
 

Open Access https://doi.org/10.48130/TP-2023-0014

Tropical Plants 2023, 2:14

A review of the functions of transcription factors and related genes
involved in cassava (Manihot Esculenta Crantz) response to drought
stress
Charles Orek*

Department  of  Agricultural  Sciences,  School  of  Agriculture  &  Environmental  Sciences,  Murang’a  University  of  Technology,  PO  Box  75-10200  Murang'a,
Kenya
* Corresponding author, E-mail: corek.publish@gmail.com

Abstract
Cassava  navigates  drought  stress via diverse  mechanisms including avoidance,  tolerance,  resistance or  recovery  from effects  of  drought.  The

crop's  inherent  tolerance  to  drought  stress  is  underpinned  by  a  set  of  genes  involved  in  several  molecular  pathways.  Among  these  include

transcription factors  (TFs)  with  key  roles  in  abscisic  acid  (ABA)  signaling pathways.  ABA is  a  ubiquitous  phytohormone that  is  critical  in  plant

growth and development processes as well as responses to abiotic stresses such as drought. This review focuses on and summarizes the current

developments  in  the identification,  characterization and functions  of  TFs  and related genes  (RGEs)  implicated in  ABA pathways  that  regulate

cassava's response to drought stress. The different drought-induced experiments set up either in the field or controlled environments and omics

approaches applied by researchers for gene discovery and characterization are highlighted. The roles of these drought-induced genes in other

crops or plants are compared with cassava. The review reveals functions of key candidate TFs and REGs including AREBs/ABFs, NACs, bHLH, WRKY,
MYC/MYB, HD-Zip, TCP,  HSFs,  AP2/ERFBPs, NFYA5,  SLAC1, ABI1,  SCaBP5, PKS3,  PYR1,  AP2/ERFs, DREB1A,  DREB2A/B, RD29A/B,  RD19,  ERD1 among

others. These genes are potential molecular markers that could aid in rapid introgression of drought tolerance traits not only in farmer-preferred

and drought susceptible cassava genotypes, but also in other crops for improved production. Through this omics-based drought-mitigation, the

negative effects of climate change could be reduced.
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 Introduction

Global climatic changes brought on by both man-made and
natural  factors  have  resulted  in  general  rise  in  temperatures
and  unpredictable  precipitation  patterns.  This  has  increased
severity  and  intensity  of  drought  stress  with  attendant  reduc-
tion  in  agricultural  productivity.  Drought  stress  is  the  most
damaging  abiotic  stress,  directly  threatening  food  security  by
limiting  crop  growth,  development,  and  production.  Globally,
drought  stress  has  substantially  affected  production  of  major
food  crops  causing  up  to  21%,  40%  and  more  than  50%  yield
losses  in  wheat,  maize  and  rice  respectively[1].  According  to
future  forecasts,  the  risk  of  crop  loss  could  surpass  64%,  68%,
and 70% for rice, wheat, and maize, respectively, under increas-
ing  dry  conditions[2].  A  critical  solution  is  to  therefore  breed
drought-tolerant  crop  varieties  that  can  significantly  improve
and sustain global crop productivity to feed an ever increasing
human population complexed with ongoing climatic  changes.
Drought  tolerant  crops  such  as  cassava  can  sustainably
produce  high  yield  under  water  deficient  conditions[3,4].
Cassava  is  a  perennial  tuberous  root  crop  of  Amazonian
origin[5] with a broad agro-ecological adaptability and inherent
tolerance to drought stress[6].  The crop has been classified as a
'drought,  war,  and  famine  crop'  in  the  poor  world[7] due  to  its
capacity to flourish in low fertility soils  and resistance to inter-
mittent  and  seasonally  prolonged  drought  spells[8].  This  has

established the crop as a foundation or strategic for food secu-
rity  and  poverty  alleviation  in  these  regions[7,9,10].  Generally
plants  either  resist,  avoid,  escape,  tolerate  or  recover  from
drought stress[11]. Plants have embedded these mechanisms at
morpho-physiological,  biochemical,  cellular  and  molecular
levels.  Cassava  is  no  exception.  The  crop  deploys  multiple
drought  response  mechanisms  to  maintain  growth  and  yield
under water scarce conditions or periods.

