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Highlights

•  Machine  learning  enabled  predictive  tool:  We  have  developed  a  sulfur-containing  compound-related  gene
prediction algorithm based on machine learning technology.

•  Method is reliable: the reliability of the algorithm was further verified through enrichment analysis, literature data.

•  Online  service  offered:  to  facilitate  user  access  to  the  prediction  algorithm  created  in  this  research,  we  have
additionally provided an online gene prediction service related to sulfur-containing compounds.
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Abstract
Sulfur-containing compounds (SCCs) are pivotal secondary metabolites widely distributed in plants, particularly within the Brassicaceae family.

These compounds play crucial roles in human health and in interactions between plants and pests. In this groundbreaking study, we harnessed

the  extensive  SuCComBase  database,  harvesting  1,285  protein  sequences  associated  with  sulfur-containing  compounds.  Employing  the  SVM

algorithm,  we  pioneered  the  development  of  a  predictive  model  for  plant  SCCGs,  representing  a  novel  computational  approach  based  on

sequence  data.  Remarkably,  our  SVM-Kmer  model  delivered  exceptional  performance  metrics  (F1score  =  0.945,  ACC  =  0.938,  AUC  =  0.936).

Building upon this  achievement,  we introduced the SCCGs_Prediction tool,  a  resource born of  our model.  Through this  tool,  we identified an

astounding 51,638 SCCGs from a staggering 2,873,697 protein sequences spanning 81 different species.  Intriguingly,  our findings highlighted

that  the  Brassicaceae  and  Papilionoideae  subfamilies  exhibit  a  notably  higher  prevalence  of  SCCGs  compared  to  other  plant  families.  In  our

commitment to facilitate enhanced utilization of  the SCCGs_Prediction tool  and the extensive plant SCCGs datasets,  we have established the

Sulfur-Containing  Compounds  Platform  (SCCP).  We  firmly  believe  that  the  SCCP  will  serve  as  an  invaluable  resource  hub,  providing

comprehensive information to the SCCs research community.
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 Introduction

Sulfur-containing  compounds  (SCCs)  represent  pivotal
secondary  metabolites  that  are  widely  distributed in  the  plant
kingdom,  with  a  notable  prevalence  in  the  Brassicaceae
family[1] .  The functional role of SCCs in mediating interactions
between  plants  and  pests  is  of  paramount  significance.  Each
plant family harbors its distinct set of chemical defenses, exem-
plified  by  thiopene in  Asteraceae  and glucosinolates  in  Brassi-
cales[2].  Beyond  their  ecological  significance,  sulfur-containing
compounds  exhibit  diverse  therapeutic  effects  in  humans,
encompassing  chemoprotective  activities  against  cancer,
endocrine system regulation, and improvements in sexual func-
tion[3−5]. Due to the multiple benefits of SCCs and the high inci-
dence  of  cancer,  researchers  have  increasingly  shifted  their
focus to these compounds. Previous studies have revealed the
complex  regulation  of  SCC  synthesis  involving  numerous
genes.

To  facilitate  a  more  systematic  investigation  of  sulfur-
containing compounds (SCCs),  the SuCComBase database was
employed.  It  is  the  first  and  only  manually  curated  resource
dedicated  to  SCCs  studies  in  plants  (http://plant-scc.org,
accessed  on  15  June  2022).  This  comprehensive  database
serves  as  a  repository  for  all  molecular  information  pertaining
to  SCCs  biosynthesis  in Arabidopsis  thaliana,  encompassing

SCCs  biosynthetic  pathway  genes,  proteins,  and  related  data.
By collating data from 224 papers, a total of 778 potential SCCs-
related  encoding  genes  (SCCGs)  were  identified,  comprising
147  known A.  thaliana sulfur-containing  compounds  associ-
ated genes and 92 putative sulfur-containing compounds asso-
ciated genes[2].  The SuCComBase database presents a valuable
resource  for  researchers,  offering  convenient  access  to  a  rich
dataset  that  facilitates  the  systematic  study  of  sulfur-contain-
ing compounds in plants.

