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Abstract
This paper delves into the realm of artificial intelligence, where an array of deep learning techniques has proven effective in automating crop leaf

disease identification and classification. The current paper shows mature detection methodologies for apple, tomato, rice, mango, coconut and

durian leaf diseases with examples, while spotlighting research on leaf disease detection in tropical plants.  Through this exploration, valuable

insights into the benefits and applications of detection techniques based on deep learning methods in leaf disease detection. Highlighting the

advantages  of  deep  learning  methods  in  automated  feature  extraction  and  disease  detection,  the  paper  describes  the  salient  features  and

challenges of the application of leaf disease detection in the tropics. In the paper we offer an introductory overview of a leaf disease detection

model and delves into the factors influencing detection accuracy and speed, while proposing ways to mitigate the inherent trade-offs between

these indicators. Furthermore, the challenges, such as multi-scale detection and leaf overlapping, that may occur in plants in the tropics, have

been examined, enriching our understanding of deep learning-driven leaf disease detection in tropical agriculture.
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 Introduction

Deep  learning,  a  subfield  of  machine  learning,  is  distin-
guished  by  its  computational  model's  capacity  to  acquire
knowledge  from  abstract  data  using  structures  consisting  of
multiple processing units[1]. Such models use automatic optimi-
sation  of  model  parameters,  e.g.  stochastic  gradient  descent,
batch gradient descent, Adam optimiser, to systematically opti-
mise the basic parameters of  the data computation within the
model architecture to achieve the goal of optimising or acceler-
ating the optimisation of the model parameters. The automatic
optimisation  of  model  parameters  eliminates  the  need  for
manual design of parameters within the model and reduces the
amount  of  manual  work  involved  in  model  development.  In
addition, the trained models can be used to achieve objectives
such as object detection,  localization,  image classification,  and
predictive analytics based on complex abstract data. One note-
worthy advantage of contemporary machine learning method-
ologies  is  their  inherent  capability  for  automated  feature
extraction  and  learning  from  abstract  data,  thereby  obviating
the requirement for manual intervention in guiding the model
through  the  processes  of  feature  extraction  and  learning,  as
demonstrated in conventional feature engineering. In contrast,
traditional  machine  learning  approaches  necessitate  the
construction of  relevant features by humans,  contingent upon
the  dataset,  a  process  commonly  referred  to  as  feature  engi-
neering.  Performing  the  task  of  feature  engineering  is  inher-
ently  complex  and  time-consuming,  necessitating  iterative
human adjustments based on change in the dataset or design
requirements[2].  Traditional  feature  engineering  may  be  more
advantageous when dealing with small datasets is required. But
in  today's  environment  of  increasing  labour  costs[3] and

decreasing  computer  arithmetic  costs[4],  as  well  as  in  practice
where  large  neural  networks  based  on  deep  learning  can  be
better  generalized  which  is  more  important.[5] Deep  learning
methods may be more advantageous when dealing with large
datasets or when a high degree of automation is required. As a
result,  the developmental  costs associated with models of  this
kind  significantly  increase,  which  is  mainly  labour  costs,  while
their generalizability is concurrently limited.

In  contrast,  the  incorporation  and enhancement  of  network
models  which  involve  proficient  feature  extraction  techniques
combined with deep learning, and are exemplified by Convolu-
tional  Neural  Networks  (CNN),  You  Only  Look  Once  series
(YOLO), Single Shot Multibox Detector (SSD), Residual Network
(RstNet),  Densely  Connected  Convolutional  Network
(DenseNet),  GoogleNet,  MobileNet,  and  Xception,  has  signifi-
cantly  enhanced the automatic  feature learning capabilities  of
models.  These  advancements  enable  deep learning models  to
autonomously  extract  features  of  varying  levels  of  complexity
from  raw  data,  displaying  significant  potential  for  improving
the  reliability  of  models  based  on  leaf  disease  image  analysis.
As a result, models developed within the deep learning frame-
work  align  with  the  processing  of  intricate  abstract  data,  such
as  images,  and  it  also  demonstrates  advantages  in  terms  of
labour  costs,  expenditure  on  productivity  costs  and  increased
model versatility.[6]

Early  detection  of  diseases  minimizes  the  overuse  of  pesti-
cides  in  disease  prevention[7].  The  utilization  of  deep  learning
techniques for monitoring crop leaf diseases enables the analy-
sis  of  various  disease  types  by  inputting  images  of  diseased
leaves  into  a  model  previously  trained  for  these  leaf  diseases,
eliminating  the  necessity  for  specialized  personnel  and  allow-
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ing for  an automated identification process,  that  enable rapid,
timely  control.[8] When  these  trained  models  are  deployed  on
small  mobile  terminals,  it  helps  non-professional  agriculturists
to  detect  problems  in  time,  even  in  completely  unmanaged
farmland,  so  that  preventive  measures  can be implemented[9].
Due to the good generalisation ability of the model, identifica-
tion  aided  by  the  use  of  a  trained  model  can  provide  a  more
reliable  identification  reference  for  experts[10].  For  example,  in
changing  environments  where  some  leaf  diseases  have  no
obvious  symptoms  or  are  difficult  to  detect,  which  requires
plant  pathologists  to  be  well  observed[11],  deep  learning
models  can  extract  features  that  are  difficult  to  observe  with
the  human  eye[12].  Thereby,  application  of  such  technologies
contributes to the timely detection and prevention of plant leaf
diseases,  optimization  of  crop  yields,  and  advancement  of
precision agriculture. Consequently, this enhances productivity,
reduces labour cost, and strengthens sustainability[13].

