
 

Open Access https://doi.org/10.48130/TP-2023-0023

Tropical Plants 2023, 2:23

FTGD: a machine learning method for flowering-time gene
prediction

Authors
Junyu Zhang, Shuang He,
Wenquan Wang, Fei Chen*,
Zhidong Li*

Correspondences
feichen@hainanu.edu.cn;
m15132506079_1@163.com

In Brief
We have developed a machine
learning model for predicting
flowering-time-associated genes in
plants. This algorithm predicted a
total of 318,521 flowering-time-
associated genes, which were
validated through enrichment
analysis and literature review.
Additionally, we have established a
database for predicting flowering-
time-associated genes in plants.

Graphical abstract
 

Highlights

•  We have developed a high-accuracy machine learning model for predicting flowering-time-associated genes in
plants and created a practical tool for this purpose.

•  We  successfully  predicted  318,521  flowering-time-associated  genes  across  protein  datasets  from  81  plant
species, providing a substantial amount of data related to plant flowering timing.

•  In order to facilitate user access to both the tool and the data, we have established a database of plant flowering-
time-associated genes, which will serve as a valuable resource for research and breeding endeavors.
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Abstract
The timing of flowering significantly affects plant reproduction and crop yield, making it important to detect flowering-time associated genes. In

this study, we retrieved 628 flowering-time associated protein sequences from a database of flowering-time genes in Arabidopsis thaliana (FLOR-

ID) and created seven machine learning models using Support Vector Machine (SVM) algorithms to discriminate flowering-time associated genes

(FTAGs)  from  non-FTAGs.  The  SVM-Kmer-PC-PseAAC  model  performed  the  best  (F1  score  =  0.934,  accuracy  =  0.939,  and  receiver  operating

characteristic = 0.943). Utilizing this model, we have developed a plant FTAGs prediction tool called 'FTAGs_Find'. We identified a total of 318,521

FTAGs from 81 species protein datasets using the FTAGs_Find. Notably, in O. lucimarinus, a non-flowering plant, only 208 FTAGs were predicted in

the whole genome, accounting for just 2.68% of all genes, which is consist with the extensive FTAG loss during evolution. To facilitate user access

to the FTAG prediction tool and the FTAG dataset, we constructed a plant flowering-time-associated genes database (FTAGdb), which will be a

valuable resource for researchers and breeders.
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 Introduction

Flowering is  a  critical  developmental  stage in  higher  plants,
indicating  the  transition  from  the  vegetative  phase  to  the
reproductive  phase[1,2].  The  timing  of  flowering  significantly
influences  plant  reproduction,  crop  yield,  and  overall  plant
fitness, making it essential to understand the molecular mecha-
nisms  for  improving  agricultural  productivity[3].  Substantial
progress  has  been  made  in  comprehending  the  mechanisms
governing flowering time, with six pathways, including the GA
pathway,  age  pathway,  autonomous  pathway,  photoperiod
pathway,  temperature  pathway,  and  vernalization  pathway,
identified  as  regulators  of  the  timing  of  floral  transition[4].  To
support  systematic  research  on  flowering-time-associated
genes  (FTAGs)  in Arabidopsis  thaliana,  the  Flowering  Interac-
tive  Database  (FLOR-ID: www.phytosystems.ulg.ac.be/florid)
was  established.  Currently,  the  FLOR-ID  database  houses  a
comprehensive  collection  of  306  genes  and  provides  links  to
1646 articles, representing the collaborative work of more than
4600 scientists[5]. This freely accessible database offers valuable
resources for the study of flowering timing.