Morphological  and  physiological  responses  of  cassava  to
drought  stress  has  been  widely  researched  and  documented.
The crop avoids drought stress by stopping leaf area expansion,
reduced transpiration and by its sensitive, fast, and tight stom-
atal  regulation  over  leaf  gas  exchange[12,13] or  general  reduc-
tion  in  its  leaf  canopy  that  decreases  transpirational  surface
area  for  water  conservation[14,15].  Further  response  is  through
decreased  stomatal  conductance[4],  limited  leaf  formation  and
extension,  increased  bud  dormancy  and  extended  root
growth[16].  All  these  responses  have  been  directly  correlated
with changes in biosynthesis, accumulation and distribution of
the broad-spectrum phytohormone, abscisic acid (ABA) in most
if  not  all  cassava  organs  and  tissues.  Indeed  cassava  varieties
have accrued ABA under drought stress[14]. During abiotic stres-
sors  such  as  drought,  ABA  participates  in  the  coordination  of
multiple  stress  signal  transduction  pathways  or  the  activation
of stress sensitive genes in plants.  Drought stress activates the
transcription  factor  (TFs)  family  of  genes  involved  in  both
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ABA-dependent  (ABA-D)  and  ABA-independent  (ABA-I)  path-
ways  such  as  the  ABA  responsive  element  binding  proteins
(AREBs/ABFs),  Dehydration  responsive  element  binding  2
(DREB2), MYC/MYBs and NAC (NAM, ATAF1, 2 and CUC)[17]. These
TFs assist plant in tolerating abiotic stresses and other unfavor-
able  growth  conditions,  thus  making  them  viable  or  potential
genetic  candidates  for  widespread  use  in  crop  breeding  or
improvement[18].  ABA-D  pathways  appear  to  recruit  antioxi-
dant  and  osmoprotectant  mechanisms  involving  glycine
betaine,  proline,  soluble  sugars  among  others  compared  to
ABA-I  pathways  which  generally  involves  protective
proteins[13]. For cassava improvement or breeding objectives, it
is important to further investigate and examine the functions of
both  ABA-D  and  ABA-I  signal  transduction  pathways  and
related  genes  involved  in  increasing  cassava  tolerance  to
drought stress[4,19−21].

 Drought-induced ABA-dependent transcription
factors

 Basic leucine zipper (bZIP) transcription factors
Plant  growth,  development,  and  responses  to  both  biotic

and abiotic stress are all significantly influenced by bZIP TFs[22].
AREBs/ABFs are  examples  of bZIP TFs  that  control  the  expres-
sion  of  genes  that  are  responsive  to  or  are  dependent  on
ABA[23].  By  binding  to  the  conserved ABRE cis-elements  in  the
promoter regions, AREB/ABFs exert control over the expression
of  target  genes  involved  in  plant  response  to  abiotic  stresses
including  drought,  salinity,  heat,  oxidative  and
osmotic[18,20,24,25].  Further,  by  promoting  expression  of  several
late embryogenesis genes, AREBs and ABFs promotes adaptabil-
ity of different plants or crops to adverse environmental condi-
tions[24].  For  example, AREB1/ABF2,  AREB2/ABF4 and ABF3 were
highly  induced  by  ABA  and  they  both  regulated  ABRE-depen-
dent  ABA  signaling  in  drought  stress  tolerance  in
Arabidopsis[25]. Additional candidate AREB/ABFs have also been
over-expressed  in  wheat  and  rice  under  drought
conditions[26,27].  In  comparison,  the  functions  of bZIP TFs  in
cassava  response  to  drought  have  also  been  studied.  For
instance  Hu  et  al.[28] revealed  that  numerous MebZIP genes  in
the roots and leaves of cassava were activated by drought, indi-
cating  their  participation  in  the  plant's  resistance  to  drought
stress.  In  this  study,  eight MebZIP genes  (MebZIP41,  MebZIP64,
MebZIP9,  MebZIP58,  MebZIP55,  MebZIP16,  MebZIP72 and
MebZIP77)  were  up-regulated  by  drought  stress  while  six
(MebZIP11,  MebZIP27,  MebZIP52,  MebZIP55,  MebZIP64 and
MebZIP72)  were  up-regulated  by  ABA  treatment  suggesting
their  potential  role  in  ABA  signaling.  Two  other MebZIP genes
(MebZIP4 and MebZIP52)  were over expressed under hydrogen
peroxide  (H2O2)  treatment  indicating  their  potential  role  in
scavenging for  reactive oxygen species  (ROS)  in  cassava[28].  Fu
et  al.[19] reported  five  other bZIP genes  (MebZIP44, MebZIP5,
MebZIP53,  MebZIP10 and MeHY5/TED5)  involved  in  drought
response in cassava.

For ABFs,  Feng  et  al.[20] reported  five MeABFs (MeABF1,
MeABF2,  MeABF3,  MeABF4 and MeABF7)  that  showed  signifi-
cantly higher expression in cassava roots and leaves as a result
of drought stress. The MeABFs may activate the MeBADH1 gene
by binding to its promoter region, which in turn promotes the
production  and  accumulation  of  glycine  betaine  (GB)  content

in cassava[20]. Under drought, higher GB is synthesized in order
to  improve  tissue  water  status  and  insulate  biological  mem-
branes  from  ROS,  thus  osmoprotection[29].  This  implied  that
MeABFs induced  the  expression  of  the MeBADH1 gene,  which
increased  GB  content  that  in  turn  protected  the  cells  from
dehydration by preserving osmotic balance and thus improved
cassava  tolerance  to  dehydration[20].  Fu  et  al.[19] also  found
enhanced  expression  of  ABF2  in  cassava  subjected  to  24-hour
PEG-induced dehydration stress, while Orek[30] reported consid-
erable  up  regulation  of ABF2 in  all  cassava  genotypes  submit-
ted to water deficit treatment.

