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In Brief
Here, we analyzed the distribution of
land use in Haikou City and
conducted a factor analysis of
different urban functional units,
including construction age,housing
prices, and population density. We
found that population density in urban
functional units influences the
distribution of grasslands, while the
distribution of forests is associated
with the construction age of buildings.
Moreover, our results underscore the
critical role that parks and universities
play in maintaining stable urban
green spaces throughout the study
period in Haikou. These relationships
can guide future land use planning
and provide valuable insights for the
formulation and management of
urban green space policies in urban
ecosystems.
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Highlights

•  We  analyzed  the  distribution  of  land  use  in  Haikou  City  and  its  driving  factors  through  urban  functional  unit
analysis.

•  The  distribution  of  urban  forests  is  related  to  both  the  construction  age  (as  predicted  by  the  legacy  effect
hypothesis) and the combined effect of human management.

•  The distribution of urban grasslands decreases with increasing population density.
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Abstract
Urban  Green  Spaces  provide  extensive  ecosystem  services,  benefiting  both  human  and  wildlife  in  urban  areas,  and  improving  the  overall

ecological health of cities. The impact of Urban Green Spaces can be measured through various indicators. This study combined remote sensing

data  and  social  surveys  to  investigate  the  distribution  patterns  and  driving  factors  of  Urban  Green  Spaces  and  land  use  in  Haikou,  a  tropical

coastal city in Hainan, China. We analyzed Sentinel-2A images between 2016 and 2020 to determine the land cover extent of Urban Green Spaces

within Urban Functional Units. We also considered the socio-economic variables which drive valuable ecosystem services related to land use, as

land-use decisions often overlook the value of these variables. During the study period, parks contained the highest proportion of Urban Green

Spaces,  while  the  most  significant  decline  in  Urban  Green  Spaces  was  observed  in  industrial  and  commercial  areas.  Additionally,  population

density was found to influence the distribution of grassland, while the distribution of urban forestland was related to the combined effects of

construction age (as predicted by the heritage-effect hypothesis) and human management. The results highlight the crucial role played by parks

and  universities  in  maintaining  stable  green  spaces  in  Haikou  throughout  the  study  period.  These  relationships  can  guide  future  land-use

planning and inform the formulation and management of green space policies in the urban ecosystem.

Citation:   Zhu MH,  Cubino JP,  Johnson JB,  Cui  JP,  Khokhar  AA,  et  al.  2024.  The legacy  effect  and urban management  planning driving changes  in
Urban Green Spaces land use in Haikou city, Hainan province: a comprehensive analysis. Tropical Plants 3: e011 https://doi.org/10.48130/tp-0024-0011

 
 Introduction

Urban  Green  Spaces  (UGS)  refer  to  open  spaces  located
within the urban area, with vegetation intentionally planted or
inherited  from  pre-urbanization  natural  vegetation,  either  by
design or left in its natural state[1].  These green spaces include
parks,  gardens,  urban forests,  green belts,  grassed streets,  and
historically  inherited  informal  green  areas[2].  As  a  crucial  com-
ponent  of  the  urban  landscape,  UGS  offer  a  diverse  range  of
ecosystem  services,  such  as  providing  habitats  for  urban
wildlife,  preventing  soil  erosion[3,4].  Beyond  these  ecological
functions,  UGS  also  promote  physical  activity  by  providing
recreational  spaces  and  creating  appealing  outdoor  environ-
ments, thereby promoting psychological well-being and reduc-
ing stress, heart rate, blood pressure, as well as the incidence of
chronic conditions including obesity,  asthma,  and diabetes[5,6].
Furthermore,  the  presence  of  UGS  can  enhance  the  aesthetic
and cultural  values  of  urban spaces[7],  mitigate  noise  and dust
pollution[8]. In short, the development of urban green spaces is
paramount for human well-being and urban sustainability[9,10].
They create a  pleasant living environment for  urban residents,
not  only  offering  spaces  for  leisure  and  recreation[10] but  also
contributing to the ecological balance and health of the urban
ecosystem[11].

In  recent  years,  many  cities  have  formulated  plans  to
increase  their  UGS[12].  For  example,  both  Los  Angeles  and
Washington,  DC  (USA)  have  committed  to  planting  a  million
trees  within  their  respective  borders  over  the  coming
decade[13].  Increasing  UGS  and  maintaining  existing  UGS  are
crucial for the quality of life and the health of ecosystems. This
is  particularly  vital  in  regions  experiencing  rapid  urbanization,
such as  China,  which is  witnessing a  particularly  swift  increase
in  the  proportion  of  urban  residents  surpassing  the  global
average[14].