Presently,  the  identification  of  flowering-time  genes  prima-
rily relies on wet-lab experiments, which are not only costly but
also  time-consuming  and  labor-intensive.  The  use  of  high-
throughput  omics  technologies  to  detect  flowering-time-
associated  genes  demands  significant  human  and  financial
resources.  To  address  these  challenges,  computational  and
mathematical  methods  have  emerged  as  promising  alterna-
tives. BLAST[6], a widely used bioinformatics tool, allows for the
detection  of  FTAGs  through  sequence  similarity  searches.  The
existing  homology  sequence  search  tool  BLAST+  only  consi-
ders  the  sequence  composition  and  order  features,  and  does
not  take  into  account  a  comprehensive  range  of  information,

leading  to  low  recognition  rates.  The  application  of  artificial
intelligence has  made significant  strides  in  recent  times,  parti-
cularly  in  fields  like  textual  analysis,  self-learning,  and  image
recognition[7]. Machine learning (ML), a vital component of arti-
ficial  intelligence,  finds  extensive  use  across  various  academic
disciplines,  including  data  analytics  and  gene  discovery[8].

Researchers have developed multi-trait and multi-environment
genome prediction methods for  flowering traits[9−11]. Meher et
al.[12] developed  an  ML  model  for  identifying  plant  circadian
genes,  while  our  team recently  proposed a  method for  recog-
nizing  leaf  senescence-associated  genes  using  ML
techniques[13]. Notably, no machine learning method based on
FTAGs'  protein sequence data  is  currently  available.  This  moti-
vated  our  team  to  undertake  the  training  of  an  ML  model  for
the  identification  of  proteins  encoded  by  flowering-time-
associated genes.

In this study, we have employed the support vector machine
(SVM),  one  of  the  most  commonly  used  ML  methods,  to
discriminate between FTAGs and non-FTAGs using the protein
sequence  dataset.  Notably,  the  SVM-Kmer-PC-PseAAC  model
demonstrated outstanding performance,  boasting an  F1  score
of  0.934,  an  accuracy  rate  of  0.939,  and  a  receiver  operating
characteristic  score of  0.943.  Building upon this  ML model,  we
have  developed  a  Python  software  tool  named  'FTAGs_Find',
which  is  made  available  to  the  research  community.  This  tool
allows  for  proteome-wide  identification  of  flowering-time-
associated genes. Furthermore, we conducted large-scale iden-
tification  of  FTAGs  across  83  different  species  using  the
'FTAGs_Find'  software,  shedding  light  on  their  evolutionary
mechanisms.  To facilitate access  to the FTAGs dataset  and the
utilization  of  the  'FTAGs_Find'  software  for  the  scientific
community,  we  have  established  the  Plant  Flowering-Time-
Associated  Genes  Database  (www.sagsanno.top:8080/FTGD).
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We  are  confident  that  the  FTGD  database  will  prove  to  be  a
valuable and user-friendly resource for all researchers.

 Materials and methods

 Data collection
The protein sequences encoded by experimentally validated

flowering-time-associated  genes  were  downloaded  from  the
Flowering  Interactive  Database  (FLOR-ID: www.phytosystems.
ulg.ac.be/florid).  This meticulously curated database integrates
a comprehensive collection of 306 genes and is linked to 1646
articles,  representing  the  collaborative  efforts  of  more  than
4600  scientists[5].  The  FLOR-ID  database  provides  valuable
resources  for  the  study  of  flowering  timing  in Arabidopsis
thaliana.  A  total  of  628  protein  sequences  retrieved  from  the
FLOR-ID  database[5] were  used  to  construct  the  positive
dataset. These sequences were further compared with the Pfam
database  (http://pfam.xfam.org/)[14] using  HMMER  software[15].
Additionally, 10,097 reviewed protein sequences of Arabidopsis
thaliana,  collected  from  the  TAIR  database
(www.arabidopsis.org)[16],  were  employed  in  constructing  the
negative dataset.