 NAC transcription factors
The NAC TFs  are  composed  of  [no  apical  meristem  (NAM)],

Arabidopsis  transcription  activation  factor  [ATAF1/2]  and  cup-
shaped  cotyledon  proteins  [(CUC2)].  These  TFs  are  involved  in
general  plant growth, development as well  as plant adaptabil-
ity  to  external  stimuli[31].  ABA  treatment  either  activates  or
suppresses NAC TFs[32] and  thus  they  contribute  to  drought
resistance  in  plants  or  crops[33].  For  instance,  in  response  to
drought  stress, NAC genes  were  activated  in  rice[34] and
wheat[35].  According  to  Nuruzzaman  et  al.[36], NAC-mediated
stress responses in plants may be directly linked with ROS scav-
enging  and  plant  leaf  senescence.  Examples  of  drought-
inducible  and  ABA-mediated NAC TFs  include RD22,
RD26/NAC072,  ATAF1,  and SNAC1[33,34,37].  Drought  stress  and
ABA both induced RD22, with its expression considered an ABA
early response marker[38,39].  Nine-cis-epoxycarotenoid dioxyge-
nases  (NCED)  and  ABA-aldehyde  oxidase  (AAO)  are  two  other
NAC TFs involved in ABA biosynthesis pathways[19].  The capac-
ity to withstand drought stress has been associated with NCED3
and RD26 in  cotton  and  transgenic  tobacco[40]. RD26/NAC072
facilitates  crosstalk  between  drought  and  Brassinosteroid
signaling  and  is  further  involved  in  ABA-  and  JA-responsive
gene expression[37,41]. Roles of ATAF1 in drought stress and ABA
response  have  also  been  reported.  For  example, ATAF1 posi-
tively  modulated  drought  stress  in  cucumber  through  ABA-
dependent  pathway  and  scavenging  for  ROS[42]. SNAC1 is  also
an  essential  ABA  signaling  regulator  that  positively  regulates
the  expression  of  a  variety  of  ABA  signaling  genes[34].  Indeed
ABA  inducible SNAC1 in  rice  enhanced  ABA-induced  stomatal
closure and improved drought resistance[31].

Similarly,  Hu et al.[31] reported expression profiles of cassava
NACs TFs (MeNACs) in different cassava genotypes subjected to
drought stress.  For  example MeNAC30 which shares  high simi-
larity with ATAF1/ANAC002 that has been shown to be involved
in  abiotic  stress  (drought  and  ABA)  responses  and  leaf  senes-
cence[31].  For  instance, MeNAC30 that  has  been  reported  to
have high similarity to ATAF1/ANAC002, was been implicated in
responses  to  ABA,  drought  and  leaf  senescence  in  cassava[31].
Upon  re-watering  following  a  drought  stress  treatment,
MeATAF1 displayed  varied  expression  patterns  between
drought tolerant and drought susceptible cassava accessions[4].
In addition, Orek et al.[4] observed distinct MeSNAC1 expression
profiles  in  drought-tolerant  and  susceptible  cassava  cultivars
and  connected  these  to  stomatal  conductance. MeRD22 was
also characterized by Lokko et al.[43] as one of the differentially
expressed  sequence  tags  (ESTs)  with  established  functions  in
cassava  drought  stress  responses.  Further,  a  cassava  variety
that  was  subjected  to  PEG-induced  dehydration  stress,  exhib-
ited  distinct MeRD22 expression  patterns[19].  Utsumi  et  al.[44]
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reported  up  regulation  of MeRD26 in  diverse  cassava  geno-
types  under  drought  stress  using  a  high-density  oligomicroar-
ray analysis.

Diverse cassava genotypes subjected to drought stress treat-
ment  showed  up-regulation  of NCED3,  a  key  gene  in  ABA
biosynthetic pathway which encodes a member of 9-cis-epoxy-
carotenoid  dioxygenases and MeRD26 gene  that  is  involved  in
the  ABA-dependent  drought-induced  signaling[44].  Both NCED
and AAO are  key  enzymes  involved  in  ABA  biosynthetic  path-
way[19].  Similarly  Orek  et  al.[4] showed  that MeNCED3 was  up-
regulated  in  different  cassava  genotypes  under  drought  and
linked  the  gene  to  an  ABA-dependent  pathway.  Furthermore,
MeNCED gene  was  previously  activated  in  cassava  roots  and
was  associated  with  high  ABA  levels  produced  in  response  to
drought  stress[45].  Ding  et  al.[46] reported  over-expression  of
MeRD26 gene in cassava roots and leaves under drought stress.
Fujita  et  al.[33] had  also  indicated  involvement  of  the MeRD26
gene  in  drought  resistance  in  cassava  based  on  ABA-depen-
dent  stress  signaling  pathway.  Fu  et  al.[19] showed  significant
activation  of  both MeNCED3 and MeRD26 genes  in  cassava
genotypes  under  polyethylene  glycol  (PEG)-induced  dehydra-
tion  stress. MeAAO2,  MeNCED7 and MeNCED8 genes  were  also
induced in cassava under dehydration[19].