While  there  has  been  a  global  increase  in  UGS  planning  in
recent  years,  it  cannot  fully  account  for  the  recent  establish-
ment  or  long-term  distribution  patterns  of  UGS.  Within  urban
areas,  the  distribution  of  UGS  is  the  result  of  various  factors,
including the choices of businesses and residents, as well as the
local demand for infrastructure and economic development. To
better  explain  the  distribution  patterns  of  UGS,  the  Legacy
Effect Hypothesis posits that the spatial distribution of vegeta-
tion cover in urban landscapes is significantly influenced by the
historical  legacy  of  past  land  use[15−18].  Typically,  areas  with
older  urban  housing  and  historical  urban  development  are
interpreted  to  have  more  vegetation,  reflecting  the  long-term
trajectories of management practices[19]. In such situations, the
extended  temporal  succession  and  longer  development
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periods allows more time for trees to reach their full size[17,19,20].
In  conjunction  with  this,  the  Land  Use  Hypothesis  proposes
that  different  land  use  types  exhibit  distinct  patterns  of  land
utilization[21,22].  It  focuses  on  how  management  decisions  in
various land use categories, such as residential and transporta-
tion  zones,  impact  the  quantity  and  types  of  land  use[23].  This
hypothesis emphasizes that the land management decisions in
different domains have consequential and significant effects on
the overall patterns of urban land utilization[24,25].

In  recent  years,  research  on  UGS  has  made  significant
advancements through the application of remote sensing tech-
nology[26−28]. The study of UGS relies on obtaining Earth surface
imagery  data  from  satellites  or  aircraft,  providing  abundant
information that illustrates the distribution of UGS under differ-
ent land use types[29,30]. This approach is instrumental in assess-
ing  the  temporal  and  spatial  changes  in  urban  UGS[31],  reveal-
ing the impact of urban land use transitions on the richness and
distribution  of  UGS[27,30,32].  Furthermore,  studies  that  integrate
remote  sensing  assessments  with  socio-economic  variables
have  found  a  close  correlation  between  these  changes  and
fluctuations in socio-economic factors, such as historical build-
ing  patterns,  property  prices,  and  population  density[33,34].
Therefore,  the  application  of  remote  sensing  technology  to
understand  the  distribution  patterns  of  UGS  provides  robust
support  for  a  deeper  understanding  of  land  use  and  heritage
effects.

In  this  study,  we  employed  remote  sensing  image  to  assess
the  distribution  and  changes  of  UGS  land  use  in  the  primary
developed areas and Urban Functional Units (UFUs) of the trop-
ical coastal city of Haikou, China. The objectives of our research
were  twofold:  (1)  Explore  the  changes  of  UGS  and  land  use  in
Haikou  city  from  2016  to  2020,  and  (2)  to  investigate  whether

UFUs  types,  construction  age,  housing  price,  and  population
density  could  explain  the  changes  in  UGS  land  use  in  Haikou
during  the  period  from  2016  to  2020.  The  research  findings
have  the  potential  to  contribute  to  the  planning  of  UGS  and
land use in other similar cities.

 Materials and methods

 Study area
Hainan  province  is  an  island  located  18  km  off  the  south

coast  of  the  Chinese  mainland  (Fig.  1).  Haikou,  situated  at
(19°31′32″−20°04′52″ N, 110°07′22″−110°42′32″ E), serves as the
capital city of Hainan Province, China. It is a typical tropical city
and the main port hub[35,36] for the Chinese mainland's Belt and
Road  trade  and  infrastructure  initiative.  The  city  covers  a  total
area  of  3126.83  km2 (www.haikou.gov.cn).  With  a  permanent
resident population of 2.87 million (http://www.haikou.gov.cn),
Haikou  holds  significance  as  the  cultural,  political,  economic,
and  transportation  center  of  Hainan  province.  Geographically,
Haikou  is  positioned  with  the  Qiongzhou  Strait  in  the  north,
Huancheng  Expressway  in  the  south,  Nandu  River  in  the  east,
and Crater Road in the west. For the purposes of our study, we
specifically  divided  Haikou's  urban  core  from  its  surrounding
suburbs  and  rural  areas.  This  differentiation  ensures  that  the
studied region exhibits typical urban land use characteristics, as
highlighted in research by Wang et al.[37].

 Sampling design classification of Urban
Functional Units (UFUs)

Urban  Functional  Units  (UFUs)  represent  different  land  use
types  and  tend  to  encompass  different  strategies  for  generat-
ing  and  maintaining  green  space,  i.e.  greening  strategies[38].
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Fig. 1    (a) Map of China indicating the location of Hainan. (b) Map of Hainan indicating the assessment areas for UGS drivers. (c) Satellite map
of Haikou (www.google.com/maps) displaying the 190 urban functional units (UFUs, red boundaries) surveyed within the Haikou study region
(purple line).
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Examples  of  UFU  types  include  parks,  residential  areas,  and
universities  or  colleges[39,40].  In  this  study,  we  divided  Haikou
into  five  first-level  UFUs  based  on  the  urban  forest  effect
model[37] and the 2018 China basic urban land use type map[41].
These first-level categories were public service areas, industrial
and  commercial  areas,  residential  areas,  leisure  and  entertain-
ment areas, and transportation areas. The secondary UFUs were
divided  into  15  units,  including  government  agencies,  univer-
sities, primary and secondary schools, research institutes, indus-
tries, hospitals, hotels, industrial and commercial offices, super-
markets,  low-density  residential  areas,  high-density  residential
areas,  parks,  museums,  roads,  and  car  parking  lots[37,42,43]