To date, the identification of genes related to sulfur-contain-
ing  compounds  (SCCs)  has  predominantly  relied  on  laborious
and expensive  biological  experiments,  which are  also  intricate
in  nature.  Existing  computational  methods,  such  as  BLAST+[6]

and  HMMER[7],  have  made  significant  strides  in  identifying
homologous  sequences;  however,  their  performance  remains
suboptimal  when  it  comes  to  identifying  non-homologous
sequences.  Alternatively,  within  the  realm  of  artificial  intelli-
gence, machine learning leverages statistical, probabilistic, and
optimization  methodologies  to  discern  patterns  within  pre-
existing  data,  thereby  enabling  the  anticipation  of  novel  data
points[8].  This  approach  proves  immensely  valuable  in  the
exploration  of  novel  and  pivotal  genes  associated  with  sulfur-
containing  compounds.  In  recent  years,  machine  learning  has
demonstrated  its  effectiveness  across  a  wide  spectrum  of
biological  disciplines[8−11].  Its  prowess  shines  particularly  in
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managing  complex,  multidimensional  datasets  that  often
exhibit  high  levels  of  noise  and/or  incompleteness.  What  sets
machine  learning  apart  is  its  capacity  to  work  without  impos-
ing  stringent  assumptions  about  the  underlying  probability
distribution and data generation process.  Among the plethora
of  machine  learning  methods  at  our  disposal,  the  Support
Vector  Machine  (SVM)  stands  as  a  versatile  and  well-
established choice with a track record of success across various
bioinformatics  challenges.  For  example,  N'Diaye  et  al.  effec-
tively  harnessed  the  SVM  algorithm  to  unveil  tissue-specific
gene expression patterns in wheat[11]. The potential of machine
learning  holds  the  promise  of  transforming  SCCs  research  by
streamlining  the  identification  of  key  genes,  thus  advancing
our comprehension of these crucial compounds.

In  this  study,  we  have  achieved  a  significant  milestone  by
developing  SCCGs_Prediction,  a  state-of-the-art  machine-
learning  software  meticulously  designed  for  the  identification
of  genes  associated  with  sulfur-containing  compounds  using
protein  sequences.  Powered  by  the  robust  SVM-Kmer  model,
which boasts impressive performance metrics (F1score = 0.945,
ACC  =  0.938,  AUC  =  0.936)  honed  through  rigorous  SVM
algorithm training, our software represents a cutting-edge tool
in  the  field.  To  ensure  that  researchers  can  harness  the  full
potential  of  SCCGs_Prediction with ease,  we have gone a step
further  and  established  a  dedicated  platform  known  as  SCCP
(www.sagsanno.top:8080/SCCP,  accessed  on  25  August  2022).
This  platform  is  exclusively  tailored  to  cater  to  the  intricate
world  of  sulfur-containing  compounds.  We  are  confident  that
SCCP  will  be  an  invaluable  resource,  offering  crucial  insights
and information to the SCCs research community.

 Materials and methods

 Datasets construction
The SuCComBase database stands as an invaluable resource,

offering researchers unparalleled convenience and a wealth of
data  for  the  systematic  exploration  of  sulfur-containing  com-
pounds. From this extensive repository, we extracted a compre-
hensive  dataset  comprising  147  confirmed,  92  potential,  and
778  putative A.  thaliana genes  associated  with  sulfur-contain-
ing compounds, which served as our positive data reference[2].
For  our  negative  data  set,  we  turned  to  the  TAIR  database
(www.arabidopsis.org,  last  accessed  on  June  16,  2022)[12].
Subsequently,  we  meticulously  curated  the  data  using  Python
scripts,  removing  sequences  containing  ambiguous  amino
acids  (B,  J,  O,  U,  X,  and  Z)  and  those  with  a  length  below  50
residues.  To  further  refine  our  dataset,  we  applied  the  CD-HIT
program  with  a  stringent  threshold  of  0.7  to  eliminate  redun-
dant sequences. This meticulous data curation process resulted
in a final dataset consisting of 1,285 sequences for our positive
data  and  8,494  sequences  for  our  negative  data,  which  were
subsequently employed for training our classification model.

 Selection of feature set
We  harnessed  the  versatile  Pse-in-One  2.0  software,  to

extract three distinct types of features essential for our analysis.
These  features  encompassed  the  Kmer,  Parallel  Correlation
Pseudo Amino Acid Composition (PC-PseAAC), and Auto-Cross
Covariance (ACC) characteristics. Specifically, we configured the
software  to  generate  the  Kmer  feature  with  kmer  =  2,  the  PC-
PseAAC  feature  with λ =  5  and ω =  0.2,  and  the  ACC  feature

with  LAG  =  14.  These  feature  extraction  processes  were
executed  utilizing  the  dedicated  scripts  nac.py,  pse.py,  and
acc.py[13]. Leveraging these meticulously extracted features, we
proceeded  to  construct  the  SCCGs_Prediction  predictor,  a
pivotal component of our study.