 Basic helix-loop-helix (bHLH) transcription factors
The bHLH TFs control a range of metabolic and developmen-

tal  plant  processes,  including  the  biosynthesis  of  secondary
metabolites,  which  is  crucial  for  plant  tolerance  or  adaptation
to adverse conditions[47]. For instance, in foxtail millet and rice,
bHLHs genes  were  induced  and  enhanced  these  plants’  toler-
ance  to  drought  stress  by  activating  the  ABA  and  jasmonate
signaling pathways, maintaining ROS homeostasis, and trigger-
ing  stomatal  closure[47−49].  Certain bHLH TFs,  including MUTE,
RD29,  EGLE3,  GL3,  and SPT,  have also been linked to  processes
that improved drought resistance in plants, including stomatal
movement, ABA synthesis, extension of root hairs, and the inhi-
bition of leaf growth[50]. The functions of bHLH TFs in the adap-
tation  of  cassava  to  drought  stress  have  also  been  character-
ized. As an illustration, the differential expression of two bHLH
genes,  jasmonic acid ZIM-domain protein 2/9 (JAZ2 and JAZ9),
suggested  that  proteins  associated  to  JA  signaling  transduc-
tion were involved in the response of cassava to under drought
conditions[17].  Given  that bHLH genes  play  a  role  in  plant
growth  and  development[51],  it  has  been  hypothesized  that
drought  stress  may  preserve  energy  by  preventing  cassava
growth so that it can adapt to environmental stresses[17]. Other
bHLHs TFs  that  were  identified  in  cassava  under  the  dehydra-
tion stress  induced by polyethylene glycol  treatment  included
MeICE1, MebHLH4, MebHLH104,  and MebHLH131-like protein[19].
These genes were either up- or down-regulated.

 WRKY transcription factors
The WRKY TFs  are  ubiquitous  in  higher  plants  and  play

important  roles  in  a  variety  of  physiological  processes  and
adaptation  to  adverse  environment  conditions  including  leaf
senescence  and  plant  response  to  abiotic  stresses  such  as
drought[52,53]. WRKY TFs  are  important  components  of  ABA
signaling[54], and their over-expression improved drought toler-
ance in rice[55] and wheat[56]. Differential expression of MeWRKY
genes  in  response  to  drought  stress  in  various  cassava  acces-
sions  suggested  that  they  contribute  to  drought  stress  resis-
tance in cassava via ABA signaling and oxidative stress regula-
tion[57,58].  Fu  et  al.[19],  for  example,  found  three MeWRKY TFs

(WRKY1, WRKY21,  and WRKY23) that were variably expressed in
response to PEG-induced dehydration stress,  as well  as consis-
tent  ABA-induced  expression  in  cassava  roots  and  leaves.
Furthermore, the functional roles of MeWRKY20 and MeWRKY75
in  cassava  have  been  analyzed  under  drought  stress[57,59].
MeWRKY20 and MeWHY1/2/3,  for  example,  reportedly  regu-
lated ABA accumulation in  cells  by  inducing the expression of
two  ABA  biosynthetic  genes, MeNCED5 and MeNCED1,  hence
enhancing  drought  tolerance  of  wild-type  cassava  plants via
ABA  biosynthesis[32,57,60]. MeWRKY33,  another  candidate,  also
exhibited  significant  up  regulation  in  drought-treated  cassava
plants[17].  Wei  et  al.[58] found that  drought stress  increased the
expression  of  nine MeWRKY genes  in  the  leaves  and  roots  of
different  cassava  accessions.  These  included MeWRKY6,
MeWRKY11,  MeWRKY14,  MeWRKY18,  MeWRKY20,  MeWRKY40,
MeWRKY42,  MeWRKY49, and MeWRKY83[58].  In  conclusion,
cassava WRKY genes  may  play  a  key  role  in  water  intake  from
soil by roots, resulting in improved drought tolerance[58].

 Myeloblastosis (MYB / MYC) transcription factors
MYB family  proteins  serve  a  variety  of  roles  in  plant  abiotic

stressors  such as  drought,  salt,  and cold stress[61,62].  They have
an important role in biosynthesis of secondary metabolites like
anthocyanins,  flavonols,  and  lignin[61].  Some MYBs  are  specifi-
cally  involved  in  the  regulation  of  stomatal  movement,  the
control of suberin and cuticular wax production, and the regu-
lation  of  flower  development  in  response  to  water  stress[63].
Cotton,  potato,  and Arabidopsis MYB TFs  have been shown to
be involved in  the adaptive response to drought stress[40,64,65].
The MYC (RD22BP1/AtMyc2) and MYB (AtMyb2) TFs binds to the
cis-elements  in  the RD22 promoter  and  activates  the RD22
gene[65].  Drought  tolerance  is  increased  by  ABA-inducible
MYB96,  which induces stomatal closure via the RD22 gene, up-
regulates cuticular wax biosynthetic enzyme genes, and modu-
lates  root  growth  and  development[66].  Turyagyenda  et  al.[21]

found a substantial  increase in MeMYC2 expression in drought
susceptible cassava genotypes compared to non-expression in
drought tolerant cassava genotypes under a greenhouse water
deficit  treatment.  In  cassava,  several  other MYBs genes  that
responded to drought signals have been discovered[19,62,67]. For
example, Liao et al.[67] found 26 cassava R2R3 MYB family genes
that were expressed during water deficiency in cassava.  Water
deficit  treatment  resulted  in  the  down  regulation  of MeMYB2
and MeMYB9 in  cassava  leaves  and up regulation  of MeMYB26
in cassava roots[62,68,69].