(Table 1).
After  selecting  the  study  area,  the  city  was  divided  into

uniformly sized kilometer grids. To ensure a standardized urban
sampling  approach,  a  grid  sampling  method  was  employed.
Subsequently,  we  conducted  purposive  sampling  of  UFUs[38].
This approach was chosen over random sampling to avoid the
abandonment of certain sampling points, such as those located
on  impermeable  surfaces  with  abundant  water  bodies.  Addi-
tionally,  randomly  selected  areas  often  exhibit  large  areas  of
impermeable  surfaces  or  water  coverage,  rendering  sampling
either impossible or meaningless. Therefore, we adopted Wang
et al.'s purposive sampling method[38], taking a comprehensive
consideration  of  all  UFU  types  within  the  grids  to  ensure  the
representativeness  of  all  sampled  points  in  the  city.  This
sampling method combines uniformity and representativeness
of samples, providing a better overall picture of the fundamen-
tal characteristics of UGS.

We  used  two  scenes  of  cloud-free  SPOT  5  (Satellite  Pour
l'Observation  de  la  Terre)  photos  of  the  Haikou  metropolitan
region  (north  of  the  Haikou  West  Line)  from  the  year  2016.
According  to  the  probability  theory  of  double-density  mosaic
stratified  sampling,  which  suggests  a  3:1  sampling  density  in
metropolitan regions and suburbs[44],  these pictures were split
into 190 grids of  1 km × 1 km[37,45].  We chose 190 UFUs inside
each city based on the American Urban forestry categorization

to  ensure  that  all  sampling  locations  were  similarly
represented.

 Socioeconomic variables
We  determined  the  age  of  the  building  by  calculating  the

number  of  years  since  the  UFU  was  initially  constructed.  For
example,  if  the  UFU  was  established  in  2000,  a  building
constructed in 2016 would be 16 years old and a building built
in  2020  would  be  20  years  old.  We  determine  the  age  of
construction  of  each  UFU  in  three  ways.  First,  we  determined
the  construction  time  of  the  UFUs  through  reliable  online
resources  such  as  the  UFU's  website.  If  this  data  could  not  be
located,  we  interviewed  the  property  management  personnel
of each UFU to determine the completion time of the UFUs. In
the end, if we did not find them, we analyzed Sentinel satellite
imagery  from  different  time  periods  to  determine  when  the
UFUs  was  built.  We  defined  the  age  of  the  UFUs  as  the
construction age[42]. Housing price data were obtained through
the  official  Anjuke  website  (https://beijing.anjuke.com),  with
query  times  of  2016  and  2020.  If  the  UFU  was  not  residential,
we  used  the  average  housing  prices  of  residential  areas  near
that UFUs as the price of that UFUs.  To determine the popula-
tion (P) of each UFUs, we use the following formula:

P = R × S × U × F
Where, R is the number of residential buildings in the UFUs from
aerial photos and field visits, S the number of floors per building,
U the number of residential units (households), and F the average
number  of  people  per  household  based  on  the  2020  China
National  Census  (2.62  people/households).  Finally,  we calculated
population  density  (person/km2)  as  P/A,  where  A  is  the  area
covered by each UFUs[46].

 Data processing
To analyze land-use changes in the study area,  we obtained

cloud-free Level-1C (L1C) image products from Sentinel-2A for
the  years  2016  and  2020.  The  images  taken  on  May  7,  2020
(L1C_T49QDB_A016546_20200507T032046)  and  June  2,  2016
(S2A_OPER_MSI_L1C_SGS_20160602T032443_20160602T0826
37_A004934_T49QDB_N02_02_01)  were  selected  and  down-
loaded  from  the  European  Space  Agency's  (ESA)  website
(https://dataspace.copernicus.eu/). These images were the only
available option with dates and cloud-free conditions closest to
the field survey application. The subsequent digital processing
steps  included  pre-processing,  classification,  post-processing,
and  post-classification.  These  steps  involved  mapping,  valida-
tion, and analysis of the changes in the mapping outputs.

 Image pre-processing
We  used  radiometric  and  atmospheric  correction.  The

images were pre-processed using the European Space Agency's
(ESA) processor Sen2Cor in a semi-automatic processing model.
SRTM  was  used  as  the  digital  elevation  model  (DEM),  and  the
plots  were  depicted  using  ArcGIS  10.8  software.  The  images
were  composed  of  13  spectral  bands,  including  visible,  near-
infrared  (NIR),  red-edge,  and  short-wave  infrared  (SWIR),  with
spatial  resolutions  of  10,  20,  and  60  m.  With  the  aid  of  ArcGIS
version  10.8  (ESRI,  Redlands,  CA,  USA),  the  red-edge  bands
(bands 5, 6, 7), the near-infrared band (band 8A), and the short-
wave infrared bands (bands 11 and 12) were resampled to 10-
m spatial resolution.