 Machine learning
Before  our  machine  learning  prediction  model  becomes

operational,  it  must  undergo  a  crucial  training  phase  to  fine-
tune  its  parameters  from  an  extensive  array  of  possibilities.  In
this  context,  we  harnessed  the  power  of  Support  Vector
Machines  (SVM),  an  integral  machine  learning algorithm avail-
able through the auto-sklearn package, to construct our classifi-
cation  model.  To  optimize  its  performance,  we  meticulously
fine-tuned  critical  hyperparameters,  including  cost,  gamma,
and kernel, employing an exhaustive grid search approach.

 Evaluation method and metrics
In  order  to  evaluate  the  performance  of  the  classification

model,  we used the fivefold cross-validation,  and three indica-
tors  including F1score,  ACC,  and AUC.  The pROC package was
used  to  calculate  AUC  values.  Meanwhile,  the  F1score,  Preci-
sion,  Sensitivity  and  ACC  were  calculated  using  the  following
formulas:

F1score =
Precision×Sensitivity
Precision+Sensitivity

Precision =
TP

TP + FP

Sensitivity =
TP

TP + FN

ACC =
TP + TN

TP + TN + FP + FN
where  TP,  FP,  FN,  and  TN  represent  true  positive,  false  positive,
false negative and true negative, respectively.

 Large-scale predict SCCGs
We  accessed  protein  sequences  from  81  plants  through

publicly  available  databases  (Supplemental  Table  S1)[12,14−30].
To  ensure  data  integrity,  we  removed  sequences  that  con-
tained unidentified amino acids from our dataset. Concurrently,
we employed the  Pse-in-One 2.0  software  to  extract  the  Kmer
feature (kmer = 2) from the refined dataset. Utilizing our metic-
ulously  trained  SVM-Kmer  model,  we  subsequently  embarked
on  a  comprehensive  prediction  endeavor,  covering  a  diverse
spectrum  of  sulfur-containing  compounds  across  these  81
plant species.

 Enrichment analysis and collection of literature data
NHCCDB  database  mining  (http://tbir.njau.edu.cn/NhCCDb

Hubs/). GO Enrichment, and KEGG Enrichment tools were used
for gene functional enrichment analysis. Genes related to sulfur
compounds  in Brassica  napus and Brassica  rapa, sourced  from
the  PubMed  database,  were  gathered  and  employed  for  test-
ing a classification model.

 Creation of the Sulfur-Containing Compounds Platform
(SCCP)

The  Sulfur-Containing  Compounds  Platform  (SCCP:
www.sagsanno.top:8080/SCCP or http://plants.hainanu.edu.cn/
SCCP,  accessed  on  25  August  2022),  was  meticulously  crafted
within a Linux operating system environment,  expertly hosted
on  an  Apache  Tomcat  server.  To  create  an  intuitive  and
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user-friendly  interface,  we  artfully  combined  a  range  of
programming  languages  and  technologies  in  the  front-end
development,  including  Java,  Python,  JavaScript,  and  HTML
scripts.  On  the  back  end,  we  implemented  a  robust  data
management system by housing and organizing all  SCCP data
within  MySQL  databases.  This  backend  infrastructure  ensures
seamless  data  retrieval  and storage.  We are  proud to  mention
that  the  SCCP  website  boasts  cross-browser  compatibility,
offering  accessibility  through  popular  web  browsers  such  as
Firefox, Internet Explorer, and Google Chrome.

 Results

 SVM performance
In  this  investigation,  we have harnessed the Support  Vector

Machine  (SVM)  for  prediction,  as  SVM  has  demonstrated
widespread success in the realm of bioinformatics. To train the

classification  model,  80%  of  the  filtered  dataset  was  utilized
(Fig. 1).