Tropical areas hold a significant position as major producers
of staple food crops such as rice, corn, and millet, as well as vari-
ous fruit crops including banana, mango, coconut,  and durian.
The  region's  consistent  high  temperatures  lead  to  shorter
pathogen incubation periods, exemplified by the reduced diur-
nal  temperature  which  accelerates  the  latency  period  of
pathogens  like Hemileia  vastatrix,  causing  rust  epidemics  in
Central  America[14] Furthermore,  the typically high humidity in
tropical  regions  fosters  both  crop  growth  and  the  survival  of
harmful  bacteria.[15] Consequently,  tropical  regions  experience
more frequent occurrences of plant diseases, posing a threat to
food security.[16] Thus, compared to non-tropical regions, crops
in  tropical  areas  have  shorter  growth  cycles  and  are  more
susceptible to rapid disease outbreaks, underscoring the neces-
sity  for  timely  and  effective  plant  disease  prevention  and
control measures.[16] Because deep learning-based leaf disease
detection technology can be mounted on mobile  devices  and
achieve real-time monitoring, it  is possible to use this technol-
ogy more suitable for tropical areas.

The  current  study  focuses  on  the  application  of  detection
technologies  for  plant  leaf  diseases  and  pests,  exploring
contemporary  technological  methodologies  and  attributes
underpinning  current  crop  leaf  disease  and  pest  detection
techniques.  This  paper  describes  the  technical  characteristics
and  advantages  of  parallel  detection  using  deep  learning
models.  The development direction and challenges of  deploy-
ing  deep  learning-based  leaf  disease  detection  technology  in
tropical regions were also discussed.

 The detection models and datasets in leaf
disease detection

Leaf  disease  detection  can  be  regarded  as  the  detection  of
leaf  disease  objects,  which  is  consider  as  a  computer  vision
task,  involving  two  key  targets:  object  recognition  (classifica-
tion)  and  object  localization.  The  process  of  building  object
detection can be divided into three main parts:  data set selec-
tion or construction, model selection and training, model eval-
uation and deployment.

Choosing  the  right  architecture  for  the  detection  model
depends primarily  on the required level  of  accuracy,  inference
speed,  and  available  computational  resources.  The  detection
methods  are  distinguished by  whether  object  localization and
classification are performed in a single stage[17].  The one-stage

methods  directly  predict  bounding  boxes  and  class  probabili-
ties  for  all  objects  in  a  single  pass  without  region  proposal[18],
such  as  YOLO  series,  SSD,  CornetNet,  et  al.  However,  the  tow-
stage  methods  are  much  more  complicated,  like  CNN,  RCNN.
The first stage usually proposes potential region of interest, and
the  second  stage  refines  these  proposals  by  classifying  and
adjusting  the  bounding  boxes.  This  stage  difference  in  practi-
cal application leads to the two models have different empha-
sis  on  prediction  speed  and  prediction  accuracy[19],  which  the
one-stage  method  emphasizes  the  prediction  speed,  corre-
spondingly, and the other emphasizes the prediction accuracy.
Popular  CNN  architecture  used  as  the  backbone  includes
AlexNet  and  its  variants  like  VGGNet,  GoogLeNet,  Inception
series,  ResNet  and  its  variants  like  ResNet50  and  ResNet101,
DenseNet, MobileNet.

Currently,  based  on  the  literature  summarized  in Tables  1
and Table 2, authors' models have consistently achieved recog-
nition  accuracy  exceeding  90%  in  validation  or  prediction
applications.  A 90% recognition accuracy in target recognition
models is often seen as high, but its adequacy depends on the
specific  application  and  requirements.  Thus,  there  isn't  a
universal benchmark and performance evaluation should align
with  specific  tasks  and  applications.[20] Some  models  even
exhibit recognition accuracy surpassing 99% in test sets. In the
realm of laboratory development and certain outdoor applica-
tions,  achieving  high  accuracy  with  simple  models  is  still  a
prominent challenge.[21] Furthermore, due to the diverse hard-
ware platforms employed by different authors and the specific
purposes of their applications, direct comparisons of reasoning
speed  and  computing  resource  requirements  among  various
models  pose challenges.  Nevertheless,  it  is  evident that  a  deli-
cate balance is  required between recognition accuracy,  model
size, and model inference speed. This becomes particularly criti-
cal when contemplating the deployment of models on mobile
terminals  for  practical  applications.  Achieving  this  balance
represents a formidable challenge in the field.

The model's  ability  to recognize is  strongly tied to the qual-
ity and specifics of the dataset used for training, validation, and
testing.  For  instance,  factors  such  as  the  accuracy  of  object
labels,  the  number  of  images  and  labels  in  the  data  set,
balanced  data  distribution,  and  the  use  of  data  enhancement
methods  impact  the  ultimate  prediction  accuracy  and  the
model's  ability to generalize.  He et  al[22] suggested that imbal-
anced  data  could  compromise  model  classification  accuracy.
The  size  of  the  dataset  is  commonly  regarded  as  significant
which is the number of images and labels in the data set, yet it
is  not  definitive[23].  While  expanding  the  dataset  size  may
enhance  the  model's  generalization  capability  and  perfor-
mance to some degree,  it  does not imply that a larger dataset
always  leads  to  better  outcomes  or  more  accurate  identifica-
tion  under  identical  conditions[24].  Errors  in  data  labels  can
significantly impact the accuracy of model testing. These views
are  further  extended  and  proposed  by  Priestley  et  al[25] and
they  pointed  out  differences  in  data  management  practices
between academia  and industry,  underlining that  data  quality
should align with diverse user  needs.  They also proposed that
the  availability  of  data  can  be  supported  by  infrastructure  for
data collection and management particularly in large organiza-
tions.  In  academia,  data  sets  are  typically  categorized  as
published  or  non-public,  posing  challenges  in  objectively
assessing  the  quality  of  datasets  used  in  some  researcher-
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Table 1.    Plant disease open data sets

Data set name Crop Brief description Reference

Image Database of Plant
Disease Symptoms

21 plant species In October of 2016, this database called PDDB, had 2326 images of 171
diseases and other disorders affecting 21 plant species including soybean,
citrus, coconut tree, dry bean, cassava, passion fruit, corn, coffee, cashew
tree, grapevine, oil palm, wheat, sugarcane, cotton, black pepper, cabbage,
melon, rice, pineapple, papaya, cupuacu.