 Image classification
The  study  employed  the  support  vector  machine  classifica-

tion  algorithm  for  the  classification  process,  a  pixel-based

Table 1.    The number of  primary and secondary urban functional  units
(UFUs) sampled in Haikou.

Primary UFUs Secondary UFUs Polygons
included

Public affairs service
districts

Governmental Agencies 18
Colleges/universities 7
Primary/Middle Schools 18
Research institutes 4
Hospitals 12

Industry and business
districts

Industry 12
Hotels 11
Industrial offices 9
Supermarkets 3

Residential districts Low-density residential areas
(lower than six stories)

5

High-density residential areas
(higher than six stories)

43

Recreation and leisure
districts

Parks 7
Museums 5

Transportation Main/secondary roads 28
Bus parking 5

Undeveloped land Wetland 3

Total 190
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supervised image classification method. Training samples were
obtained  for  each  Landuse  type  based  on  fieldwork  and
personal knowledge of the research area. Sixty training samples
of  the  region  of  interest  were  acquired  separately  for  each
image  in  Envi  5.5  software.  To  improve  the  accuracy  of  the
classification,  band  compositions  such  as  false-color  infrared
(bands 8,  4,  3),  shortwave infrared (bands 11,  8A,  4),  and false-
color  agriculture  (bands  11,  8,  2)  were  used  for  the  identifica-
tion of different land cover types. False color infrared can iden-
tify  differences  in  vegetation  by  separating  the  different
shades,  while  shortwave  infrared  was  used  to  classify  built-up
and barren areas[47] .

 Land use and land cover change analysis
We  generated  Landuse  thematic  maps  based  on  the  five

classes  that  best  represented  the  study  area.  Landuses  were
built-up  land,  water,  forest,  grassland  and  bare  land  (Table  2).
The area of each Landuse class was calculated, and a transition
matrix of area changes in each of the two periods was created
from  the  transition  map  output.  The  land  use  of  an  area  and
change assessment was based on the remote sensing data and
the classification scheme. To show the change in the area,  the
transition  matrix  table[48] was  used.  By  comparing  the  raster
cells  from  the  starting  year  (2016)  with  that  of  the  end  year
(2020), the unaltered area and total change across classes were
depicted.  The  rows  correspond  to  the  class  values  in  the  year
2020,  while  the  column  displays  the  starting  year's  data.  The
cross-tabulation of changes in the pixels of different classes was
used to create the transition map.

 Accuracy assessment
The  classification  map's  accuracy  was  confirmed  using  data

from both Google Earth and field inventory. Evaluation metrics
included  overall  accuracy,  user  accuracy,  and  producer
accuracy[49].  Overall  accuracy  measures  the  proportion  of
correctly  classified  pixels  or  objects,  while  user  accuracy
assesses  the  likelihood  that  a  labeled  pixel  or  object  corre-
sponds to its actual class on the ground. Producer accuracy, on
the other hand, represents the probability of correctly classify-
ing  ground  objects[49−51].  The  calculation  formula[51] is  as
follows:

Overall accuracy =

k=5∑
k=1

nkk

n
(1)

User accuracy =

k=5∑
k=1

nkk

n+k
(2)

Producer accuracy =

k=5∑
k=1

nkk

nK+
(3)

Where n is  the  total  number  of  images; nkk is  the  number  of
images  correctly  classified  by  type  k; nk+ is  the  total  number  of
type k in the reference data; and n+k is the total number of type k
in the data to be evaluated.

 Data analysis
We  used  Wilcoxon  signed-rank  tests  to  investigate  differ-

ences in the proportion of  the area was grassland,  water,  bare
land,  forest,  building  and  green  space  in  the  UFUs  between
2016  and  2020.  Multiple  regressions  were  used  to  determine
the combined and individual effects of construction age, house

price  and population density  on the  proportion of  water  area,
bare land area,  forest  area,  grassland area and built-up area in
each UFU. To satisfy the assumption of normal distribution, we
log-transformed  construction  age,  housing  price,  population
density,  water  area,  bare land area,  forest  area,  grassland area,
and built-up area,  and all  variables were standardized using z-
scores before including them in the model.  The Variance Infla-
tion  Factor  (VIF)  showed  low  levels  of  multicollinearity  among
predictors (VIF < 5). Additionally, Moran's I was implemented in
the R package ape[52] to check for spatial autocorrelations in the
residuals  of  the  models  and  found  none.  To  reject  the  null
hypothesis, we selected three significance levels of p = 0.05 (or
95%  confidence), p =  0.01  (or  99%  confidence),  and p =  0.001
(or  99.9% confidence)  and performed all  statistical  procedures
in R 4.0.4 (https://cran.r-project.org/bin/windows/base/)[53].