Seven  distinct  types  of  features,  namely  SVM-ACC,  SVM-
Kmer, SVM-PC-PseAAC, SVM-Kmer-ACC, SVM-Kmer-PC-PseAAC,
SVM-ACC-PC-PseAAC,  and  SVM-ACC-Kmer-PC-PseAAC,  were
employed in this study. To address the issue of data imbalance,
we  assigned  different  weights  to  the  positive  and  negative
datasets.  Furthermore,  we  fine-tuned  the  cost,  gamma,  and
kernel hyperparameters. Subsequently, the performance of the
classification  model  was  evaluated  using  20%  of  the  filtered
datasets. The results, as presented in Table 1 and Supplemental
Table S2, indicate that the SVM-Kmer model exhibited the most
exceptional  prediction  performance,  achieving  a  F1score  of
0.945,  ACC  of  0.938,  and  AUC  of  0.936.  The  SVM-Kmer-PC-
PseAAC model  closely  followed,  attaining an F1score  of  0.944,
ACC of 0.935, and AUC of 0.933.

 Plant SCCGs prediction tool
We  have  developed  a  total  of  seven  machine  learning

models  utilizing  the  SVM  algorithm.  The  evaluation  results
demonstrate that the SVM-Kmer model (F1score = 0.945, ACC =
0.938,  AUC  =  0.936)  exhibits  the  highest  performance,  closely
followed by the SVM-Kmer-PC-PseAAC model (F1score = 0.944,
ACC = 0.935, AUC = 0.933). Leveraging the superior SVM-Kmer
model,  we  have  constructed  a  user-friendly  prediction  tool
named  'SCCGs_Prediction'  (www.sagsanno.top:8080/SCCP,
accessed  on  25  August  2022).  This  tool  enables  users  to

 
Fig. 1    Flowchart showing that SCCP database was created in this study as a dataset for training of machine learning algorithms.

Table 1.    The prediction performance of the SVM model.

Methods Number of
features F1score ACC AUC

SVM-ACC 100 0.904 0.906 0.895
SVM-Kmer 400 0.945 0.938 0.936
SVM-PC-PseAAC 25 0.808 0.831 0.911
SVM-Kmer-ACC 500 0.922 0.923 0.910
SVM-Kmer-PC-PseAAC 425 0.944 0.935 0.933
SVM-ACC-PC-PseAAC 125 0.916 0.917 0.907
SVM-ACC-Kmer-PC-PseAAC 525 0.921 0.923 0.911
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efficiently  identify  protein sequences encoded by plant  sulfur-
containing  compound-associated  genes  on  a  large  scale.  The
'SCCGs_Prediction'  tool  holds  great  promise  for  researchers
who have been conducting laborious wet experiments to iden-
tify  genes  associated  with  sulfur  compounds  in  plants,  signifi-
cantly streamlining their efforts in this domain.

 Identification of SCCGs in 81 plants
In  this  study,  we  successfully  identified  a  total  of  51,638

SCCs-related  encoding  genes  from  2,873,697  protein  se-
quences across 81 species (Supplemental Table S2). The investi-
gated  species  encompassed  12  lower  plants  and  69  higher
plants. The higher plants were further categorized into 49 eudi-
cots,  16  monocots,  and  four  other  higher  plants.  Specifically,
the  examined  species  comprised  13  kinds  of  vegetables
(Asparagus officinalis, Beta vulgaris, Brassica juncea, Brassica
oleracea, B.  rapa, Capsicum annuum, Cicer arietinum, Citrullus
lanatus, Cucumis melo, Cucumis sativus, Cucurbita maxima,
Daucus carota, Raphanus raphanistrum),  10  kinds  of  fruit  trees
(Actinidia chinensis, Ananas comosus, Citrus grandis, Coffea
canephora, Juglans regia, Malus domestica, Musa acuminata,
Musa  nana Lour., Phoenix dactylifera, Vitis vinifera),  four  medi-
cinal  plants  (Leersia perrieri, Marchantia polymorpha, Panax
ginseng, Spirodela polyrhiza), and 13 kinds of ornamental plants
(Amaranthus hypochondriacus, Aquilegia coerulea, Capsella
grandiflora, Chrysanthemum nankingense, Cynara cardunculus,
Helianthus annuus, Ipomoea nil, Kalanchoe fedtschenkoi,
Lupinus angustifolius, Phalaenopsis equestris, Rosa chinensis,
Theobroma cacao, Trifolium pratense).  Upon  analysis,  the  aver-
age number of SCCGs for each category was determined to be
690.29 for  vegetables,  624.40 for  fruit  trees,  547.00 for  medici-
nal  plants,  and 715.46 for  ornamental  plants (Fig.  2a).  Notably,
ornamental  plants  exhibited  a  higher  average  count  of  SCCGs
compared to vegetables, fruit trees, and medicinal plants.