The non-differential  expression of MeMYB2 in cassava under
PEG-induced  dehydration  stress  suggested  that  the  gene  did
not  play  a  key  part  in  cassava's  ABA-dependent  pathway[19].
However,  RNAi-mediated MeMYB2 regulation  increased
drought  tolerance  in  transgenic  cassava[62].  Furthermore,
drought  stress  increased  the  expression  of MeMYB21 in
cassava[17], whereas Wang et al.[68] identified MeMYB26 as a reli-
able  candidate  gene  associated  with  cassava  drought  toler-
ance  and  biomass  storage.  In  response  to  water  deficit  treat-
ment, MYB44 and MYB60 gene  regulation  patterns  differed
between  drought  tolerant  and  drought  susceptible  cassava
genotypes[4,30].  Cassava  exposed  to  PEG-induced  dehydration
stress  showed  varied  expression  patterns  of MeMYB6,
MeMYB15,  and MeMYB31 in  several  tissues,  including  roots[19].
Wang  et  al.[70] recently  found  that  ABA-induced  induction  of
MeMYB108 with  over-expression  of  gene  greatly  reduced  the
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rate of drought-induced leaf abscission under drought stress in
cassava.  As  a  result, MeMYBs genes  may  modulate  cassava
responses  to  abiotic  stress  like  drought  through  both  ABA-
dependent  and  ABA-independent  mechanisms[62]. MeMYBs
genes may contribute to drought stress by increasing stomatal
closure in the ABA-dependent pathway.

 Homeodomain-leucine zipper (HD-Zip) transcription
factors

The HD-Zip proteins  are  one  of  the  critical  TFs  involved  in
plant growth and development through their regulatory role in
the  ABA  signaling  pathway[71].  Arabidopsis,  rice,  maize,
soybean,  legume,  and banana are examples of  crops or  plants
where HD-Zips have been studied[71].  For  example Arabidopsis
HD-Zip I  subfamily,  including AtHB5,  AtHB6 and AtHB7 were
either up- or down-regulated by drought stress as well  as ABA
treatment[72,73].  Other research has also shown that the HD-Zip
II and HD-Zip IV subfamilies also respond to drought stress and
ABA  treatment.  Similarly,  Ding  et  al.[71] observed  differential
expression  patterns  of  multiple MeHDZ I,  II,  and  IV  subfamilies
in leaves and roots of three different cassava genotypes under
drought  and  PEG  treatment.  These  included  nine MeHDZ I
subfamily (MeHDZ25, MeHDZ39, MeHDZ38, MeHDZ37, MeHDZ36,
MeHDZ23, MeHDZ20, MeHDZ21, and MeHDZ26);  three MeHDZ II
subfamily  (MeHDZ31,  MeHDZ32, and MeHDZ34),  and  four
MeHDZ IV  subfamily  (MeHDZ10,  MeHDZ11,  MeHDZ15,  and
MeHDZ55)[71].  Yu et al.[74] previously recorded up-regulation of
MeHDS1,  a  member  of  the HD-Zip IV  subfamily,  in  cassava
during drought stress, with its expression varying more in roots
than  in  leaves.  Yu  et  al.[75] recently  found  an HD-Zip I  TF,
MeHDZ14,  which was substantially  activated by drought stress
in several cassava varieties.

 TCP transcription factors
TEOSINTE  BRANCHED  1 (TB1)  from  maize  (Zea  mays),

CYCLOIDEA (CYC)  from  snapdragon  (Antirrhinum  majus),  and
PROLIFERATING CELL FACTORS 1 and 2 (PCF1 and PCF2) from rice
(Oryza  sativa)  are  the  first  four  characterized  members  of  the
TCP family  of  TFs[76]. TCPs regulate  a  variety  of  biological
processes  throughout  plant  growth  and  development,  includ-
ing  plant  architecture,  leaf  morphogenesis,  phytohormone
pathways,  and  response  to  environmental  stimuli[77]. TCP TFs
control  plant  development  and  defense  responses  by  increas-
ing  of  bioactive  metabolites  such  as  brassinosteroid,  jasmo-
nate, and flavonoids[76]. TCP TFs may also play a beneficial regu-
latory  role  in  plant  drought  tolerance via an  ABA-dependent
signaling pathway[78]. Drought tolerance has been improved by
over-expression of TCP-TFs in bamboo[78], rice[79], and maize[80].
Similarly,  the role of TCP TFs in cassava drought resistance has
been  studied.  For  example,  Lei  et  al.[81] discovered  36  non-
redundant MeTCPs in  drought-stressed  cassava  seedlings.  The
drought  stress  treatment  strongly  induced  seven  genes
(MeTCP20c,  MeTCP20e,  MeTCP11a,  MeTCP2b,  MeTCP19,
MeTCP13a,  and MeTCP13b)[81].  Furthermore,  22 MeTCPs were
highly sensitive to ABA, showing that the MeTCPs genes may be
regulated by the ABA signal pathway[81]. Furthermore, MeTCP3a
and MeTC4 showed altered expression patterns under drought
stress,  implying  that  they  may  also  play  vital  roles  in  cassava
under abiotic stress conditions[81].