 Data pre-processing
The collected protein sequences containing residues B,  J,  O,

U,  X,  and  Z  were  excluded  using  Python  scripts  to  prevent
ambiguity in generating numeric features. Additionally, protein
sequences with fewer than 50 amino acids were excluded. The
CD-HIT  program,  available  in  the  CD-HIT  database[17],  was
employed to eliminate protein sequences that exhibited more
than 70% similarity  to  any other  sequences.  After  the removal
of such protein sequences, we retained 628 positive and 8,163
negative  protein  sequences  for  building  the  classification
model.

 Feature selection
In this study, for each protein sequence, we generated three

types of features: auto-cross covariance (ACC), Kmer, and paral-
lel  correlation  pseudo  amino  acid  composition  (PC-PseAAC).
These  features  were  extracted  using  the  Pse-in-one  2.0
program[18].  The  ACC  features,  a  popular  choice  for  protein
sequence analysis, were generated using the acc.py script with
a lag parameter set to 3. Kmer, on the other hand, is a straight-
forward  method  for  representing  proteins,  involving  the
creation of a 400-dimensional numeric vector based on amino
acid  frequencies  (k-mer  =  2).  Furthermore,  the  PC-PseAAC
features  consist  of  a  22-dimensional  numeric  vector  and  were
extracted using the pse.py script with specific parameters set to
w = 0.05 and lambda = 2.

 Dataset and model building
In  the available  dataset,  the size  of  the positive  dataset  was

smaller  than  the  negative  set.  To  address  the  issue  of  imbal-
ance, different weights were assigned to the positive and nega-
tive  sets.  The  SVM  classifier,  a  widely  used  machine  learning
algorithm,  was  utilized  to  construct  the  classification  model.
The classification model  encompasses several  parameters,  and
in  this  study,  we  tuned  three  hyperparameters,  namely  the
kernel, gamma, and cost.

 Cross validation approach
In this study, we utilized a 5-fold cross-validation approach to

evaluate  the  performance  of  the  SVM  classification  model.
Specifically,  the  available  positive  and  negative  datasets  were

randomly  divided  into  five  equal-sized  subsets.  During  each
fold  of  the  cross-validation,  four  of  these  subsets  were
employed for building the SVM model, while the remaining one
served  as  the  test  set.  This  classification  process  was  repeated
five times,  each time using different  training and test  datasets
within the fold.

 Performance metrics
In  the  present  study,  we  assessed  the  performance  of  the

classification  model  by  using  several  different  indices,  namely
Accuracy,  F1-Score,  and  AUC.  The  definitions  of  accuracy  and
F1-Score are as follows:

Precision =
TP

TP + FP

Sensitivity =
TP

TP + FN

F1-Score =
Precision×Sensitivity
Precision + Sensitivity

Accuracy =
TP + TN

TP + TN + FP + FN
Here,  FP,  FN,  TP,  and TN represent false positive,  false nega-

tive,  true  positive,  and  true  negative,  respectively.  The  pROC
v1.16.2  package  was  employed  to  calculate  AUC  scores  and
generate the ROC curves.

 Large-scale predict flowering-time-associated genes
We collected 83 released protein sequence datasets (Supple-

mental  Table  S1)  from  public  databases[19−34].  To  ensure  data
cleanliness,  we  used  Python  scripts  to  eliminate  records  con-
taining  residues  B,  J,  O,  U,  X,  and  Z.  After  the  removal  of  such
sequences,  we generated Kmer and PC-PseAAC features  using
nac.py  and  pse.py  scripts[18].  Subsequently,  we  conducted
large-scale  predictions  of  plant  flowering-time-associated
genes using our presented SVM classification model.  Gathered
genes  related  to  flowering  time  in Brassica  rapa from  the
PubMed  database  for  the  past  three  years  and  used  these
genes to test a classification model.