The  average  count  of  SCCGs  was  determined  to  be  637.50,
with  approximately  61.45%  (51  species)  of  the  examined
species containing more than 500 SCCGs. The average propor-
tion  of  SCCGs  relative  to  the  total  number  of  genes  in  each
species  was  found  to  be  1.75%.  Among  the  investigated
species, Medicago  truncatula exhibited  the  highest  SCCGs
percentage  at  7.61%,  while Cyanidioschyzon  Merolae and

Dunaliella  Salina demonstrated  the  lowest  SCCGs  percentages
at 0.24% (Supplemental Table S2).

Validation of the constructed prediction algorithm using the
predictive results from B. rapa. In this study, we identified 1,325
genes  associated  with  sulfur-containing  compounds  in  the B.
rapa ssp. chinensis whole  genome.  The  subsequent  Gene  On-
tology  (GO)  enrichment  analysis  revealed  the  top  15  enriched
GO  terms  (Fig.  3),  including  'heme  binding',  'oxygen  binding',
'oxidoreductase activity, acting on paired donors', 'monooxyge-
nase  activity',  'indoleacetic  acid  biosynthetic  process',  'glucosi-
nolate biosynthetic process',  'oligopeptide transport',  'identical
protein  binding',  'serine-type  endopeptidase  activity',  'flavin
adenine dinucleotide binding', 'negative regulation of catalytic
activity',  'coumarin biosynthetic process',  'tryptophan catabolic
process',  'pyridoxal  phosphate  binding',  and  'ATP  biosynthetic
process'.  This  analysis  revealed  that  processes  such  as
'indoleacetic  acid  biosynthetic  process',  'glucosinolate  biosyn-
thetic process', and 'tryptophan catabolic process' are linked to
sulfur-containing  compounds  or  genes  related  to  sulfur-
containing compounds. The enrichment analysis further under-
scores the reliability of our prediction tool.

To  validate  the  predictive  capabilities  of  our  algorithm  on
other species, we retrieved ten genes related to sulfur-contain-
ing  compounds  in B.  napus and B.  rapa from  the  PubMed
database.  These  genes  include BnaC02g41790D[31],
BnaA09g10030D[31], BnaA02g29380D[31], BnaA01g06540D[31],
Bra029966[32], Bra016787[32], Bra011761[32], Bra006830[32],
Bra011759[32], Bra029248[32]. The prediction results indicate that
BnaC02g41790D, BnaA09g10030D, BnaA02g29380D,
BnaA01g06540D, Bra029966, Bra016787, Bra011761, Bra006830,
Bra011759,  and Bra029248 are  all  associated  with  sulfur-
containing  compounds.  This  outcome  demonstrates  that  the
prediction  tool  developed  in  this  study  can  indeed  accurately
identify  other  species  sulfur-containing  compound-related
genes.  This  validation  further  strengthens  the  reliability  and
robustness of our prediction model.

 Comparative analyses of SCCGs in representative
plants

In  higher  plants,  the  average  count  of  SCCGs  was  observed
to be 735.87, contrasting with a lower average of 71.92 in lower
plants  (Fig.  2b).  Remarkably,  the  number  of  SCCGs  in  higher
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Fig. 2    Using Violin plots to compare the number of SCCGs among different plant categories. (a) Comparison of SCCGs number between Fruit
trees and medicinal plants, ornamental plants, and vegetables. (b) Comparison of SCCGs number between higher plants and lower plants. (c)
Comparison of SCCGs number between dicots, monocots, and other higher plant species.
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plants surpasses that in lower plants by more than tenfold. This
significant difference in SCCG abundance between higher and
lower  plants  may  be  attributed  to  the  occurrence  of  whole-
genome  duplication  and  whole-genome  triplication  events,
which  are  common  in  most  higher  plants.  These  genomic
events likely contributed to the expansion and diversification of
SCCGs in higher plants compared to their lower plant counter-
parts.

Among the top 20 species exhibiting a higher percentage of
sulfur-containing  compound-associated  genes,  all  of  them
belonged  to  eudicots  plants  (Supplemental  Table  S2).  This
phenomenon  suggested  that  eudicots  plants  might  contain  a
higher  proportion  of  sulfur-containing  compounds  associated
genes than other higher plants (Fig. 2c).