[26]

Tomato leaf disease
detection

Tomato A Tomato leaf disease dataset includes tomato mosaic virus, tomato yellow
leaf curl virus, late blight, leaf mold, early blight, septoria leaf spot, Spider
mites Two-spotted spider mite, healthy tomato.

[27]

Agricultural Disease Image
Database for Agricultural
Diseases and Pests Research

Rice and wheat, fruits
and vegetables, etc.

The dataset currently has about 15,000 high-quality agricultural disease
images, including field crops such as rice and wheat, fruits and vegetables
such as cucumber and grape, etc.

[28]

Rice disease dataset Rice A rice leaf disease dataset includes bacterial leaf blight, blast and brown
spot.

[29]

Pathological images of
apple leaves

Apple The apple leaf disease image dataset contains 8 common apple leaf diseases:
Mosaic, rust, gray spot, mottle leaf disease, brown spot, black star disease,
black rot, healthy leaf disease.

[30]

Plant Pathology 2021 -
FGVC8

Apple 2021-FGVC8 contains approximately 23,000 high-quality RGB images of
apple foliar diseases, including a large expert-annotated disease dataset.

[31]

Tomato Disease Multiple
Sources

Tomato Over 20k images of tomato leaves with 10 diseases and 1 healthy class.
Images are collected from both lab scenes and in-the-wild scenes, which
includes late blight, healthy, early blight, septoria leaf spot, tomato yellow
leaf curl virus, bacterial spot, target spot, tomato mosaic virus, leaf mold,
spider mites Two-spotted spider mite, powdery mildew.

[32]

Data for: Identification of
Plant Leaf Diseases Using a
9-layer Deep Convolutional
Neural Network

12 plant species The dataset includes 39 different classes of plant leaf and background
images are available. The data-set contain 61,486 images.

[33]

Table 2.    Leaf disease detection technology and corresponding advantages

No. Model name Technical characteristics Advantages Ref.

1 Apple-Net The Feature Enhancement Module (FEM) and Coordinate Attention
(CA) incorporation.
Generative Adversarial Networks (GAN) for interference reduction.

Multi-scale information
acquisition, increased diversity,
and noise resistance.

[34]

2 Mobile Ghost with
Attention YOLO

Ghost modules and separable convolution for reducing model size.
The mobile inverted residual bottleneck convolution with
Convolutional Block Attention Module (CBAM) for improving feature
extraction capability.

Lightweight real-time monitoring
(10.34MB), suitable for mobile
terminals.

[35]

3 BTC-YOLOv5s Bidirectional Feature Pyramid Network (BiFPN) for a fusion of multi-
scale features.
Transformer attention mechanism for capturing global contextual
information and establishing long-range dependencies.
CBAM for interference reduction.

Reduces irrelevant information,
small model size (15.8MB).

[36]

4 AlAD-YOLO The backbone network of TOLOv5s replaced with that of
MobileNetV3.

Reduction in parameters and
computational complexity during
feature extraction.

[37]

5 YOLOX-ASSANano Asymmetric ShuffleBlock for enhanceing feature fusion.
Cross stage partial module with shuffle attention for interference
reduction.

Processes complex natural
backgrounds and lightweight
model.

[38]

6 V-space-based Multi-
scale Feature-fusion
SSD

Multi-scale attention extremum for automatic lesion detection. Enhances detection ability for
disease lesions, especially small
ones.

[39]

7 LAD-Net Asymmetric and dilated convolution as the convolution to reduce
model size.
LAD-Inception designed with an attention mechanism for improving
multiscale detection capabilities.

Small model size (1.25MB), high
accuracy (97.72%), and
implementation of deployment
on mobile devices.

[40]

8 Enhanced LSTM-CNN Majority voting ensemble classifier replaced the classifier.
Optimal LSTM layer network applied to select deep features
autonomously.

Enhanced feature extraction and
classifier modification.

[41]

9 LALNet EARD module with multi-branch structure and depth separable
modules extracts more feature information with fewer parameters
and computational complexity.
SE attention module for increase the feature extraction capability.

Small size (6.61MB), fast execution
(6.68ms/photo), and high
recognition accuracy.

[42]

10 Two-stage detection
system

Three-way classification in the first stage using Xception as the base
model.
Real-time detection in the second stage.

Detects multiple diseases with
87.9% mean average precision.

[43]

11 Improved Faster R-
CNN

Res2Net and feature pyramid network replaced the backbone of
Faster R-CNN for batter feature fusion.
RoIAlign instead of RoIPool of Faster R-CNN for improving the
identification precision.

Extracts multi-dimensional
features in natural scenes with
complex backgrounds.

[44]

(to be continued)
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proposed models.
In  practice,  an  important  consideration  influencing  model

performance is  whether  images  in  the dataset  capture  natural
environments, encompassing both indoor and outdoor scenes.
For example, as shown in Figure 1, a, b and c are all indoor. The
d  is  outdoor.  Natural  environment  photos  tend  to  have

complex  backgrounds,  demanding  models  with  stronger  anti-
interference  capabilities  against  intricate  scenarios.  In  fact,  as
researchers  developing  models,  we  still  suggest  that  if  the
researcher  want  to  develop a  model  for  the identification of  a
leaf  disease,  it  is  a  very  necessary  process  to  collect  relevant
data and label it. We believe that the research focus of tropical

Table 2.    (continued)
 

No. Model name Technical characteristics Advantages Ref.