 Website construction
The  Plant  Flowering-Time-Associated  Genes  Database

(www.sagsanno.top:8080/FTGD)  has  been  established  on  the
Aliyun  cloud  server,  one  of  the  world's  most  stable  cloud
service providers. The server operates on the Linux (CentOS 7.6)
operating system and utilizes Apache Tomcat as its web server.
All  data  is  stored  in  the  MySQL  database,  enabling  efficient
management,  search,  and  display.  The  user-friendly  website
was  developed  using  Java,  Python,  HTML5,  and  JavaServer
Pages  scripts  (Fig.  1).  The  FTGD  database  can  be  accessed
through  different  web  browsers,  including  Internet  Explorer,
Google Chrome, Mozilla Firefox, and Safari.

 Results

 SVM performance
After data preprocessing, we retained 628 positive and 8,163

negative protein sequences for  building the SVM classification
model.  The  dataset  was  divided  into  two  parts:  80%  of  the
flowering-time  dataset  was  used  to  construct  the  SVM  predic-
tion  model,  while  the  remaining  20%  formed  the  test  set  for
evaluating the prediction model.  In this process, we employed
seven  types  of  features  to  train  the  SVM  prediction  model,
which  included  ACC,  Kmer,  PC-PseAAC,  Kmer-ACC,  ACC-PC-

Flowering Time Gene Prediction Algorithm
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PseAAC,  Kmer-PC-PseAAC,  and  ACC-Kmer-PC-PseAAC.  The  ML
prediction model encompasses numerous parameters,  and we
conducted  optimization  on  three  key  hyperparameters
through a grid search,  including kernel,  gamma,  and cost.  The
performance  of  the  seven  SVM  classification  models  is  pre-
sented in Table  1 and Supplemental  Table  S2.  The  SVM-Kmer-
PC-PseAAC  model  achieved  the  best  performance  (F1  score  =
0.934, accuracy = 0.939, and receiver operating characteristic =
0.943),  followed  by  the  SVM-Kmer-AAC  model  (F1  score  =
0.919, accuracy = 0.926, and AUC = 0.898).

 Local Python tool implementation
Using  SVM  algorithms,  we  built  seven  machine  learning

models  to  predict  FTAGs  (Table  1).  The  SVM-Kmer-PC-PseAAC

model achieved the best performance (F1 score = 0.934, ACC =
0.939, and AUC = 0.943). Based on the proposed SVM-Kmer-PC-
PseAAC classification model, we developed a local Python tool
for  proteome-wide identification of  proteins encoded by flow-
ering-time-associated  genes,  which  is  freely  available  at  FTGD
(www.sagsanno.top:8080/FTGD).

 Proteome-wide predict flowering-time-associated
genes

In  this  study,  a  total  of  318,521  FTAGs  were  identified  from
2,873,697 protein sequences of 81 species, including 69 higher
plants  and 12 lower  plants  (Supplemental  Table  S1).  The aver-
age  FTAGs  percentage  was  10.98%,  and  only  two  species
(2.47%)  had  FTAGs  with  a  percentage  less  than  5%,  including

Step1: Data Collection Step2: Feature Extraction

Step3: Feature Selection

Step5: Experimental Verification Step6: Website Construction
predict

FTAGs_Find 318,521 FTAGs

FTGD DB
Mysql SSH

HTML5, CSS3, JavaScript

FTGD Database

LiteratureEnrichment analysis

81 examined
plants

Step4: Model Building and Performance metrics

Single feature model: 3

F1-Score

ACC

AUC

M
od
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 e
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at
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n