Among the top 10 species with a lower percentage of sulfur-
containing  compound-associated  genes,  the  majority  (nine)
belonged to lower plants (Supplemental Table S2). Notably, the
sole higher plant in this category was Musa nana Lour. (banana),
a  tropical  fruit.  In  banana,  only  295  sulfur-containing
compound-associated  genes  were  detected  from  a  total  of
43,041 genes in the whole genome, representing a mere 0.69%
of all genes (Supplemental Table S2). This observation suggests
that  gene  losses  of  sulfur-containing  compound-associated
genes may have occurred more frequently  than gene duplica-
tions  in  banana.  Moreover,  the  two  species  with  the  lowest
percentage  of  sulfur-containing  compound-associated  genes,
Cyanidioschyzon  Merolae and Dunaliella  Salina,  both belong to
lower plants.

Sulfur-containing  compounds  are  pivotal  secondary  meta-
bolites  that  exhibit  widespread  occurrence  in  plants,  with
particular  significance  in  the  Brassicaceae  family.  Intriguingly,
among  the  top  10  species  with  a  higher  percentage  of  sulfur-
containing  compound-associated  genes,  the  majority  (eight)

belong  to  the  Brassicaceae  family  (Supplemental  Table  S2).
These  species  include Arabidopsis  thaliana, Capsella  rubella,
Boechera  stricta, Eutrema  salsugineum, Capsella  grandiflora,
Barbarea  vulgaris, Arabidopsis  helleri,  and Schrenkiella  parvula.
This  observation  suggests  that  the  Brassicaceae  family  may
harbor  a  higher  proportion  of  genes  associated  with  sulfur-
containing  compounds  compared  to  other  plant  families.
Notably, Medicago truncatula,  belonging to the Papilionoideae
subfamily, exhibits the highest percentage of sulfur-containing
compound-associated genes. In Medicago truncatula,  a total of
1077 SCCGs were detected from the 14,158 genes in the whole
genome,  accounting  for  7.61%  of  all  genes  (Supplemental
Table  S2).  The  presence  of  another  species, Lupinus  angusti-
folius,  from  the  Papilionoideae  subfamily  among  the  top  10
species  with  a  higher  percentage  of  SCCGs  also  supports  the
notion that the Papilionoideae subfamily might indeed possess
a higher proportion of genes associated with sulfur-containing
compounds.  Further  investigation  is  warranted  to  explore  the
unique  biochemical  and  ecological  roles  of  sulfur-containing
compounds in the Brassicaceae and Papilionoideae.

We  conducted  a  comparison  using  the  widely  adopted
homologous  sequence  search  software,  Blast+.  Using  the
Blast+ software, we identified a total of 2846 sulfur compound-
related  genes  from  the B.  rapa genome,  with  the  following
parameters:  E-value  ≤ 10 −5,  Identity  >  60%,  and  Score  >  150.
The algorithm developed in our research identified 1325 sulfur
compound-related genes in the B.  rapa genome, of  which 824
were  found  to  be  common  between  the  two  algorithms  (Fig.
4a).  Our  research  algorithm  also  uncovered  501  sulfur
compound  candidate  genes  that  were  not  identified  by  the
Blast+  tool.  Further  KEGG  enrichment  analysis  of  these  501
candidate  genes  revealed  a  significant  association  with  the
'sulfate  transporter  3'  pathway,  which  is  related  to  sulfur

 
Fig. 3    The top 15 GO enrichment items of genes related to sulfur-containing compounds in B. rapa.
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compounds  (Fig.  4b).  Compared  to  the  Blast+  software,  our
research algorithm has predicted three novel  candidate genes
for  sulfate  transporter  3,  namely, BraC03g047110.1,
BraC09g049990.1, and BraCxxg010000.1.

 Platform construction of sulfur-containing compounds
By  leveraging  the  SCCGs_Prediction  tool  and  a  comprehen-

sive dataset comprising 51,638 encoding genes associated with
sulfur-containing  compounds,  we  successfully  established  the
Plant  Sulfur-Containing  Compounds  Platform  (SCCP: www.sag
sanno.top:8080/SCCP,  accessed on 25 August  2022).  The SCCP
is  thoughtfully  designed  to  empower  researchers  with  func-
tionalities to predict, download, and search for encoding genes
related  to  sulfur  compounds  in  plants  (Fig.  5).  This  platform
encompasses  seven  core  tools,  namely  Home,  Browse,  Down-
load,  SCCGs_Prediction,  Submit,  Userguide,  and  Link.  We  are
committed to continuous updates and enhancements of SCCP,
ensuring it serves as a comprehensive community resource for
advancing  research  in  the  domain  of  plant  sulfur-containing
compounds.