 Heat stress transcription factors (HSFs)
HSFs play an important role in plant stress response by regu-

lating  the  expression  of  stress-responsive  genes  such  as  heat
shock proteins (Hsps)[82]. Drought and plant hormones like ABA

and ethylene have been demonstrated to influence the expres-
sion  of  plant HSF genes.  Drought  resistance  in  chickpea  (Cicer
arietinum L.), for example, was enhanced by over-expression of
HSFs such  as CarHSFB2[83]. The  expression  of HSFs genes  in
cassava  has  also  been  studied.  Drought  stress,  for  example,
increased  the  transcript  levels  of MeHsfB3a,  MeHsfA6a,
MeHsfA2a, and MeHsfA9b,  and  additional  interaction  network
and co-expression analyses revealed that these HSF genes may
interact with Hsp70 family members to withstand environmen-
tal  stresses  in  cassava[84].  Zeng  et  al.[85] discovered  several
MeHSFs that were up-regulated after treatments with both PEG
and  ABA,  showing  that  the MeHSFs may  play  a  role  in  resis-
tance  to  simulated  drought  stress via the  ABA  signaling  path-
way. HSP90, for example, is critical for drought stress resistance
in  cassava  by  regulating  ABA  and  hydrogen  peroxide  (H2O2).
Among  cassava's MeHSP90s, MeHSP90.9 transcript  was  mainly
up-regulated  during  drought  stress. MeHSP90.9  may  directly
activate MeWRKY20 on  the  W-box  element  of  the MeNCED5
promoter,  encoding  a  major  enzyme  in  ABA  biosynthesis  and
hence  regulators  of  drought  stress  resistance  in  cassava[57].
Furthermore, MeHSP90.9 inhibited  cassava  leaves'  ability  to
accumulate  H2O2 during  drought  stress  and  positively  regu-
lated MeCatalase1 activity,  indicating MeHSP90.9 as  a  possible
ROS scavenger.

 Other ABA-dependent transcription factors

Nuclear  Factor  Y,  Sub-unit  A5  (NFYA5)  are  ubiquitous  TFs
comprised  of  three  different  sub-units  (NF-YA, NF-YB,  and NF-
YC)[86]. NFYA5 is  a  member  of  the  Arabidopsis NF-YA family
whose  over-expression  promotes  ABA-induced  stomatal
closure,  plant  survival  under  drought  stress  and  by  positively
regulating other drought-responsive genes via the CCAAT box
cis-element[86].  Indeed,  Arabidopsis  plants  with NFYA5 over-
expression  showed  significant  drought  stress  resistance[86].
Similarly, in drought-stressed cassava, MeNFYA5 has been impli-
cated  in  ABA-dependent  signaling  and  stomatal
movement[4,30].  Protein  kinase OST1 (open  stomata  1)  and
protein phosphatase ABI1 (ABA insensitive 1)  TFs are two criti-
cal  components  of  the  ABA  signaling  pathway[87]. OST1 and
ABI1 are  ABA  transduction  pathway  regulators  of  Slow  Anion
Channel-Associated  1  (SLAC1)[87]. ABI1 inhibits  ABA  signaling,
and inhibiting ABI1 could provide a strategy for increasing crop
yield under drought stress[88]. Drought/ABA signaling in higher
plant guard cells  is  mediated by the SnRK2 kinase-OST1,  which
activates  the  anion  channel SLAC1[89].  Active  stomatal  closure
necessitates  the SLAC1/OST1 module[89]. OST1 encodes SnRK2,
an ABA-activated protein kinase implicated in stomatal closure
via  ABA  stimulation[90]. OST1 and SLAC1 have  been  associated
with  limiting  water  loss  thus  improving  drought  tolerance  in
maize[91].  As part  of  the drought avoidance strategy,  transcrip-
tomic  investigation  of  cassava  revealed  that  acetic  acid  treat-
ment  elevated  the  expression  of  ABA  signaling-related  genes
such as MeOST1, MePP2C, and MeTSPO[90]. Drought avoidance in
acetic  acid-treated  cassava  plants  was  enhanced  by  lower
stomatal  conductance and transpiration rates,  higher leaf  rela-
tive  water  content,  and  higher  levels  of  ABA,  chlorophyll,  and
carotenoid[90].  Suksamran  et  al.[92] demonstrated  that  down
regulation  of MeSLAC1 reduces  water  loss  in  cassava  during
drought stress. Orek et al.[4] reported MeSLAC1 over-expression
and down regulation in drought tolerant and drought suscepti-
ble  cassava  genotypes  exposed  to  moisture  stress.  Ruan  et
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al.[93] observed that drought stress or ABA treatment increased
ABI1 expression,  whereas  Orek  et  al.[4] reported  that  elevated
levels  of MeABI1 in  drought  tolerant  cassava  genotypes  was
consistent  with  sustained  stomatal  opening  and  gradual
decrease  in  stomatal  conductance  under  conditions  of  water
scarcity.