12 BC-YOLOv5 Modify YOLOv5 neck structure with weighted BiFPN and CBAM. Enhanced feature extraction in
the detection layer, reduced
irrelevant information for complex
backgrounds.

[45]

13 PLPNet Perceptual adaptive convolution (PAC) for enhancing the network’s
global sensing capability.
location relation attention module (LRAM) for reducing unnecessary
information.
SD-PFAN structure for fusing features batter.

Recognizes leaf diseases at the
edge of the leaf, resist
background interference.

[46]

14 DL Technique U-net with Gradient GSO for leaf segmentation in the first stage.
DbneAlexnet trained using proposed GJ-GSO for leaf classification
using Gradient Jaya-Golden search optimization in the second stage.

Two-stage approach mitigating
background noise. Optimized
segmentation and classification
through new training methods.

[47]

15 LightMixer Depth convolution with Phish (DCWP) and light residual (LR) modules
to increase feature integration and reduce parameters.
Phish activation function for reducing the information loss.

Identifies diseases in complex
environments, suitable for mobile
deployment.

[48]

16 NanoSegmenter Transformer structure and sparse attention mechanisms to tackle the
instance segmentation task, replacing the CNN backbone.
The bottleneck inversion technique to achieve model lightweighting.

High accuracy in instance
segmentation, low computational
complexity, and small model size.

[49]

17 DMCNN Multi-scale convolution for disease classification from multiple
channels.

Enhancement of accuracy and
efficiency through multi-scale
detection

[50]

18 CRNN Combines CNN and RNN for improved sequential features extraction. Achieves significant improvement
in maximum accuracy compared
to traditional CNN.

[51]

19 Transfer learning with
pre-trained CNN
models.

Transfer learning with Faster-RCNN and Inception ResNetv2 models. High recognition ability on new
dataset after transfer learning.

[52]

20 PCA DeepNet Data enhancement with CycleGAN
Feature extraction with PCA
Classification with Faster-RCNN.

Innovative PCA method for image
extraction, followed by Faster-
RCNN for classification.

[53]

21 Four transformer-
based models.

Comparative study on four vision transformers (EANet, MaxVit, CCT,
PVT) for tomato leaf disease identification.

MaxViT architecture identified as
the best for tomato leaf disease
identification.

[8]

22 Fine-grained image
identification
framework

Utilizes OPM, DRM, AADM, and OCB for object identification, feature
learning, and severity assessment.

Assess severity based on
categorized dataset, captures fine-
grained details with DRM.

[54]

23 RiceNet YOLOX identifies disease sites in the first stage.
Siamese Network classifies diseases in the second stage.

Effective two-stage detection,
addressing complex backgrounds
and limited samples.

[55]

24 RWW-NN SetNet isolates the rice crop images.
RWW algorithm (WWO &ROA), for improved classification.

Two-stage approach mitigating
background noise, improved
classifier performance.

[56]

25 The domain
adaptation networks
with novel attention
mechanisms

Channel and spatial attention mechanism (CPAM) in DSAN for key
feature identification.

Alleviates data distribution
differences and small sample
problems.

[57]

26 RiceDRA-Net Res-Attention module based on CBAM for accurate disease
identification and localization.
DenseNet-121 serves as the backbone network.

Precise disease localization, even
in complex backgrounds.

[58]

27 rE-GoogLeNet ECA attention mechanism in GoogLeNe
Residual networks for information loss mitigation.

Improved recognition and
performance over alternatives.

[59]

28 ADSNN-BO Enhanced self-attention mechanism employed along the entire
architecture in MobileNetV1,
Bayesian optimization for hyperparameter tuning.

Outperforms MobileNet with 3.6%
accuracy improvement.

[60]

29 DGLNet Global attention module (GAM) enhances sensitivity by reducing
background noise.
Dynamic representation module (DRM) for flexible feature acquisition.

Enhances generalization
capability and feature
representation in lightweight
models.

[61]

30 Novel rice grade
model

EfficientNet-B0 architecture as the backbone for better recognition
accuracy for spotting diseases.
By identifying leaf instances and disease areas, the ratio of the two
areas was calculated to estimate the severity of the disease.

Reliable disease spot recognition,
quantifies severity of rice disease.

[62]

31 Comparison of pre-
trained residual
network models

Comparison of ResNet34, ResNet50, ResNet18 with self-attention and
ResNet34 with self-attention.

Models with self-attention exhibit
improved recognition accuracy
during transfer learning.

[63]
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leaf disease detection is still based on effective data collection.
Based  on  datasets  from Table  1 and Table  2 organizes  the
published datasets, including referenced ones, for further refer-
ence.

 The characteristics and advantages of deep
learning models in plant leaf disease
detection

A  review  was  conducted  on  a  corpus  of  scholarly  papers
pertaining to leaf disease detection published in the year 2023.
The focus of the review includes the characteristics and advan-
tages of techniques for detecting leaf disease using deep learn-
ing  models.  The  selected  papers  collectively  encapsulated  a
broad  spectrum  of  contemporary  deep  learning  models
employed  for  the  detection  of  leaf  diseases.  This  article
provided  detailed  insights  into  the  characteristics  of  these
models.  Additionally,  the  review  meticulously  cataloged  the
salient  features  utilized  of  model,  thereby  affording  a  under-
standing  of  the  state-of-the-art  methodologies  employed  in
the  domain  of  leaf  disease  detection.  The  models  used  in  this
study  include  models  based  on  mature  algorithm  technology
models  such  as  YOLO,  SSD  and  CNN.  The  investigator  has
undertaken  pertinent  modifications  to  these  infrastructures,
tailoring them to optimize their efficacy for the distinct applica-
tion  conditions  posed  by  the  identification  of  pathological

manifestations  in  foliage,  ingcluding  methods  of  identifying
leaf disease using first and second stage models, etc.