 Tool SCCGs_Prediction
From Table  1,  it  is  evident  that  the  SVM-Kmer  classification

model  achieved  the  highest  performance  with  an  F1score  of
0.945,  ACC  of  0.938,  and  AUC  of  0.936.  The  SVM-Kmer-PC-
PseAAC model secured the second position with an F1score of
0.944,  ACC  of  0.935,  and  AUC  of  0.933.  Leveraging  the  SVM-
Kmer  and  SVM-Kmer-PC-PseAAC  models,  we  have  developed
an online service using Java, HTML5, and JavaScript scripts. This
service allows users to predict encoding genes associated with
sulfur-containing  compounds  by  simply  uploading  the  amino
acid sequence in FASTA format, selecting the preferred classifi-
cation  model,  and  submitting  the  task.  The  prediction  results
can be conveniently viewed and downloaded directly from the
results interface (Fig. 6).

 Tool Browse
In this research, we have successfully identified 51,638 sulfur-

containing  compounds  associated  genes  (SCCGs)  from  a
comprehensive pool of 2,873,697 gene sequences encompass-
ing 81 different species.  To enhance user accessibility to these
datasets,  the  plant  SCCGs  datasets  have  been  diligently

organized  and  stored  within  the  Browse  module.  For  each
species,  we  have  compiled  detailed  information  comprising
gene  identification  (ID),  coding  sequences  (CDS),  and  protein
sequences (PEP). Researchers can effortlessly access the desired
information by selecting the corresponding species option.  To
illustrate  the  browsing results,  we have employed B.  rapa as  a
representative example. Users can also conveniently download
the  sequences  of  their  interest  through  the  dedicated  down-
load module.  This streamlined interface is  intended to foster a
user-friendly experience and expedite research in the realm of
sulfur-containing compounds in plants.

 Tool Download
The  SCCGs_Prediction  tool  and  plant  SCCGs  datasets  are

readily  accessible  through  the  Download  module,  which
comprises  two  main  sections:  Forecasting  Tool  and  SCCGs.
Within  the  Forecasting  Tool  section,  users  can  download  not
only  the  SCCGs_Prediction  prediction  tool  but  also  the  SVM-
Kmer, SVM-Kmer-PC-PseAAC models, as well as the positive and
negative  datasets.  On  the  other  hand,  the  SCCGs  part  encom-
passes data from 81 species, comprising 12 lower plants and 69
higher plants, with a collective total of 51,638 genes associated
with  sulfur-containing  compounds.  Researchers  can  efficiently
acquire  the  pertinent  data  they  need  through  the  convenient
and user-friendly interface offered by the Download module.

 Userguide and Submit tool
We provide instructions to  help users  use the SCCP website

better,  faster,  and more easily.  Frequently  asked questions  are
also  provided at  the  bottom of  the  home page.  To  encourage
users to share the data related to sulfur-containing compounds,
we  added  the  Submit  function  in  the  SCCP  database.  We
believe that the SCCP database will be useful for all researchers
studying  the  gene  associated  with  sulfur-containing
compounds.

 Discussion

Sulfur-containing  compounds  (SCCs)  are  significant
secondary  metabolites  extensively  found  in  plants,  playing  a
crucial  role  in  plant-pest  interactions.  Furthermore,  SCCs  have
shown  diverse  therapeutic  effects  in  humans,  including

a b

 
Fig. 4    Comparative analysis of sulfur compound-related genes unearthed by Blast+ and SCCGs_Prediction tools. (a) Common and differential
genes detected by Blast+ and SCCGs_Prediction tools. (b) KEGG enrichment analysis of 501 specifically identified by SCCGs_Prediction tool.
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chemoprotective properties against cancer[33,34]，enhancement
of  the  immune  system[35],  reduction  in  the  risk  of  diabetes[36],
etc.  Currently,  the  identification  of  SCCs  genes  primarily  relies
on  labor-intensive  biological  experiments  and  high-through-
put  omics  technologies,  incurring  substantial  costs  and  time.
While  BLAST+[6] and  HMMER[7] tools  have  been  effective  in
identifying homologous sequences, their efficiency in recogniz-
ing  non-homologous  sequences  remains  limited.  To  address
this  challenge,  we  introduce  a  novel  computational  approach
in  this  study,  aimed  at  identifying  encoding  genes  associated
with sulfur-containing compounds. This innovative methodology