SCaBP5,  a  Ca2+ binding  protein,  and PKS3,  an  interacting
protein  kinase,  act  as  global  modulators  of  ABA  responses[94].
Arabidopsis mutants with suppressed SCaBP5 or PKS3 (scabp5 /
pks3) had much lower transpirational water loss, rapid stomatal
closure, and improved ABA response in guard cells. SCaBP5 and
PKS3 are both involved in a calcium-responsive negative regu-
latory  loop  that  controls  ABA  sensitivity[94].  Drought  and  ABA
treatment increase the expression of SCaBP5 and PKS3. Orek et
al.[4] showed increased expression of MeSCaBP5 and MePKS3 in
cassava  genotypes  under  drought  and  linked  this  with  a
decrease  in  stomatal  conductance,  a  potential  drought  avoid-
ance strategy in cassava.  Phospholipase D alpha 1 (PLDα1)  is  a
phospholipid hydrolyzing enzyme in plants that plays a role in
abiotic  stress  responses and ABA signaling[95]. PLDα1 mediates
ABA  modulation  of  stomatal  movement  and  its  increased
expression has been observed in response to dehydration and
ABA  treatment[96].  Elevated  expression  of PLDα1 improved
drought  tolerance  in  Arabidopsis[96] and  upland  rice[97].  Wang
et al.[98] discovered PLDα1 (MesPLDα1-3) in cassava and Orek et
al.[4] observed  that  drought  stress  increased  the  expression  of
MePLDα1 in  drought  tolerant  cassava  genotypes  compared  to
its  down  regulation  in  drought  susceptible  genotypes.  This
corresponded with observed changes in stomatal conductance
between the two classes of genotypes[4].

Pyrabactin  resistance  1  (PYR1)  /  Regulatory  component  of
ABA  receptor  11  (RCAR  11)  act  as  ABA  sensors  and  regulate
protein phosphatase 2Cs (ABI1 and ABI2) via ABA[99]. PYR1 posi-
tively  regulates  ABA-mediated  stomatal  closure[100]. PYR1 up
regulation  improved  drought  tolerance  in  rice[101] and
wheat[102] through positive modulation of ABA signaling. Zhao
et  al.[103] discovered  multiple PYL/R-PP2C-SnRK2 genes  that
were up regulated in cassava under ABA treatment and abiotic
stresses. MePYR1 was found to be involved in cassava signaling
or  response  to  ABA[104]. MeCBF3 and MeCBF4,  two AP2/EREBP
members  that  were  previously  linked  with  low  temperature
and  ABA  response,  were  found  to  be  differently  expressed  in
cassava roots  during drought  stress[105].  Orek  et  al.[4] observed
increased  and  decreased  expression  of MePYR1 in  drought
tolerant  and  drought  susceptible  cassava  genotypes  respec-
tively under drought stress treatment while Li et al.[17] analyzed
a  high  number  of  'response  to  ABA  stimulus'  genes  that  were
significantly  up-  or  down-regulated  by  drought  stress  in
cassava, including the ABA receptor MePYL2.

 Drought-induced ABA-independent transcription
factors

 AP2/ERF transcription factors
APETALA  2/ethylene-responsive  element  binding  factor

(AP2/ERFs) is a broad set of plant-specific TFs composed of four
primary subfamilies: AP2, RAV, ERF, and dehydration-responsive
element-binding protein (DREBs)[106]. The AP2/EREBP stimulates
the  expression  of  abiotic  stress-responsive  genes  by  specifi-
cally binding to the DRE/CRT cis-acting element (A/GCCGAC) in
their  promoter  regions[107].  They  participate  in  a  variety  of

biological processes, including growth, development, hormone
and  stress  responses.  Increased AP2/ERF expression,  particu-
larly  in  the DREB,  ERF, and RAV subfamilies,  improves  drought
stress  tolerance,  making  them  suitable  or  possible  candidate
genes for crop improvement or genetic engineering[108,109]. Up-
regulation  of AP2/ERF TFs,  for  example,  improved  drought
tolerance  in  rice,  wheat,  transgenic  tobacco,  and  Arabidopsis
by  increasing  photosynthesis,  ABA  accumulation,  proline
biosynthesis,  and  ROS  scavenging[109−111]. ABI3/VP1 (RAV)  is
another AP2/ERF-related  TF  that  positively  modulates  drought
tolerance in plants via ABA pathways[112].  Drought tolerance in
rice[113] and wheat[114] was improved by up regulation of DREBs
TFs. DREB2A and DREB2B in  Arabidopsis  operate  as  transcrip-
tional  activators  in  the  ABA-independent  (ABA-I)  pathway via
RD29A[ 19,37,115]. DREB1A isolated  from  Arabidopsis  improved
drought resistance in transgenic rice[27].