These models exemplify superior accuracy, lightweight archi-
tecture,  and  adept  deployment  on  mobile  devices,  rendering
them  well-suited  for  the  detection  of  leaf  diseases  across
diverse scenarios.  Notably,  enhancements in recognition accu-
racy  are  achieved  through  the  replacement  of  backbone
networks  or  the  introduction  of  innovative  modules.  These
improvements  are  usually  to  enhance  the  ability  to  extract
features from images or the ability to fuse features after extrac-
tion, and to reduce interference as elucidated in Table 2 (No. 1,
2,  3,  5,  6,9,  11,12,  13,  16,  17,  18,  20,  26,  27,  30).  Additionally,
attention  mechanisms  play  a  pivotal  role  in  refining  recogni-
tion accuracy by focusing on key information on different chan-
nels or convolution kernels at different scales, as evidenced by
the  methodologies  delineated  in Table  2 (No.  1,  2,  3,  5,  6,  7,
9,12, 13, 16, 17, 18, 22, 25, 26, 27, 28, 29, 31). Furthermore, after
comparing  the  four  state-of-the-art(SOTA)  Vision  Transformer
models  by  Hossain  et  al[8],  it  is  concluded  that  MaxViT  has
better  recognition  accuracy,  which  proved  that  using  global
attention is more suitable to improve the recognition accuracy
of the leaf diseases identification.

Techniques  for  refining  input  image  quality,  exemplified  by
the  implementation  of  Generative  Adversarial  Networks
(GAN)[34,53], further contribute to the augmentation of accuracy.
Finally, introducing other methods to improve the classifier can

a

c

b

d

 
Fig. 1    Picture example of a plant disease dataset. (a)Balck Rot; (b) Northern Leaf Blight; (c) Isariopsis Leaf Spot; (d) Brown Spot.
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also increase the accuracy of  recognition[41,56] and to  optimize
the training method of the model[47].

Moreover, as part of the overarching goal to enhance recog-
nition  accuracy,  the  adoption  of  pre-trained  models  through
transfer  learning  on  newly  curated  datasets  emerges  as  a
commendable  paradigm,  as  advocated  by  Saeed  et  al[52],
Simhadri  and Kondaveeti[64] and Sudhesh et al[63].  The impera-
tive reduction in model  size is  achieved through the introduc-
tion of novel modules or the replacement of the feature extrac-
tion network, as evidenced by instances in Table 2(No. 2, 4, 7, 9,
15, 16).

Furthermore,  certain  authors  have  made  notable  contribu-
tions to practical field applications, exemplified by endeavors in
real-time  processing,  the  amelioration  of  environmental  chal-
lenges  and  assessment  of  disease  severity.  The  two-stage
methodology  includes  classification  before  detection  and
detection  before  classification,  demarcating  the  detection
process  into  initial  leaf  segmentation  and  subsequent  leaf
disease classification, as undertaken by Khan et al  and Badiger
and  Mathew  (2023)[43,47],  exhibits  a  proclivity  towards  effec-
tively  discerning  multiple  diseases  on  leaves.  Daniya  and
Vigneshwari  and Pen et  al[55,56] also  use  a  two-stage approach
to solve the problem of disease identification from photos with
complex background obtained in actual fields, which can over-
come the interference of complex background environment to
recognition  to  some  extent.  At  the  same  time,  because  a  new
segmented  disease  data  set  is  generated  in  the  process,  the
problem  of  small  samples  with  fewer  original  images  is  also
solved.

Leaf  diseases  of  tropical  plants  usually  have  the  following
characteristics:  a variety of leaf diseases,  rapid outbreak of leaf
diseases, high frequency, difficult to prevent. In addition, unlike
in  other  regions,  tropical  plants  tend  to  be  relatively  tall,  with
thicker  foliage  and  a  faster  growth  cycle.  This  makes  disease
surveillance and management of  tropical  plants more difficult.
Even for some fruit crops, such as coconut, mango, lychee and
durian,  it  is  difficult  to  achieve  early  detection and early  treat-
ment of leaf disease. Even though some crops can be reduced
in height through dwarfing management, they still  have wider
leaves for relatively similar crops such as apples and tomatoes.
This  makes  it  difficult  to  use  a  camera  to  photograph  the
diseased  leaf  in  its  entirety  up  close.  Therefore,  new  require-
ments  are  put  forward  for  leaf  disease  detection  technology
based on deep learning model especially for real-time monitor-
ing.

In view of  the difficulties  in the detection of  leaf  diseases of
tropical  plants  like  coconut,  such  as  the  small  number  of  leaf
disease  data  sets,  the  mutual  occlusion  of  large  leaves,  the
influence of leaf shadows, and the interference of complex leaf
backgrounds,  some  researchers  have  conducted  studies.  Thite
et al have published a dataset named “Coconut (Cocos nucifera)
Tree  Disease  Dataset”,  which  contains  five  diseases:  Bud  Root
Dropping,  Bud  Rot,  Gray  Leaf  Spot,  Leaf  Rot  and  Stem
Bleeding.[65] The images in this dataset are centered on disease
locations  and  also  include  disease  photos  presented  on  tree
trunks.  In  addition,  researchers  have  developed  a  detection
model  for  coconut  tree  disease.  The  model  uses  the  newly
developed  AIE-CTDDC  technology[66].  In  order  to  solve  the
problem  of  identifying  coconut  tree  disease  in  the  complex
coconut  leaf  background  environment,  the  model  uses
CapsNet[67] as  the  feature  extractor,  and  the  data  is  pre-

processed  using  MF-based  enrollment  removal  technology
before  this.  Similarly,  in  order  to  solve  the  problem  of  mutual
occlusion of large coconut leaves and the impact of  leaf  shad-
ows  on  the  recognition  effect,  Subbaian  et  al  proposed  a
coconut  leaf  disease  detection  method  based  on  YOLOv4.[68]

The  method  improved  the  prediction  accuracy  of  the  model
through  multi-scale  detection,  PANet  and  adaptive  border
improvement.

