression of the phytoene synthase (psy) gene and
increase  the  carotenoid  content  in  rice[69].  Soil  moisture  is  an
important  medium  in  Zn  diffusion  to  plant  roots.  In  soil  with
low moisture content, rice roots have low available Zn, which is
not conducive to enriching rice grains with Zn[70].  Results from
studies on the effect of soil  water content on Se accumulation
in rice grains have been inconsistent. Li et al.[71] concluded that
flooded  cultivation  could  significantly  increase  the  Se  content
in rice grains compared to dry cultivation. However, the results
of  Zhou  et  al.[72] showed  that  the  selenium  content  in  rice
grains under aerobic and dry-wet alternative irrigation was 2.44
and 1.84 times higher than that under flood irrigation,  respec-
tively.  This  may  be  due  to  the  forms  of  selenium  contained  in
the  soil  and  the  degree  of  drought  stress  to  the  rice  that
differed between experiments[73]. In addition, it has been found
that  too  much  or  too  little  water  impacts  the  expression  of
genes related to anthocyanin synthesis in rice, which affects the
accumulation of anthocyanins in rice[74].  Therefore, it is recom-
mended  to  establish  different  irrigation  systems  for  different
functional rice during cultivation.

 Effect of fertilizer application on the accumulation of
active components in rice

Both the amount and method of nitrogen application affect
the  accumulation  of  glutelin.  Numerous  studies  have  shown
that  both increased and delayed application of  nitrogen fertil-
izer  can  increase  the  accumulation  of  lysine-rich  glutelin  to
improve  the  nutritional  quality  of  rice  (Table  1).  However,  this
improvement is  not beneficial  for kidney disease patients who
cannot  consume  high  glutelin  rice.  Nitrogen  stress  can  down-
regulate  the  expression  of ANDs genes  related  to  the  antho-
cyanins biosynthesis pathway in grains, resulting in a decrease
in anthocyanins synthesis[55]. Increased nitrogen fertilizer appli-
cation can also increase the Fe, Zn, and Se content in rice[75,76].
However,  some  studies  have  found  that  increased  nitrogen
fertilizer application has no significant effect on the Fe content
of rice[77],  while other studies have shown that increased nitro-
gen  fertilizer  application  will  reduce  the  Fe  content  of  rice[78].
This may be influenced by soil  pH and the form of the applied
nitrogen fertilizer. The lower the soil pH, the more favorable the
reduction of  Fe3+ to  Fe2+,  thus  promoting the uptake of  Fe  by
rice.  Otherwise,  the  application  of  ammonium  fertilizer  can
improve the availability of soil  Fe and promote the absorption
and  utilization  of  Fe  by  rice.  In  contrast,  nitrate  fertilizer  can
inhibit the reduction of Fe3+ and reduce the absorption of Fe by
rice[79].
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Appropriate application of phosphorus fertilizer is  beneficial
in promoting the translocation of Fe and Zn from leaves to rice
grains,  thus  increasing  the  content  in  rice  grains[80].  However,
the excessive application of phosphate fertilizer will reduce the
availability  of  Fe and Zn in  soil,  resulting in  less  uptake by the
roots  and a  lower content  in  the rice grains[81].  The content  of
PA in rice increased with a higher phosphorus fertilizer applica-
tion  rate[80].  Increasing  the  phosphorus  fertilizer  application
rate  would  increase  the  values  of  [PA]/[Fe]  and  [PA]/[Zn]  and
reduce the effectiveness of Fe and Zn in rice[80]. Currently, there
are  few  studies  on  the  effect  of  potassium  fertilization  on  the
synthesis of active components in rice. Available studies report
that increased application of nitrogen fertilizer can increase the
Zn content in rice[82]. Therefore, the research in this area needs
to be strengthened.

Because  the  iron  in  soil  mainly  exists  in  the  insoluble  form
Fe3+,  the  application  of  iron  fertilizer  has  little  effect  on  rice
biofortification[87]. There are different opinions about the effect
of  Zn  fertilizer  application  methods.  Phattarakul  et  al.[88]

believed  that  foliar  spraying  of  Zn  fertilizer  could  significantly
improve the Zn content in rice grains. Jiang et al.[89] concluded
that most of  the Zn accumulated in rice grains were absorbed
by the roots rather than from the reactivation of Zn in leaves. In
contrast,  Yuan  et  al.[90] suggested  that  soil  application  of  Zn
fertilizer  had no significant  effect  on Zn content  in  rice  grains.
The different  results  may be affected by the form of  zinc ferti-
lizer  applied  and  the  soil  conditions  in  the  experimental  sites.
Studies  have  found  that  compared  with  the  application  of
ZnEDTA  and  ZnO,  zinc  fertilizer  in  the  form  of  ZnSO4 is  most
effective for increasing rice's Zn[70].  In addition, the application
of  zinc  fertilizer  reduces  the  concentration  of  PA  in  rice
grains[70].