Combination feature
model: 4

FTGD provided an 94% predictive accuracy

Sequence order features

Sequence composition features

Physicochemical properties features

PC-PseAAC

Kmer

ACC

Negative datasetsPositive datasets

Pre-processed

ARNKCQEGHILKF…

EGHILKFRAQNDC…

628 positive and 8,163 negative protein sequences

Feature combination and dimensionality reduction

449 features

 
Fig.  1    FTGD platform build  flowchart.  To develop FTGD,  we first  collected plant  flowering gene datasets  from two databases.  Second,  we
extracted  features,  including  physicochemical  properties,  sequence  composition,  and  sequence  order  features.  Third,  we  performed  feature
selection through a combination of features and dimensionality reduction. Fourth, we built seven machine learning models, consisting of three
single-feature  models  and  four  combination  feature  models.  Fifth,  we  conducted  experimental  validation  through  enrichment  analysis  and
literature review. Finally, we established the FTGD database and provided online prediction capabilities.
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Micromonas  pusilla CCMP1545 and Ostreococcus  lucimarinus,
which  belong  to  the  lower  plant  category.  In O.  lucimarinus,
only  208  FTAGs  were  detected  among  the  7,769  genes  in  the
whole  genome,  constituting  just  2.68%  of  all  the  genes.  Inter-
estingly, O.  lucimarinus belongs  to  non-flowering  plants.  For
non-flowering plants,  FTAGs may not be as  crucial,  and exten-
sive  loss  appears  to  have  occurred.  The  average  number  of
FTAGs was 3,932.36, and only eight species (9.88%) had FTAGs
numbering  less  than  1,500.  Notably,  all  eight  species  with  the
lowest  number  of  FTAGs  were  lower  plants,  including
Coccomyxa  subellipsoidea, Chlorella  variabilis, Micromonas
pusilla  RCC299, Chondrus  crispus, Cyanidioschyzon  merolae,
Galdieria sulphuraria, Micromonas pusilla CCMP1545, and Ostreo-
coccus  lucimarinus.  Conversely, Sphagnum  fallax had  the  most
FTAGs, with a total of 11,823 FTAGs identified from the 45,611
genes  in  the  whole  genome,  accounting  for  25.92%  of  all  the
genes.  This  result  suggests  that  FTAGs might  have undergone
significant expansion in Sphagnum fallax.

 GO enrichment analysis of flowering-time-associated
genes in Brassica rapa

Brassica  rapa belongs  to  the  group  of  flowering  plants,  and
we  detected  4,480  FTAGs  from  its  entire  genome.  The  GO
enrichment analysis revealed that the top 15 most enriched GO
terms  include  'protein  dimerization  activity',  'chromatin  bind-
ing',  'plant  ovule  development',  'negative  regulation  of  flower
development',  'positive  regulation  of  flower  development',
'determination  of  bilateral  symmetry',  'Cul4-RING  E3  ubiquitin
ligase complex', 'DNA methylation', 'specification of floral organ
identity',  'trichome  morphogenesis',  'DNA  methylation-depen-
dent  heterochromatin  assembly',  'flower  morphogenesis',  'cell
adhesion', 'photoperiodism, flowering', and 'gravitropism'. (Fig.
2).  In B.  rapa,  FTAGs  play  a  role  not  only  in  the  regulation  of
flowering time but also in a wide range of flower development
processes.  This  analysis  revealed that  processes such as  'nega-
tive  regulation  of  flower  development',  'positive  regulation  of
flower  development',  'specification  of  floral  organ  identity',
'flower  morphogenesis'  and  'photoperiodism,  flowering'  are
linked  to  flowering  time.  The  enrichment  analysis  further
underscores the reliability of our prediction tool.

To  validate  the  predictive  capabilities  of  our  algorithm  on
other species,  we retrieved 18 genes related to flowering-time
in B.  rapa from  the  PubMed  database.  These  genes  include
BraA.REF6 (BraA06g018530.3C)[35], BraA.ELF6 (BraA10g032100.
3C)[35], qFT7.1 (BraA07g018240.3C)[36], BrSOC1-1 (Bra004928)[37],
BrSOC1-2 (Bra000393)[37], BrSOC1-3 (Bra039324)[37], BrABF3
(Bra011485)[38], BrMYC2 (BraA05g023030.3C)[39], BrMYC3-1
(BraA09g022310.3C)[39], BrMYC3-2 (BraA06g041690.3C)[39],

Table 1.    The prediction performance of SVM model.