In terms of the portability of detection and solving the prob-
lem that  the  plants  are  too high to  observe,  some researchers
have proposed some methods  and applications  for  the  detec-
tion  of  durian  leaf  disease.  Gallenero,  J.  and  Villaverde  J.
designed a portable device embedded with the Duri  Premium
application  to  identify  durian  leaf  disease.  The  device  was
equipped  with  the  Mobilenet-based  convolutional  network
model, which achieved good identification accuracy.[69] Also for
portable  detection,  a  mobile  application  was  developed  to
detect the leaf diseases of mango and grape by Rao et al.[70] In
order to solve the problem caused by the rapid detection and
prevention of durian leaf disease,  Piriyasupakij,  J.  and Piriyasu-
pakij, J. designed an unmanned aircraft equipped with YOLOv5
for the detection of durian leaves on the tree, and realized the
effect of automatic cruise shooting and identification of durian
leaf disease.[71]

From  the  above,  we  conclude  that  when  identifying  leaf
diseases  in  tropical  crops,  researchers  need  to  consider  two
aspects.  On  the  one  hand,  it  is  to  solve  the  impact  of  large
blade occlusion and complex leaf surface environment around
leaf disease. Another aspect is that in order to achieve rapid leaf
disease detection, it is necessary to carry out portable design of
detection equipment, such as mounted on mobile terminals, to
cope with complex detection environment or  to detect  exces-
sively high plant leaf disease.

 The balance of speed and precision in leaf
disease detection

There  is  a  trade-off  between  the  speed  and  accuracy  of
model inference. In general, increasing the inference speed of a
model may result in decreasing the recognition accuracy of the
model, and vice versa. This is because when designing a model,
in order to improve the reasoning speed, it is often necessary to
reduce  the  complexity  and  the  number  of  parameters  of  the
model,  which  may  lose  certain  recognition  accuracy.  On  the
contrary,  in  order  to  improve  the  recognition  accuracy  of  the
model, it may be necessary to increase the complexity and the
number  of  parameters  of  the  model,  resulting  in  slower  infer-
ence speed.

To  assess  and  compare  the  performance  of  the  models,  the
model  prediction  results  are  commonly  used  as  True  Positive
(TP),  which  refers  to  the  number  of  positive  samples  correctly
identified;  False  Positive  (FP),  which  refers  to  the  number  of
negative  samples  incorrectly  identified;  True  Negative  (TN),
which refers to the number of negative samples correctly iden-
tified;  and  False  Negative  (False  Negative,  FP)  refers  to  the
number of negative samples that are incorrectly identified. The
correspondence is shown in Table 3 below.

On the basis of the four results of sample classification, it also
sets Accuracy to indicate the samples predicted to be classified
correctly  among  all  samples;  sets  Precision  to  indicate  the
proportion of  true-positive samples among those predicted to
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be positive;  sets  Recall  to indicate the proportion of  true-posi-
tive  samples  among  those  classified  correctly;  and  sets  the
average  precision.  The  corresponding  formulas  for  Accuracy,
Precision and Recall are as follows, respectively.

Accuracy =
TP

TP+FP+TN +FP
(1)

Precision =
TP

TP+FP
(2)

Recall =
TP

TP+FN
(3)

p (r)

In the assessment of the model classification quality of each
category,  since  the  use  of  quasi-departure  rate,  checking  rate
and  recall  rate  alone  cannot  be  considered  together  to  assess
the  score,  the  researcher  therefore  proposes  the  use  of  Aver-
age Precision (AP) as a measure of the quality of the model clas-
sification for a certain category, i.e., integrating a function plot-
ted  on  a  certain  category  of  objects  with  the  Recall  (r)  as  the
horizontal  axis  and  the  corresponding  Precision  ( )  as  a
function  plotted  on  the  vertical  axis  for  integration;  use  of
mean Average Precision (mAP) for evaluating model for multi-
ple  classes  (n)  of  object  classification  performance  evaluation
metrics;  F1  Score  is  used  as  an  assessment  of  the  combined
consideration  of  check  accuracy  and  recall,  i.e.,  the  reconciled
average  of  check  accuracy  and  recall.  The  Average  Precision
and F1 Score correspond to the following calculation formula.

AP =
1w
0

p (r)dr (4)

mAP =
1
n

∑n

i=1
APi (5)

F1 =
2Precision × Recall
Precision + Recall

(6)

In  improving  the  accuracy  of  recognition,  there  are  limita-
tions  in  the  identification  of  leaf  disease  using  two-dimen-
sional image processing. The approaches mentioned in Table 2,
which  employ  convolutional  and  deep  learning  networks  for
image feature extraction, are inherently designed for the analy-
sis of two-dimensional images. In practical applications, foliage
afflicted with diseases often exhibits characteristics such as leaf
curl,  damage,  and  instances  of  mutual  occlusion  during  the
acquisition of field imagery. Consequently, a nuanced examina-
tion  of  disease  severity,  based  on  a  model  learned  on  two-
dimensional  image  data  alone,  predicated  on  estimating  the
proportion  of  the  diseased  area  relative  to  the  entire  leaf
surface[62],  may  lead  to  the  inadvertent[72].  Researchers  have
suggested a method for creating three-dimensional reconstruc-
tions  using  two-dimensional  images,  aiming  to  overcome
spatial  limitations  present  in  these  types  of  pictures.  The
research shows that it is feasible to deduce crop height and leaf
area  through  3D  modeling.[73] Compared  with  2D  RGB  image
processing  method,  3D  method  can  accurately  estimate  the
number  of  leaves,  avoid  the  influence  of  mutual  occlusion  of

leaves to a certain extent, and greatly improve the accuracy of
detection[74].  At  the  same  time,  it  may  also  solve  the  problem
proposed  by  Tang  et  al.[46],  that  the  occurrence  of  diseases  at
the  edge  of  leaves  in  complex  background  will  interfere  with
the  recognition.  Utilizing  the  approach  of  reconstructing  a
three-dimensional  model  based  on  two-dimensional  images
still  poses  challenges[75−77].  These  challenges  encompass  the
loss  of  depth  information,  compromised  accuracy  due  to  low
resolution  or  distorted  images,  and  difficulties  in  precisely
capturing  intricate  geometric  textures,  particularly  in  complex
scenes.  In  terms  of  computing  cost,  it  cannot  be  ignored  that
three-dimensional  method  consumes  more  computing  cost
than two-dimensional method[78].