The  form  of  selenium  fertilizer  and  the  method  and  time  of
application  will  affect  the  accumulation  of  Se  in  rice  grains.
Regarding  selenium,  rice  is  a  non-hyperaccumulative  plant.  A
moderate  application  of  selenium  fertilizer  can  improve  rice

yield.  However,  the  excessive  application  can  be  toxic  to  rice,
and  the  difference  between  beneficial  and  harmful  supply
levels  is  slight[91].  Selenite  is  readily  adsorbed  by  iron  oxide  or
hydroxide in soil, and its effectiveness in the soil is much lower
than selenite[92].  In  addition,  selenate can migrate to the roots
and  transfer  to  rice  shoots  through  high-affinity  sulfate  trans-
porters.  In  contrast,  selenite  is  mainly  assimilated  into  organic
selenium  in  the  roots  and  transferred  to  the  shoots  in  smaller
amounts[93].  Therefore,  the  biological  effectiveness  of  Se  is
higher  in  selenate-applied  soil  than  in  selenite  application[94]

(Table 2).  Zhang et al.[95] found that the concentration of Se in
rice with soil application of 100 g Se ha-1 was only 76.8 µg·kg-1,
while the concentration of Se in rice with foliar spray of 75 g Se
ha-1 was as high as 410 µg·kg-1[73]. However, the level of organic
selenium was lower in rough rice with foliar application of sele-
nium  fertilizer  compared  to  soil  application[96],  while  the
bioavailability  of  organic selenium in humans was higher than
inorganic selenium[97]. Deng et al.[73] found that the concentra-
tions of total selenium and organic selenium in brown rice with
selenium fertilizer applied at the full heading stage were 2-fold
higher than those in brown rice with selenium fertilizer applied
at the late tillering stage (Table 2). Although the application of
exogenous  selenium  fertilizer  can  rapidly  and  effectively
increase  the  Se  content  of  rice  (Table  2),  it  can  easily  lead  to
excessive  Se  content  in  rice  and  soil,  which  can  have  adverse
effects  on  humans  and  the  environment.  Therefore,  breeding
Se-rich rice varieties is a safer and more reliable way to produce
Se-rich  rice.  In  summary,  functional  rice  production  should
include the moderate application of  nitrogen and phosphorus
fertilizer  and  higher  levels  of  potassium  fertilizer,  with  consi-
deration to the use of trace element fertilizers.

 Effect of harvesting time on the accumulation of active
components in rice

The  content  of  many  active  components  in  rough  rice  is
constantly  changing  during  the  development  of  rice.  It  was

Table 1.    Effect of nitrogen fertilizer application on glutelin content of rice.

Sample N level
(kg ha−1) Application time

Glutelin
content

(g 100 g−1)
References

Rough rice 0 5.67 [66]
270 Pre-transplanting : mid tillering : panicle initiation : spikelet differentiation = 2:1:1:1 6.92
300 Pre-transplanting : mid tillering : panicle initiation : spikelet differentiation = 5:2:2:1 6.88

Brown rice 0 5.35 [83]
90 Pre-transplanting : after transplanting = 4:1 6.01

Pre-transplanting : after transplanting = 1:1 6.60
180 Pre-transplanting : after transplanting = 4:1 6.53

Pre-transplanting : after transplanting = 1:1 7.29
270 Pre-transplanting : after transplanting = 4:1 7.00

Pre-transplanting : after transplanting = 1:1 7.66
Rough rice 0 5.59 [84]

187.5 Pre-transplanting : after transplanting = 4:1 6.47
Pre-transplanting : after transplanting = 1:1 6.64

300 Pre-transplanting : after transplanting = 4:1 7.02
Pre-transplanting : after transplanting = 1:1 7.14

Polished rice 0 3.88 [85]
90 Pre-transplanting : tillering : booting = 2:2:1 4.21

180 Pre-transplanting : tillering : booting = 2:2:1 4.43
270 Pre-transplanting : tillering : booting = 2:2:1 6.42
360 Pre-transplanting : tillering : booting = 2:2:1 4.87

Brown rice 0 9.05 [86]
120 Flowering 22.14

Rice sustainable production
 

Jin & Nie Tropical Plants 2023, 2:13   Page 5 of 10



found  that  the  content  of  total  flavonoids  in  brown  rice
increased  continuously  from  flowering  stage  to  dough  stage
and  then  decreased  gradually[101].  The γ-oryzanol  content  in
rice  decreased  by  13%  from  milk  stage  to  dough  stage,  and
then gradually  increased to 60% higher  than milk  stage at  full
maturity[101].  The  results  of  Shao  et  al.[102] showed  that  the
anthocyanin  content  in  rice  reached  its  highest  level  at  two
weeks  after  flowering  and  then  gradually  decreased.  At  full
ripeness, and the anthocyanins content in brown rice was only
about 50% of the maximum level.  The content of total pheno-
lics in rice decreased with maturity from one week after flower-
ing  to  the  fully  ripe  stage,  and  the  loss  of  total  phenolics
reached more than 47% by the fully ripe stage. In contrast, the
content  of  total  phenolics  in  black  rice  increased  with
maturity[102].  Moreover,  RS  content  in  rough  rice  decreases
during rice maturation[68]. Therefore, the production process of
functional  rice  should  be  timely  and early  harvested to  obtain
higher economic value.

