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Abstract
In  previous  decades,  the  global  temperature  has  risen,  and  the  saturation  vapor  pressure  deficit  (VPD)  has  increased.  VPD  is  an  important

environmental  factor  affecting  crops,  especially  their  yields.  However,  the  effects  of  various  VPD  conditions  on  water  transport  dynamics,

anatomical  structure,  stomatal  morphology,  photosynthetic  physiology,  nutrient  absorption,  yield,  and  quality  remain  unclear.  Many  studies

have shown that atmospheric transpiration is enhanced, water transport dynamics in the soil-plant-atmosphere continuum and water potential

gradient are increased, and crop water potential is reduced under high VPD. Crops have undergone a series of changes that have enhanced their

adaptation to high-VPD environments. Mesophyll thickness and conductance and stomatal size and conductance have decreased, and this has

led  to  reductions  in  the  photosynthetic  rate  and  nutrient  accumulation.  High  VPD  seriously  reduces  the  yield  and  water  use  efficiency  of

protected  vegetables  but  improves  fruit  color  and  flavor  quality.  Reductions  in  VPD  can  improve  water  and  nutrient  transport  in  protected

vegetables,  alter  the  anatomical  structure  of  crops,  promote  crop  photosynthesis,  and  increase  fruit  yield,  nutritional  quality,  and  water  use

efficiency. Comprehensive analysis of the effect of VPD on the physiology and productivity of protected vegetables will provide insights that will

aid the cultivation of protected vegetables with high quality and yield.
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 Introduction

The  atmospheric  carbon  dioxide  (CO2)  concentration  has
increased dramatically, global temperature has increased grad-
ually,  and  relative  humidity  has  decreased  gradually;  these
changes  have  resulted  in  an  increase  in  vapor  pressure  deficit
(VPD)  in  recent  decades[1,2].  VPD  affects  the  water  transport
from soil  to leaves by affecting the water potential gradient of
protected  vegetables.  In  the  daytime,  the  optimum  VPD  for
most  vegetables  is  0.50–1.50  kPa[3,4].  Vegetables  experience
stress when the VPD exceeds 1.50 kPa. Under high VPD, atmos-
pheric transpiration increases in greenhouses, the water poten-
tial  gradient  and  ineffective  transpiration  of  vegetables  in-
crease,  soil  water  loss  increases,  and  the  water  stress  experi-
enced by vegetables intensifies[5]. Additionally, the exposure of
protected  vegetables  to  long-term  high  VPD  environments
affects  the  absorption  of  nutrients,  induces  large-scale  plant
mortality[6−8],  and  leads  to  substantial  reductions  in  fruit  yield
and  quality[9−11].  The  temporal  stability  of  certain  VPD  condi-
tions and diurnal variation in a greenhouse and artificial climate
chamber were studied by Zhang et al.[5] and Yu et al.[12], respec-
tively. Protected cultivation via greenhouse and fog generation
systems  reduces  VPD,  increases  photosynthetic  activity,  and
promotes  the  water  transport  of  protected  vegetables[13,14],
which increases crop yield and quality[14,15].

The aim of  this  review is  to clarify  the effects  of  VPD on the
water  regulation,  anatomical  structure,  stomatal  morphology,
photosynthetic  physiology,  nutrient  accumulation,  yield,  and
quality  of  protected  vegetables.  We  discuss  the  effects  of

changes  in  VPD  on  water  transport  dynamics,  the  anatomical
structure  of  plants,  stomatal  morphology,  photosynthetic  rate
(Pn),  and  nutrient  accumulation  of  protected  vegetables.  Over
long  periods,  VPD  plays  an  important  role  in  regulating  the
yield, quality, and water use efficiency of protected vegetables.
Although  VPD  affects  the  physiology  and  productivity  of  pro-
tected vegetables, increases in VPD are usually accompanied by
changes  in  other  environmental  conditions  (including  reduc-
tions in soil moisture, increases in the atmospheric CO2 concen-
tration,  increases  in  light,  and  reductions  in  precipitation).
Therefore,  the  effects  of  VPD  on  vegetables  are  affected  by
other  environmental  parameters.  The  studies  discussed  in  this
review were carried out in greenhouses in a controlled environ-
ment.  VPD  can  affect  plant  physiology  and  productivity  inde-
pendently of other environmental factors. This review provides
information that  can be used to evaluate the effect  of  VPD on
the physiology and productivity of protected vegetables.

 VPD regulates the water transport dynamics of
protected vegetables

Water  is  transported  along  the  water  potential  gradient  in
the soil-plant-atmosphere continuum (SPAC) (Fig. 1)[4,16]. Water
flows in each system to form a unified whole. The water poten-
tial  is  used  to  quantitatively  study  energy  changes  in  each
system. Water absorption, transport,  and transpiration need to
overcome  various  sources  of  resistance  (e.g.,  the  soil  capillary
force,  water  gravity,  and  protoplast  and  apoplast  transport
resistance)[17].  Normal  water  metabolism  is  inhibited  if  water
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transport  dynamics are insufficient.  Root pressure and transpi-
ration  are  usually  the  main  drivers  of  water  transport[18].  VPD
represents  the  atmospheric  evaporation  capacity,  which  is
directly  related  to  the  potential  energy  distribution  and  water
flow  driving  force  in  SPAC  systems[19−21].  The  water  potential
gradient at the leaf–air boundary reaches 48–170 MPa whether
tomato  plants  are  under  adequate  irrigation  or  deficit  irriga-
tion,  which  is  greater  than  the  water  potential  gradient  at  the
soil–stem  boundary  (0.08–0.35  MPa)  and  the  water  potential
gradient at the stem–leaf boundary (0.08–0.21 MPa). The water
potential gradient between leaf and air is more than 100 times
that between soil  and leaf under both adequate irrigation and
deficit  irrigation,  which  means  that  transpiration  is  the  main
driver  of  water  transport  in  vegetable  crops[4,12].  The  water
potential gradient at the leaf–air boundary is key for regulating
water transport in SPAC systems, and the water potential gradi-
ent  at  the  leaf–air  boundary  is  three  times  higher  under  high
VPD  (2.22  kPa)  than  under  low  VPD  (0.95  kPa)[12],  which  indi-
cates that  reducing VPD can reduce the atmospheric  evapora-
tion demand, ineffective transpiration, and the water potential
gradient at the leaf–air boundary, thereby increasing the water
potential and water status of plants.