In  addition,  in  order  to  improve  the  quality  of  recognition,
the solution of multi-scale detection problem and the applica-
tion of attention mechanism have played a great help. Objects
of all sizes (objects proportional to the size of the image) need
to  be  detected,  requiring  the  network  to  have  the  ability  to
recognize objects of different sizes, faced with the challenge of
significantly  decreasing  detection  accuracy  for  very  large  or
very  small  scale  targets[36].  However,  the  deeper  the  network,
the smaller the size of the feature map, which makes it difficult
to  detect  small  objects,  which  is  a  problem  that  cannot  be
avoided after the model extracts the feature map.[79] This prob-
lem  can  be  alleviated  in  the  process  of  extracting  features[80]

and  in  the  process  of  feature  fusion[81],  so  as  to  improve  the
average precision of  the  model.  The attention mechanism is  a
self-supervised  learning  method  used  in  the  natural  language
processing, and applied to enable the network to focus on the
target  region  with  important  information  by  learning  how
much  the  input  data  contributes  to  the  output  data,  while
suppressing  other  irrelevant  information  and  reducing  the
interference  caused  by  irrelevant  background  on  detection
results[36,82].  This  method  can  be  applied  to  the  model  to
extract  features  of  different  channels,  for  example  CBAM[83]

BAM[84].
The  recognition  speed  of  the  evaluation  target  recognition

model  usually  has  the  following  evaluation  indexes,  such  as
inference time, inference throughput, inference frame rate and
hardware resource utilization. These evaluation indexes are also
used to  evaluate  the reasoning speed of  the model  in  specific
application scenarios. Inference time is commonly used to eval-
uate the speed of the model in image recognition and classifi-
cation,  which  means  the  time  it  takes  the  model  to  go  from
receiving the input image to outputting the prediction.

In  speeding  up  the  prediction  speed,  the  one-stage  target
detection  method  has  more  advantages.  For  the  one-stage
recognition  method  based  on  YOLO,  the  anchor  method
should be used for  frame selection first,  especially  for  YOLOv2
to  YOLOv6,  which  takes  up  computing  resources.  In  order  to
reduce  model  size  and  prediction  speed,  many  researchers
proposed  anchor-free  method,  which  takes  key  points  as  the
core. For example, the target center of feature map is taken as
the key point to locate the target. Based on the number of key
points,  the  free-anchor  method  can  be  divided  into  central-
point  based  method  and  multi-key  point  based  method,  such
as  CenterNet[85].  In  hardware  aspect,  different  hardware
selected  for  the  prediction  mean  different  predictive  speeds
under the same model selection and parameters[86].

In practical production, a single plant can exhibit concurrent
occurrence of multiple diseases,  with distinct characteristics of

Table 3.    Classification of Predicted and Actual Results

Actual
Predicted

Positive Negative

True True Positive True Negative
False False Positive False Negative
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various diseases observed on the same leaf, or the same disease
has  different  characteristics  at  different  times[87].  This  multi-
faceted  infection  pattern  can  be  considered  a  more  indicative
measure  for  assessing  current  crop  damage  levels,  placing
higher demands on the accuracy and generalization capacity of
disease identification models.

Overall,  if  the leaf disease identification method is deployed
in practical production, the balance between recognition accu-
racy  and recognition  speed can not  be  achieved only  by  opti-
mizing the model or hardware. However, in terms of the evolu-
tion and development of methods for identifying leaf diseases
using  convolutional  neural  networks,  the  balance  between
accuracy and speed has to be mentioned.

There  are  still  some  ways  to  balance  the  relationship
between speed and accuracy of model inference. These meth-
ods can be roughly divided into three general directions: model
compression,  hardware  optimization  and  algorithm  improve-
ment.  Model  compression[88],  such  as  channel  pruning[89] and
knowledge distilling[90],  can  reduce the  number  of  parameters
and  complexity  of  the  model,  thereby  improving  the  model
reasoning  speed  and  maintaining  the  accuracy  of  recognition
to a certain extent.[88] Hardware optimization can often signifi-
cantly  increase  the  speed  of  model  inference.  For  example,
running  a  model  on  a  GPU,  TPU,  or  professional  computing
device  can  significantly  increase  the  speed  of  model
inference.[91] There are more methods to accelerate the model
inference  speed  and  improve  the  inference  accuracy  by
improving the algorithm, which are not listed in this paper. All
three  methods  can  improve  the  performance  of  the  model
both during training and during inference.

It  is  noteworthy that  the lower the error  rate of  the training
model is not equal to the better the quality of the model when
training  models,  and  too  low  classification  error  rate  usually
leads  to  overfitting  problems.  For  example,  such  as  a  fully
connected  network  classifier,  one  should  not  simply  assume
that  achieving  the  best  learning  quality  is  synonymous  with
minimizing the classification error rate. Some researchers have
delved into understanding the delicate balance between learn-
ing  difficulty  and  learning  speed.  By  utilizing  a  single-layer
perceptron and a double-layer neural network optimized with a
gradient descent learning algorithm, the average accuracy typi-
cally decreases with training time. The model attains a harmo-
nious equilibrium between training difficulty and learning rate
when  the  training  error  rate  is  at  15.87%[92],  resulting  in  an
approximately 85% accuracy.