 Prevention and control of pests and diseases for
functional rice

Pests  and  diseases  seriously  impact  the  yield  and  quality  of
rice[103].  At present,  the two most effective methods to control
pests  and  diseases  are  the  use  of  chemical  pesticides  and  the
planting of  pest  and disease-resistant rice varieties.  The use of
chemical  pesticides  has  greatly  reduced  the  yield  loss  of  rice.
However,  excessive  use  of  chemical  pesticides  decreases  soil
quality,  pollutes the environment, reduces soil  biodiversity[104],
increases pest resistance, and aggravates the adverse effects of
pests  and  diseases  on  rice  production[105].  It  also  increases
residual pesticide levels in rice, reduces rice quality, and poses a
severe threat to human health[106].

Breeding pest and disease-resistant rice varieties are among
the  safest  and  effective  ways  to  control  rice  pests  and
diseases[107].  In  recent  years,  many pest  and disease resistance
genes  from  rice  and  microorganisms  have  been  cloned[47].
Researchers have used these genes to breed rice varieties resis-
tant  to  multiple  pests  and  diseases  through  gene  polymeriza-
tion  breeding  techniques.  Application  in  production  practices
delivered good ecological and economic benefits[108].

Green  pest  and  disease  control  technologies  must  consider
the  synergies  between  rice  and  water,  fertilizer,  and  pest  and
disease  management.  In  this  regard,  the  rice-frog,  rice-duck,
and  other  comprehensive  rice  production  models  that  have

been  widely  used  in  recent  years  are  the  most  representative.
These  rice  production  models  significantly  reduced  chemical
pesticide  usage  and  effectively  controlled  rice  pests  and
diseases[109].  The  nutritional  imbalance  will  reduce  the  resis-
tance of rice to pests and diseases[110].  Excessive application of
nitrogen fertilizer stimulates rice overgrowth, protein synthesis,
and  the  release  of  hormones,  increasing  its  attractiveness  to
pests[111].  Increased  soluble  protein  content  in  rice  leaves  is
more  conducive  to  virus  replication  and  increases  the  risk  of
viral infection[112].  Increasing the available phosphorus content
in the soil will increase crop damage by pests[113], while insuffi-
cient potassium supply will reduce crop resistance to pests and
diseases[114].  The  application  of  silica  fertilizer  can  boost  the
defense against pests and diseases by increasing silicon deposi-
tion in rice tissue, inducing the expression of genes associated
with  rice  defense  mechanisms[115] and  the  accumulation  of
antifungal  compounds  in  rice  tissue[116].  The  application  of
silica  fertilizer  increases  the  release  of  rice  volatiles,  thereby
attracting  natural  enemies  of  pests  and  reducing  pest
damage[117]. Organic farming increases the resistance of rice to
pests  and  diseases[118].  In  addition,  rice  intercropping  with
different  genotypes  can  reduce  pests  and  diseases  through
dilution and allelopathy and changing field microclimate[119].

In  conclusion,  the  prevention  and  control  of  rice  pests  and
diseases  should  be  based  on  chemical  and  biological  control
and supplemented by fertilizer  management methods such as
low  nitrogen,  less  phosphorus,  high  potassium  and  more  sili-
con,  as  well  as  agronomic  measures  such  as  rice-aquaculture
integrated cultivation, organic cultivation and intercropping of
different  rice  varieties,  etc.  The  combined  use  of  multiple
prevention  and  control  measures  can  improve  the  yield  and
quality of functional rice.

 Conclusions

Functional rice contains many active components which are
beneficial  to  maintaining  human  health  and  have  high  eco-
nomic and social value with broad market prospects. However,
the current development level of the functional rice industry is
low. The development of the functional rice requires extensive
use  of  traditional  and  modern  polymerization  breeding  tech-
niques  to  cultivate  new  functional  rice  varieties  with  endo-
sperm  that  can  be  enriched  with  multiple  active  components
and have broad-spectrum resistance to pests and diseases. It is
also  important  to  select  suitable  planting  locations  and  times

Table 2.    Effect of selenium fertilizer application on the selenium content of rice.

Sample Se level (g Se ha−1) Selenium fertilizer forms Application method Se content (µg·g−1) References

Rough rice 0 0.002 [98]
18 Selenite Foliar spray at full heading 0.411

Polished rice 0 0.071 [99]
20 Selenite Foliar spray at full heading 0.471
20 Selenate Foliar spray at full heading 0.640

Rough rice 75 Selenite Foliar spray at late tillering 0.440 [73]
75 Selenite Foliar spray at full heading 1.290
75 Selenate Foliar spray at late tillering 0.780
75 Selenate Foliar spray at full heading 2.710

Polished rice 0 0.027 [100]
15 Selenite Foliar spray at full heading 0.435
45 Selenite Foliar spray at full heading 0.890
60 Selenite Foliar spray at full heading 1.275
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according  to  the  response  characteristics  of  different  func-
tional rice active components to environmental conditions.
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