The  roles  of  these AP2/ERF TFs  in  cassava  drought  stress
response  have  also  been  documented.  For  example,  Liao  et
al.[116] demonstrated  that  multiple AP2/ERF subfamilies  play
important  roles  in  the  control  of  ethylene-  and  water-deficit
stress-induced  leaf  abscission  in  cassava.  These  included
MeERF1,  MeERF4,  MeCRF10,  MeEBE,  MeESE3,  MeEDF1 (RAV  TF),
MeRAP2.4,  MeERF12,  MeRAP2.6,  MeCRF9,  MeERF9,  and
MeCRF11[116].  Similarly,  Fan  et  al.[117] discovered  potential
MeERFs genes  that  were  up  regulated  by  drought  stress  in
cassava  leaves  and  roots. MeERF46,  MeERF56,  MeERF75,
MeERF35, MeERF98, MeERF133, and MeERF136 were found to be
up  regulated  in  roots,  while MeERF70,  MeERF17,  MeERF40,
MeERF116, MeERF100, and MeERF128 were found to be up regu-
lated  in  leaves[117].  Ren  et  al.[118] related  higher  expression  of
ethylene  signaling-related  gene  families  such  as MeERF6,
MeERF10, MeERF11, MeERF13, MeEIL1,  MeERS1 and MeERS2 with
enhanced  accumulation  of  trehalose  and  proline  contents  in
cassava  leaves,  stems,  and  roots  under  drought  stress  treat-
ment.  Trehalose  and  proline  act  as  compatible  solutes  and
perform  various  activities  in  plant  cells  to  protect  them  from
abiotic  stressors[119]. MeERF1 was  similarly  strongly  induced  in
cassava  by  drought  stress  treatment[17].  Yan  et  al.[60] demon-
strated the involvement of one cassava RAV TF candidate gene
(MeRAV5) in cassava drought tolerance via H2O2 regulation and
enhanced  lignin  buildup. MeRAV5 increased  the  activities  of
peroxidase (MePOD)  and cinnamyl  alcohol  dehydrogenase
(MeCAD15),  both  of  which  alter  H2O2 and  accumulation  of
endogenous  lignin,  which  are  significant  in  drought  stress
tolerance in cassava.

Fu et al.[19] observed no differences in DREB2A/B gene expres-
sion  levels  in  cassava  during  PEG-induced  dehydration  stress.
However, Orek et al.[4] recorded differences in the expression of
DREB1A, DREB2A/B, and RD29A/B genes in drought-tolerant and
susceptible  cassava  genotypes  exposed  to  different  levels  of
water  deficit  treatments.  Fu  et  al.[19] also  analyzed  another
DREB2 member, DREB2C,  which  is  linked  in  an  ABA-insensitive
pathway  and  has  been  shown  to  be  co-expressed  with  a NAC
protein, RD19,  in  response  to  dehydration  and  but  not  trig-
gered  by  ABA  in  cassava.  Under  PEG-induced  dehydration
stress, MeRAP2.11 and MeRAP2.4 (another AP2/ERF family)  for
ethylene  were  also  over  expressed  in  cassava  roots[19].  Other
AP2/EREBP family  members,  notably MeSHN1,  MeRAP2.4,
MeANT, and MeABR1, have also been reported to be associated
with drought  stress  response in  cassava via  hormones such as
ethylene but not ABA[105].
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 Other ABA-independent TFs and genes

Expression  of  cysteine  proteinase RD19 is  not  induced  by
ABA,  but the gene is  sensitive to dehydration stress[120].  Lokko
et  al.[43] identified RD19 as  one  of  the  unique  expressed
sequence tags (ESTs) that encode proteins with known involve-
ment in cassava drought responses.  Under PEG-induced dehy-
dration  stress,  up  regulation  of RD19 was  also  observed  in
cassava[19]. Drought, natural and dark-induced senescence, and
ABA  all  increase  the  expression  of ERD1,  which  encodes  a Clp
protease regulatory  subunit[120].  One  of  the  unique  ESTs  that
encode proteins with known involvement in drought responses
in  cassava  was  Precursor  to  Early  Response  to  Desiccation  1,
ERD1[43]. Delta1-pyrroline-5-carboxylate  synthase (P5CS),  a  rate-
limiting  enzyme  in  proline  biosynthesis,  showed  consistent
expression  patterns  with MeERD1 in  cassava  under  drought
stress,  implying  that MeP5CS may  participate  in  an  ABA-inde-
pendent  pathway  in  cassava via ERD1[19]. Figure  1 depicts  an
overview  of  various  ABA-dependent  and  ABA-independent
transcription  factors  and  related  genes  involved  in  drought
tolerance in cassava as reviewed above.

 Conclusions

Under  water  deficit  conditions,  ABA  reduces  transpirational
water  loss  from  cassava  leaves,  promotes  partial  stomatal
closure,  reduces  leaf  area  by  restricting  new  leaf  formation  or
expansion  and  induces  leaf  abscission.  These  morpho-physio-

logical responses are driven by a cascade of genes or transcrip-
tion  factors  involved  in  ABA  signaling  pathways.  This  review
article  identified  candidate  transcription  factors  within  ABA
pathways  that  could  be  exploited  to  introgress  drought  toler-
ance  traits  not  only  in  susceptible  cassava  genotypes  but  also
other crop species.  These included genes in AREBs/ABFs,  NACs,
bHLH, WRKY, MYC/MYB, HD-Zip, TCP, HSFs and AP2/ERFBPs fami-
lies  as  well  as NFYA5,  SLAC1, ABI1,  SCaBP5, PKS3,  PYR1,  GRXs,
AP2/ERFs, DREB1A,  DREB2A/B, RD29A/B,  RD19 and ERD1. They
can  be  considered  for  development  of  molecular  markers  for
marker-assisted selection and also candidates for genetic engi-
neering for drought tolerance.
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Fig. 1    A sample of transcription factors involved in cassava response to drought stress through ABA-dependent (blue) and ABA-independent
(red) molecular pathways (based on literature review for other plant species and cassava).
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