holds the potential to streamline and speed up gene discovery
in  the  context  of  SCCs  research.  Comparing  the  existing  tools
for  predicting  sulfur-containing  compounds,  HMS-S-S[37] and
HMSS2[38],  both  are  constructed  using  the  Hidden  Markov
Model (HMM) algorithm and are used to predict sulfur-contain-
ing  compounds  in  prokaryotes.  In  contrast,  SCCGs_
Prediction  is  constructed  using  the  Support  Vector  Machine
(SVM)  algorithm  and  is  primarily  focused  on  predicting  sulfur-
containing  compounds  in  plants,  which  are  eukaryotes.  These
two tools complement each other and contribute to advancing
research on genes related to sulfur-containing compounds.

 
Fig. 5    Home page of the SCCP website.
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In  this  study,  we  utilized  the  SVM  algorithm  and  employed
seven  distinct  features,  namely  SVM-ACC,  SVM-Kmer,  SVM-PC-
PseAAC,  SVM-Kmer-ACC,  SVM-Kmer-PC-PseAAC,  SVM-ACC-PC-
PseAAC, and SVM-ACC-Kmer-PC-PseAAC, to train the classifica-
tion model. Among these, the SVM-Kmer model demonstrated
the  most  outstanding  performance,  achieving  an  impressive
F1score  of  0.945,  ACC  of  0.938,  and  AUC  of  0.936.  Leveraging
the power of the SVM-Kmer model, we successfully developed
the  SCCGs_Prediction  tool,  enabling  the  identification  of
protein  sequences  encoded  by  plant  sulfur-containing
compound-associated  genes.  Importantly,  our  computational
approach  represents  the  first  of  its  kind  in  predicting  sulfur-
containing  compound-associated  genes  solely  based  on
protein  sequences.  This  pioneering  method  has  effectively
filled  an  international  gap  in  the  related  field,  opening  new
avenues for further research and exploration in this domain.

Moreover,  we  conducted  large-scale  predictions  of  SCCGs
from  81  species,  comprising  12  lower  plants  and  69  higher

plants.  Through  a  comprehensive  analysis,  we  successfully
identified a total of 51,638 SCCGs from the vast dataset encom-
passing  2,873,697  protein  sequences  of  these  81  species.
Notably,  the  abundance  of  SCCGs  detected  in  higher  plants
significantly  surpasses  that  in  lower  plants.  This  disparity  may
be  attributed  to  the  prevalent  occurrence  of  whole-genome
duplication  and  whole-genome  triplication  events  in  most
higher  plants,  leading  to  an  expansion  of  SCCGs  in  these
species[39,40].  The  significance  of  SCCs  as  crucial  secondary
metabolites is evident, particularly in the Brassicaceae family[41].
Most  Brassicaceae  species  have  demonstrated  a  higher
percentage  of  sulfur-containing  compound-associated  genes
compared to other species. Among the top 10 species exhibit-
ing  a  higher  percentage  of  SCCGs,  two  species  belong  to  the
Papilionoideae  subfamily.  We  speculate  that  other  species
within  the  Papilionoideae  subfamily  might  also  possess  a
higher proportion of SCCGs. Notably, Musa nana Lour, a higher
plant,  accounts  for  merely  0.69%  of  all  genes.  This

 
Fig. 6    The SCCGs_Prediction tool page of the SCCP website.
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phenomenon  suggests  that  gene  losses  of  SCCGs  may  have
outpaced gene duplications in this particular species.

Leveraging  the  SCCGs  datasets  and  the  SCCGs_Prediction
program,  we  have  successfully  established  the  Sulfur-Contain-
ing  Compounds  Platform  (SCCP: www.sagsanno.top:8080/
SCCP,  accessed  on  25  August  2022),  aiming  to  facilitate  scien-
tists in accessing plant sulfur-containing compound-associated
genes  datasets  and  predicting  novel  sulfur-containing
compound-associated  genes.  As  new  genome  sequences  are
unveiled in the future, we are committed to continuously iden-
tifying  sulfur-containing  compound-associated  genes  from
these  datasets,  further  enriching  our  database  with  compre-
hensive and up-to-date information.

Undoubtedly, this database will serve as a valuable and indis-
pensable resource,  catering to the needs of  researchers across
various disciplines and enhancing the collective understanding
of  sulfur-containing  compounds  and  their  role  in  the  intricate
world of plants.
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