 Results

 Landuse accuracy assessment
Table  3 illustrates  the  overall  classification  accuracy  of  land

use  for  the  years  2016  (85.71%)  and  2020  (81.25%).  These
results affirm the appropriateness of utilizing classified remote
sensing images for land-use change analysis. In both 2016 and
2020, the accuracy of producers in water bodies and bare land
was 100%. For forested areas, the producer's accuracy was 75%
in 2016 and decreased to 69% in 2020, reflecting a 6% decline.
Grassland  producer  accuracy  was  86%  in  2016,  dropping  to
67% in 2020, indicating a 19% decrease. The producer accuracy
for  built-up  areas  was  similar  between  2016  (76%)  and  2020
(74%).  In  both  2016  and  2020,  the  user's  accuracy  for  both
water bodies and built-up areas was 100%. The user's accuracy
for  bare land was 60% in 2016 and decreased to 50% in 2020,
showing  a  10%  decline.  The  user's  accuracy  for  forested  areas
was 90% in both 2016 and 2020. For grassland, the user's accu-
racy was 60% in 2016 and dropped to 40% in 2020.

Table 2.    Land use land cover classes and definitions.

Classes Definition

Built-up land Land under construction inside the city area or its
surroundings; including buildings and construction
sites.

Forest land Forested areas, native or planted; composed of tall
trees and a dense canopy.

Water Any water body or water resource in the area,
including the sea, rivers, streams, dams, and ponds.

Grassland Natural or planted grassy areas dominated by
graminoids and forbs.

Bare land Any area of exposed soil. Found on sites under
construction, underdeveloped roads, sandpits, or
sand sources.

Table 3.    Summary of mapping accuracy assessment.

Landuse

2016 2020

Producer
accuracy

User
accuracy

Producer
accuracy

User
accuracy

Water 100% 100% 100% 100%
Bare land 100% 60% 100% 50%
Forest area 75% 90% 69% 90%
Grassland 86% 60% 67% 40%
Built-up land 76% 100% 74% 100%
Overall accuracy 85.71% 81.25%
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 Changes in land use in Haikou city
The  largest  change  in  land  use  was  seen  in  the  decrease  in

forest  land,  from  1,262.68  ha  in  2016  to  776.75  ha  in  2020,  a
decrease  of  62.6%.  Conversely,  compared  to  2016,  the  grass-
land  area  in  2020  increased  by  346.62  ha.  The  bare  land  area
decreased  from  2,018.41  ha  in  2016  to  1,908.29  ha  in  2020,  a
decrease  of  5.8%.  Built-up  land  increased  from  6,581.71  ha  in
2016 to 6,871.92 ha in  2020.  The water  area decreased by just
3.7% from 1,157.58 ha in 2016 to 1,116.8 ha in 2020 (Fig. 2).

 Changes in landuse in primary urban functional
units (UFUs)

Landuse change varied greatly among different UFUs.  Over-
all,  the  largest  decline  in  forest  area  was  in  recreation  and
leisure districts, falling from 36.08% in 2016 to 30.37% in 2020.
With  the  exception  of  industrial  and  business  districts,  the
water area of all major UFUs decreased in 2020, with residential

areas experiencing the largest percentage decline,  from 5.45%
in  2016  to  4.4%  in  2020.  In  2020,  the  proportion  of  grassland
area in recreation and leisure districts was the largest (42.89%),
and  the  percentage  of  grassland  area  in  transportation  units
the  smallest  (20.49%).  Compared with  2016,  the  proportion  of
built-up  land  area  in  industrial  and  business  districts  in  2020
increased  by  4.28%,  and  the  proportion  of  bare  land  area
decreased  by  2.19%.  The  largest  decline  in  the  percentage  of
total  green  space  between  2016  and  2020  was  seen  in  indus-
trial and business districts (23.22%) (Fig. 3).

 Changes in landuse in secondary urban functional
units (UFUs)

In  both  2016  (19.07  ±  26.84  hm2)  and  2020  (18.99  ±  27.15
hm2),  parks  exhibited  the  highest  area  of  UGS.  Among  the
secondary  UFUs,  research  institutes  showed  the  most  signifi-
cant change in UGS (1.08 ± 0.71 hm2 in 2016 to 0.9 ± 1.08 hm2
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Fig. 2    Landuse of Haikou in (a) 2016 and (b) 2020 and (c) landuse change in Haikou City.
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in  2020).  Analyzing  land  use  changes  during  this  period,  the
forested  area  within  parks  represented  the  largest  proportion
(Fig.  4).  Notably,  the  most  substantial  alteration  in  grassland
area  in  2020  (0.89  ±  1.06  hm2)  compared  to  2016  (1.05  ±  0.71
hm2) was observed in research institutes. When examining the