Methods Number of
feature F1-score ACC AUC

SVM-ACC 27 0.769 0.811 0.849
SVM-Kmer 400 0.872 0.890 0.929
SVM-PC-PseAAC 22 0.766 0.810 0.915
SVM-Kmer-ACC 427 0.919 0.926 0.898
SVM-Kmer-PC-PseAAC 422 0.934 0.939 0.943
SVM-ACC-PC-PseAAC 49 0.792 0.829 0.896
SVM-ACC-Kmer-PC-PseAAC 449 0.887 0.901 0.909

 
Fig. 2    The top 15 GO enrichment charts for genes related to flowering-time in Brassica rapa.
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BrMYC4-2 (BraA01g009470.3C)[39], BraRGL1
(BraA02g017510.3.5C)[40],  BrFT1 (Bra022475)[41],  BrFT2 (Bra00

4117)[41],  BrcuHAC1 (ANJ60744.1)[42],  BrFT (BraC07g031540)[43],
BrNIR1 (Bra015227)[37],  BrNIA1 (Bra015656)[37]. Except  for  the

genes BrNIR1 (Bra015227)  and BrNIA1 (Bra015656),  which

cannot  be  correctly  identified,  our  constructed  prediction

method accurately identifies the remaining genes with an 88%

recognition  rate.  This  outcome  demonstrates  that  the  predic-

tion tool developed in this study can indeed accurately identify

other  species  flowering  time-related  genes.  This  validation

further strengthens the reliability and robustness of our predic-

tion model.

1. Select Mojdel

2. Upload data

3. Submit data

 
Fig.  3    FTGD  website.  An  overview  of  the  FTGD  database,  highlighting  its  key  interfaces  and  internal  features,  which  encompass  Home,
Species, Download, FTAGs_Anno, Userguide, Submit, and Links interfaces.
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 Plant Flowering-time Gene Database construction
A clear and fully displayed homepage for the Flowering-time

Gene  Database  (FTGD: www.sagsanno.top:8080/FTGD)  has
been  created.  Currently,  the  FTGD  homepage  comprises  four
main  sections:  navigation  bars,  statistics,  recent  updates,  and
other  modules  (Fig.  3).  The  navigation  bar  includes  seven
primary modules: Home, Species, Download, FTAGs_Find, Help,
Submit,  and Links.  Below the navigation bar,  you can find sta-
tistics related to plant FTAGs, recent updates, citations, and visi-
tor tracking.

 FTAGs_Find
Using Java, HTML5, and JavaScript, we offer an online service

for  predicting  plant  FTAGs  based  on  our  developed
'FTAGs_Find'  program.  We  provide  a  user-friendly  graphical
interface (Fig. 3), and users simply need to upload sequences in
FASTA  format  or  copy  the  data  into  the  provided  frame.  After
submitting the task,  users  can browse and download the ana-
lysis results of plant FTAGs on the result page.

 Browse and download the examined species FTAGs
dataset

Currently,  we  have  gathered  81  released  plant  protein
datasets,  resulting  in  the  identification  of  a  total  of  318,521
FTAGs  from  2,873,697  protein  sequences.  To  facilitate  the  use
of these datasets, we have integrated the plant FTAGs datasets
into  the  Species  module  (Fig.  3).  Scientists  can  select  the
species  of  interest  by  clicking  on  the  species  name  to  access
detailed  information  about  FTAGs,  including  gene  identifica-
tion, protein sequences,  and coding sequences.  Users can also
download the FTAGs dataset for 81 species, including 69 higher
plants and 12 lower plants, from the Download module (FTAGs
part). The FTAGs_Find tool can be downloaded from the Down-
load  module  (FTAGs_Find  part).  Additionally,  we  provide
datasets for positive and negative protein sequences, a feature
dataset  for  the  training  module,  and  the  best-performing
model (SVM-Kmer-PC-PseAAC model).