Hence, in the pursuit of a specific characteristic index for the
model,  it  is  imperative  to  selectively  adjust  and  optimize  the
model  based  on  the  prevailing  circumstances  or  specific
requirements. Furthermore, relying on a singular index is inade-
quate for evaluating the overall quality of a given model.

 Problems and prospects of application in
tropical environment

In the realm of agriculture, the identification of crop diseases
stands as a pivotal task, serving as a key to further assessing the
severity  of  current  or  potential  hazards.  The  foregoing  review
elucidates that the application of artificial intelligence (AI) tech-
nology in monitoring plant leaf diseases attains commendable
levels of recognition accuracy and expeditious identification in
the  model  development  and  testing.  This  methodology

emerges  as  a  proactive  approach  to  disease  identification,
conferring  the  capacity  to  empower  agricultural  stakeholders
and  experts  in  effectually  addressing  extant  diseases  or
preemptively  mitigating  potential  threats.  Moreover,  through
the  implementation  of  smart  agriculture  methodologies,  the
attainment  of  sustainable  and  resilient  production  is  conceiv-
able,  thereby  mitigating  environmental  impact  and  fortifying
food  security[93].  The  judicious  quantification  of  crop  diseases
fosters the formulation of precise protection strategies tailored
to  the  dynamic  and  perpetually  changing  agricultural  milieu.
This  approach  facilitates  the  adoption  of  targeted  disease
prevention  and  control  measures,  consequently  diminishing
the  superfluous  use  of  pesticides.  The  resultant  abatement  in
pesticide application not only serves to curtail production costs
but  also  mitigates  environmental  pollution  arising  from  pesti-
cide usage[94]. The application of artificial intelligence (AI) tech-
nology  for  identifying  leaf  diseases,  while  promising,  is  not
without potential challenges.

In  the  application  of  tropical  plant  leaf  disease  recognition,
the real-time monitoring and mobile device support character-
istics based on deep learning model can greatly solve the char-
acteristics  of  tropical  plant  leaf  disease  difficult  to  find  and
observe in time. In order to further solve the problem of insuffi-
cient  computing  power  of  mobile  hardware  devices  or  high
demand  for  model  recognition  accuracy,  the  Master-Slave
structure can be used.  In  this  structure,  the master  model  acts
as the central node, such as the cloud platform, responsible for
coordinating  and  controlling  the  operation  of  the  whole
system,  while  the  receiver  acts  as  the  slave  node,  such  as
mobile  devices,  responsible  for  receiving  and  processing  the
instructions or data of the autonomous model, which can effec-
tively realize the parallel processing and collaboration of tasks.

Current  studies  have  shown  that  terahertz  waves  can  be
used  to  detect  physiological  and  biochemical  parameters  in
plant leaves, such as water content[95], chlorophyll content, cell
structure  and  cell  wall  thickness,  so  as  to  indirectly  reflect  the
occurrence and development of leaf diseases. Terahertz waves
are  electromagnetic  waves  between  microwaves  and  infrared
light,  with  frequencies  ranging  from  300  GHz  to  3  THz.  Tera-
hertz waves have a wide range of applications in biomedicine,
material  science  and  safety  testing.  Terahertz  waves  have
strong  penetration  in  biological  materials  and  are  also  reso-
nance absorbed by biomolecules, so they can be used to detect
changes  in  the  internal  structure  of  plant  leaves  and
biomolecules. In fact, it is possible to use deep learning models
to  analyze  the  signals  of  crop  leaves  fed  back  by  terahertz
waves, but the technology is still in the research stage.[96,97]

The rapid development of large language modeling in recent
years  has  made  it  possible  to  combine  large  language  model-
ing with leaf  disease detection techniques.[98] The rapid devel-
opment of large language modeling in recent years has made it
possible to combine large language modeling with leaf disease
detection  techniques.  Large  language  models  have  excellent
advantages  in  processing  and  analyzing  literature  and  data,
which  can  help  researchers  better  understand  and  grasp  the
research  progress  within  the  field  of  leaf  disease  detection.  In
addition,  the  powerful  text  comprehension  and  text  genera-
tion  capabilities  of  the  big  language  model  can  assist  in  the
annotation and enhancement of plant petiole image data, thus
improving  the  efficiency  of  model  training.  Similarly,  the  Big
Language  Model  can  assist  in  reasoning  and  summarizing  the
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results  of  leaf  disease  detection  and  provide  scientific  refer-
ences and bases.

However,  it  is  still  due  to  the  complex  and  changeable
climate  environment  such  as  tropical  high  temperature  and
high  humidity,  especially  considering  the  production  and
investment  costs,  it  is  not  practical  to  use  mobile  devices
equipped  with  identification  models  for  detection.  Hot  and
humid  environments  tend  to  damage  electronic  equipment,
which  increases  maintenance  costs  after  the  equipment  is
deployed to the field.

 Conclusion

The application of artificial intelligence (AI) technology in the
detection  and  diagnosis  of  crop  leaf  diseases  represents  an
advanced approach in precision agriculture,  which particularly
in machine learning and deep learning,  various methods have
proven effective in automating the identification and classifica-
tion  of  crop  leaf  diseases.  However,  in  practical  implementa-
tion, it is imperative to carefully choose the suitable model and
method  for  deployment  based  on  the  specific  circumstances
and  demands.  The  detection  and  management  of  plant
diseases in tropical areas remain a multifaceted issue. This tech-
nological  application  aims  to  swiftly  and  accurately  evaluate
the situation, thereby enabling timely interventions to mitigate
the adverse impact of diseases on crop productivity.
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