composition of land use from 2016 to 2020, water areas consti-
tuted  the  smallest  proportion  among  UFUs,  relative  to  forest,
grassland, built-up land, and bare land (Supplemental Table S1,
Figs 4 & 5). Throughout this period, hotels dominated the build-
ing  land  use  category  among  secondary  UFUs,  while  research
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Fig.  3    Landuse  and  UGS  in  primary  UFUs  in  Haikou  in  2016  and  2020.  Among  them,  IB:  Industry  and  business  districts,  PA:  Public  affairs
service districts, RL: Recreation and leisure districts, RD: Residential districts, TR: Transportation.
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institutions  claimed  the  smallest  share.  On  the  other  hand,
primary  and  secondary  schools  accounted  for  the  largest
proportion of bare land (Supplemental Table S1, Figs 4 & 5).

 Assessment of the potential drivers of Landuse
Here,  we  present  results  from  multiple  linear  models  that

exhibited  significant  R2 values,  and  the  strength  and  direction
of relationships were inferred from the β coefficients (Table 4).
It  is  noteworthy  that  the  multivariate  regression  R-squared
values for water area, bare land area, forest area, grassland area,
and built-up area ranged from high to low (i.e., 0.921 or below).
Construction age emerged as the strongest predictor for water
area, bare land area, forest area, and grassland area in residen-
tial  zones  (β =  −0.878 to  0.544).  Additionally,  construction age
stood  out  as  the  most  influential  predictor  for  altering  forest
area  in  transportation  zones  (β =  −0.534***).  Housing  prices
were significant as the most potent predictor for bare land and
grassland  areas  in  public  service  zones  (β =  0.635***  and
−0.772***).  Population  density  emerged  as  the  strongest
predictor for bare land area in industry and business zones (β =
0.384*)  and  also  played  a  pivotal  role  in  predicting  grassland
area in public service zones (β = −0.215**).

 Discussion

 Changes in UGS landuse patterns in Haikou city
From 2016 to 2020, significant changes occurred in the land

cover of Haikou City,  with a noticeable decrease in forest area,
amounting to a total loss of 63% (Fig. 2). Moreover, the propor-
tion of forest area in the major UFUs also experienced a decline
(Fig. 3). All plants, especially trees, play a crucial role in air purifi-
cation,  dust  suppression,  and  water  conservation[54].  As
forested areas decrease, ecosystem services such as air purifica-
tion  may  diminish,  potentially  leading  to  negative  impacts  on
human  health[55,56].  Additionally,  forested  areas  serve  as  natu-
ral  habitats  for  many  flora  and  fauna,  thus  their  demise  could
lead to biodiversity loss[57]. Furthermore, the decline in forested
areas  may  contribute  to  increased  surface  runoff,  soil  erosion,

and  alterations  in  local  microclimates[58],  thus  negatively
impacting the overall health of the urban ecosystem.

In addition, Haikou witnessed a 4.22% increase in the propor-
tion of total built-up area, a 3.65% decrease in water area, and a
5.77%  reduction  in  undeveloped  land  (Fig.  2).  Land  reclama-
tion  (or  more  accurately,  converting  shallow  strait  areas  into
land)  has  been  carried  out  in  recent  years  to  facilitate  real
estate investments and developments, particularly in areas like
the Haidian District near Haikou[59]. On one hand, land reclama-
tion  helps  alleviate  land  supply-demand  conflicts  in  coastal
areas  and  expands  opportunities  for  sustainable
development[60,61]. On the other hand, it accelerates the loss of
wetlands.  Over  the  past  40  years,  large-scale  land  reclamation
in  China  has  resulted  in  a  cumulative  loss  of  approximately
21,900  km2[62],  equivalent  to  50%  of  the  total  coastal  wetland
area nationwide[59].

During  the  period  from  2016  to  2020,  public  parks  showed
the  highest  proportion  of  UGS,  followed  by  research  institu-
tions and higher education institutions (Fig. 4). Universities are
places  with  frequent  incoming  and  outgoing  traffic,  often
having  an  international  character[63] and  attracting  students
and faculty members from across the country or globe[64]. Such
movement  may  unintentionally  (or  even  intentionally)  intro-
duce  plants  into  the  local  environment,  such  as  seeds  carried
on shoes or clothing[65]. Moreover, due to people's preferences,
universities tend to have a high UGS,  as having disproportion-
ately more plant enthusiasts among the faculty makes it easier
to  attract  stronger  attention  to  botany[65].  This  attention  may
lead  to  an  increase  in  plant  collections.  Additionally,  students
are  more  likely  to  study  botany  courses  and  collect  plants  at
universities[65]. On college and university campuses, there have
been notable initiatives observed at Qinghai Normal University
(located  in  Xining,  Qinghai,  China)  and  Zhejiang  University
(located  in  Hangzhou,  Zhejiang,  China)  that  involve  the  plant-
ing,  labeling  with  scientific  names,  and  maintenance  of  tree
species  as  part  of  their  life  sciences  education  programs.  Both
students  and  faculty  are  more  likely  to  spend  a  considerable
amount  of  time  in  green  spaces,  promoting  the  emerging
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Fig.  4    Proportion  of  green  space  (area  covered  in  vegetation)  in  secondary  UFUs  in  2016  and  2020  in  Haikou  city.  *  indicate  significant
differences between 2016 and 2020 based on Wilcoxon tests.
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societal ideology of building an ecological civilization (i.e.,  one