 Userguide and Submit module
In  the  Userguide  module  (Fig.  3),  we  offer  instructions  on

how to utilize the FTAGs_Find function for predicting FTAGs. In
addition,  a  section  of  frequently  asked  questions,  which
includes  the  seven  most  common  questions,  such  as  how  to
cite FTGD and how to download it, is provided at the bottom of
the page. To facilitate convenient user contact, we also provide
information such as email addresses in the contact module. The
Submit function has been integrated into the FTGD database to
encourage users to share their FTAGs data.

 Discussions

Flowering indicates that the plant has completed the transi-
tion  from  the  vegetative  stage  to  the  reproductive  stage[1,2].
Many  advances  have  revealed  that  the  photoperiod  pathway,
vernalization  pathway,  autonomous  pathway,  GA  pathway,
temperature pathway, and age pathway regulate the timing of
floral  transition[4].  The  Flowering  Interactive  Database  inte-
grates  a  comprehensive  collection  of  306  FTAGs,  providing
researchers with valuable resources for studying FTAGs.

In this study, a total of 628 protein sequences were collected
from  the  FLOR-ID  database[5] and  used  to  construct  the  posi-
tive  dataset.  The  negative  dataset  consisted  of  8,163  protein
sequences  downloaded  from  the  TAIR[16] database

(www.arabidopsis.org). We addressed the issue of imbalance by
assigning  different  weights  to  the  positive  and  negative  sets.
Subsequently,  we  developed  seven  machine  learning  models
to  distinguish  FTAGs  from  non-FTAGs  using  a  machine
learning  approach.  Based  on  the  proposed  SVM-Kmer-PC-
PseAAC classification model (F1 score = 0.934, accuracy = 0.939,
and  receiver  operating  characteristic  =  0.943),  we  created  a
local  Python  program  for  the  proteome-wide  identification  of
proteins  encoded  by  FTAGs.  Compared  to  biological  experi-
ments  and  omics  high-throughput  technologies,  using  our
developed  prediction  tool  'FTAGs_Find'  offers  the  advantages
of resource and time savings. The existing homology sequence
search tool BLAST+ only takes into account sequence composi-
tion  and  order  features  when  identifying  homologous  genes,
the  predictive  algorithm  constructed  in  this  study  considers  a
broader range of information, including sequence composition,
order features, and physicochemical properties.

Next,  a  total  of  318,521  FTAGs  were  identified  from  protein
datasets  of  81  species,  encompassing 69  higher  plants  and 12
lower  plants.  Among  these  81  examined  species,  we  detected
11,823  FTAGs  from  the  45,611  genes  in  the  whole  genome  of
Sphagnum fallax.  Notably, Sphagnum fallax exhibited the high-
est  proportion  of  FTAGs  compared  to  the  other  examined
species,  accounting  for  25.92%  of  all  the  genes.  Interestingly,
Sphagnum fallax belongs to the group of flowering plants, and
it  suggests  that  FTAGs  may  have  expanded  following  whole-
genome  duplication  events  in Sphagnum  fallax.  On  the
contrary, O. lucimarinus, which belongs to non-flowering plants,
displayed  the  lowest  proportion  of  FTAGs  (2.68%).  This  result
indicates  that  FTAGs  may  have  expanded  in  flowering  plants
and contracted in non-flowering plants.

Finally,  using  available  plant  FTAGs  datasets  and  the
FTAGs_Find  tool,  we  have  constructed  the  Flowering-time
Gene  Database  (FTGD: www.sagsanno.top:8080/FTGD),  which
enables users to download FTAGs datasets from 81 species and
identify  new  FTAGs  in  other  plants.  In  the  future,  we  plan  to
incorporate additional plant FTAGs datasets into FTGD. We will
also explore other machine learning methods, such as Random
Forest  algorithms,  to  enhance  the  performance  of  our  predic-
tion  model.  We  believe  that  FTGD  will  prove  to  be  a  valuable
resource for breeders and the flowering time research commu-
nity.
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