that  envisions  harmonious  nature  and  economy  distinct  from

the concept of sustainable development)[66].

From  2016  to  2020,  UGS  in  industrial  and  commercial  areas

experienced  a  significant  decrease,  likely  due  to  increased

development,  potentially  raising  the  land  value[59,67].  Further-

more, UGS may be seen as an unnecessary cost, as they require

varying levels  of  economic and managerial  investment[68].  The

funds  required  for  the  maintenance  of  UGS  may  be  limited,

especially during economic downturns[38,69]. To minimize these

impacts, it is necessary to incorporate green building practices,

promoting  sustainable  land  use  management[70],  such  as  pro-
tecting  open  spaces  and  developing  environmentally  friendly

transportation infrastructure[71]. During the study period, it was
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Fig. 5    Proportion of landuse in secondary UFUs in 2016 and 2020 in Haikou city.  *  indicate significant differences between 2016 and 2020
based on Wilcoxon tests.
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noted that water and undeveloped land were transformed into
built-up  land.  Future  urban  policies  should  encourage  urban
greening under different land uses, increase ecological connec-
tivity, and provide ecosystem services.

 The driving factors of Landuse patterns in Haikou
In  residential  areas  with  older  construction  ages  (i.e.,  old

houses and urban development), there is a greater presence of
forests.  This  phenomenon  reflects  the  long-term  trajectory  of
management  practices  and  underscores  the  importance  of
considering legacy impacts[63]. Forests, as part of the landscape,
inherit  the  legacy  of  past  management,  greening movements,
and the ever-changing socio-economic conditions, all of which
influence  the  development  of  communities  and  changes  in
people's  behavior[72].  Historical  decisions  and  urban  planning
practices adopted in the past have had a lasting impact on the
current  forest  coverage  patterns.  In  areas  with  older  construc-
tion  ages,  trees  have  had  more  time  to  grow  and  mature[73].
Over  time,  urban  vegetation  gradually  forms  a  more  mature
ecosystem[74].  Supporting  this,  Hainan  Province  is  steadfastly
committed  to  the  construction  of  an  ecological  civilization.
Since  1994,  the  Hainan  provincial  government  has  enacted
policies  prohibiting  the  logging  of  natural  forests  to  protect
endangered  flora  and  fauna,  preventing  further
destruction[75,76].  This commitment reflects proactive measures
for  ecological  sustainability  and  biodiversity  conservation,
further  demonstrating  the  impact  of  past  policies  on  wooded
areas in residential areas.

However, in traffic zones, a reverse legacy effect is observed.
With the increasing age of traffic zone development, the quan-
tity of forested areas tends to decrease. This may be attributed
to  the  dynamic  impact  of  traffic  zone  development  on  the

quality of the urban ecosystem[77]. The primary function of traf-
fic  zones  is  to  facilitate  transportation,  leading  to  a  planning
emphasis  on  transportation  infrastructure  such  as  roads  and
parking lots, rather than UGS[78,79]. Additionally, traffic zones are
much  more  susceptible  to  environmental  pollution  and  traffic
noise.  Moreover,  areas  with lower  species  diversity  and higher
fragmentation – highly typical of roads – are often less suitable
for  the survival  of  many species[78].  The main characteristics  of
roads, including high levels of anthropogenic interference and
a lack of vegetation, have adverse effects on the local ecologi-
cal  environment[80].  The  continuous  flow  of  traffic  and  vehicle
exhaust  emissions  further  contribute  to  environmental  pollu-
tion, leading to the destruction of natural habitats and a further
decline in species diversity[81]. Furthermore, roads create physi-
cal  barriers,  hindering  the  movement  of  flora  and  fauna  and
limiting their ability to establish new populations[74].  There are
also  other  factors  that  can  influence  transformations  in  urban
forested  areas,  such  as  urban  planning  and  green  manage-
ment[73].

Forests and grasslands tend to grow in alternate successions
over time. This aligns with Creamer et al., who reported a nega-
tive correlation between forests and grasslands[82]. This trend is
belived to arise from the ecological competition between trees
and  grasslands,  with  larger  trees  competing  for  light,  water,
and  soil  nutrients,  thus  hindering  the  full  growth  of
grasslands[82,83].  As  the  number  of  trees  increases,  the  shade
cast  by  the  canopy  alters  ground  microclimatic  conditions  to
some  extent,  reducing  the  viability  of  shade-sensitive  herba-
ceous plants and consequently decreasing the extent of grass-
lands[84].

Another  variable  considered  was  the  impact  of  housing
prices.  Although  substantial,  this  effect  is  not  always  directly

Table 4.    Multivariate regression analysis results of Landuse area with construction age, housing prices, and population density in primary UFUs of Haikou
City in 2020.

Land use and land
cover Primary UFUs Construction age

(β coefficient, n = 190)
Housing price

(β coefficient, n = 190)
Population density

(β coefficient, n = 190)
R2

Water area Industry and business −0.142 0.127 −0.098 0.052
Public service −0.000 −0.156 0.302 0.041
Recreation and leisure 0.019 −0.172 −0.136 0.058
Residential −0.612*** 0.018 −0.188 0.430***
Transportation 0.095 −0.107 0.099 0.033

Bare land area Industry and business 0.106 −0.253 0.384* 0.223
Public service 0.027 0.635*** 0.203 0.656***
Recreation and leisure 0.089 −0.038 −0.070 0.022
Residential 0.370* −0.073 0.162 0.172*
Transportation −0.023 −0.025 0.239 0.056

Forest area Industry and business −0.087 0.487 −0.146 0.271*
Public service 0.042 0.252 −0.252 0.027
Recreation and leisure 0.187 −0.176 −0.156 0.138
Residential 0.544*** −0.091 0.216 0.373***
Transportation −0.534** 0.034 −0.075 0.319*

Grassland area Industry and business −0.241 0.195 −0.139 0.130
Public service −0.045 −0.772*** −0.215** 0.921***
Recreation and leisure 0.138 −0.442 0.092 0.228
Residential −0.878*** −0.074 −0.097 0.776***
Transportation 0.118 0.023 0.015 0.014

Built-up area Industry and business −0.022 −0.398* 0.023 0.161
Public service 0.099 0.139 −0.154 0.016
Recreation and leisure −0.111 0.181 0.126 0.088
Residential −0.009 0.314* −0.060 0.102
Transportation 0.205 −0.145 −0.116 0.074

Significance codes: * p < 0.05,  **  p < 0.01,  *** p < 0.001.
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quantifiable. For instance, accurately measuring housing prices
in public affairs service areas can be complex. Therefore, hous-
ing  prices  within  public  affairs  service  areas  are  influenced  by
the prices of nearby properties and are only suitable as indirect
reference  indicators.  In  contrast,  residential  areas  can  more
accurately  reflect  the  actual  housing  prices  within  a  given
region. With the rise in housing prices, there has been a corre-
sponding expansion of built-up areas, accompanied by a reduc-
tion  in  UGS.  Research  indicates  that  in  districts  with  higher
housing  prices,  real  estate  developers  increase  land  develop-
ment  and  usage,  sacrificing  existing  green  areas  in  pursuit  of
higher profits[85,86].  Additionally,  research has found that hous-
ing prices typically reflect the supply and demand dynamics of
the  real  estate  market[87].  High  demand  leads  to  the  develop-
ment of more residential areas in cities,  and people are willing
to pay higher prices to purchase homes[88].  Population density
is  also  a  crucial  factor  influencing  the  extent  of  grasslands.  In
the face of limited land resources, cities need to make efficient
use of land and provide space for the increased population for
residential,  commercial,  and  infrastructure  purposes[89,90].  For
example,  in  Haikou  City,  more  vertical  buildings  have  been
constructed to accommodate a larger population[91].  However,
these activities  still  occupy significant  amounts of  land,  reduc-
ing the grassland area. Studies from continental European cities
show  that  grassland  coverage  decreases  with  an  increase  in
population  density[92].  Similar  research  in  tropical  Southeast
Asia and Europe similarly indicates that cities with higher popu-
lation densities have less grassland area[92,93].

 Conclusions

With  the  establishment  of  an  international  free  trade  port,
Haikou is undergoing a rapid process of urbanization. Develop-
ing cities should aim to protect and enhance both the quantity
and quality of UGS, with a focus on strengthening their ecosys-
tem  services.  Notably,  the  most  significant  changes  in  the
proportion  of  UGS  in  Haikou  occur  in  industrial  and  commer-
cial  areas.  In  contrast,  parks  and  university  campuses  play  a
crucial  role  in  maintaining  stable  UGS  within  the  city.  Further-
more,  our  research  confirms  previous  observations  that  grass-
land  area  decreases  with  increasing  population  density;  while
the distribution of urban forestland in Haikou is associated with
the  combined  effects  of  construction  age  and  management
predicted  by  the  heritage  effect  hypothesis.  Further  work
should address other factors within the urban context, such as
cultural  or  UGS investment,  to  provide clear  guidance on how
to implement and manage UGS land use more effectively in the
urban environment.
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