No significant difference in leaf water potential before dawn,
both under low VPD (1.20 kPa) and high VPD (ranging from 2–5
kPa),  was observed under adequate irrigation[22].  Transpiration
in  vegetables  is  weak  before  dawn,  the  force  driving  water
potential  is  approximately  zero,  and  the  water  potential
between  the  substrate  and  the  leaves  is  approximately
balanced.  Therefore,  the  leaf  water  potential  before  dawn
reflects  the  soil  water  status[12].  The  leaf  water  potential
decreases  with  increases  in  light  radiation  and  the  transpira-
tion rate in the daytime under low VPD (1.20 kPa) and high VPD
(ranging from 2–5 kPa) under adequate irrigation, and the leaf
water potential is lowest around noon; the leaf water potential
gradually  increases  thereafter[5].  This  shows  that  the  water
potential  of  tomato  gradually  decreases  as  the  magnitude  of

VPD  and  temporal  stability  of  VPD  increase,  especially  around
noon  when  VPD  is  high  (approximately  5  kPa).  Reducing  VPD
mitigates declines in leaf water potential, and the daily pattern
of variation in the leaf water potential is relatively stable; this is
particularly obvious around noon[5].

The  hydraulic  conductance  of  vegetable  crops  varies  with
the water  potential  and transpiration rate under different  VPD
treatments,  but  this  change  is  usually  related  to  the  drought
tolerance  of  vegetable  crops[23].  The  hydraulic  conductance  of
the leaves and individual plants is significantly higher at differ-
ent  growth  stages  under  low  VPD  (1.20  kPa)  than  in  natural
environments  (ranging  from  2–5  kPa);  the  hydraulic  conduc-
tance also first increases and then decreases with growth. This
shows that reducing VPD at different growth stages can allevi-
ate  hydraulic  constraints  caused  by  atmospheric  drought[5,22].
The  turgor  potential  of  the  leaves  and  the  hydraulic  conduc-
tance  of  plants  are  significantly  higher  under  low  VPD  (1.20
kPa)  under both adequate irrigation and deficit  irrigation than
in  natural  environments  (ranging  from  2–5  kPa),  but  the
increase in the plant osmotic potential was not significant. This
indicates  that  the  reduction  in  VPD  mainly  increases  the
hydraulic  conductance  of  plants  by  increasing  the  leaf  turgor
potential[4].  Aquaporins  play  an  important  role  in  mediating
water transport in cells, and the cytoplasmic calcium concentra-
tion  regulates  the  opening  and  closing  of  aquaporins  and
calcium  ion  (Ca2+)  channels[16].  When  the  cytoplasmic  calcium
concentration is low, aquaporin and Ca2+ channels open, allow-
ing water and Ca2+ to enter the cell[16]. When the concentration
of  cytoplasmic  calcium  is  high,  aquaporin  and  Ca2+ channels
are  closed  to  prevent  the  excessive  accumulation  of  cytoplas-
mic  calcium[24].  Tonoplast  intrinsic  proteins  (TIPs)  and  plasma
membrane  intrinsic  proteins  (PIPs)  are  common  aquaporins.
The expression of SlTIPs and SlPIPs in tomato leaves is up-regu-
lated  under  high  VPD  (2.22  kPa)  to  compensate  for  the
decrease in the leaf water deficit induced by high VPD[12].

High temperature

Low relative humidity
High VPD Low VPD

Low temperature
High relative humidity

Transpiration

Transpiration
Mesophyll thickness

Ψair Ψair

Ψleaf Ψleaf

Ψstem Ψstem

Ψsoil Ψsoil

Stomatal size
Stomatal conductance
Mesophyll conductance
Photosynthesis
Nutrient accumulation
Yield
Water use efficiency

Transpiration
Mesophyll thickness
Stomatal size
Stomatal conductance
Mesophyll conductance
Photosynthesis
Nutrient accumulation
Yield
Water use efficiency

Uptake and transport 
Fig. 1    Effects of the vapor pressure deficit (VPD) on the regulation of water transport along the soil-plant-atmosphere continuum (SPAC) for
vegetable  crops,  as  well  as  its  effects  on  leaf  transpiration  and  plant  behavior  (adapted  from  Amitrano  et  al.[[13]]).  The  solid  black  arrows
represent the liquid water transport between the soil,  stems, and leaves, and the black dotted arrows represent the gaseous water transport
between the leaves and the air. Ψair, Ψleaf, Ψstem, and Ψsoil, represent the water potential in air, leaf, stem, and soil, respectively.
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 Anatomical responses to VPD

Leaves undergo pronounced structural changes during long-
term  drought  adaptation,  as  they  are  important  organs  for
sensing changes in the VPD (Fig. 2). In general, increases in the
thickness  of  the  leaves  and  spongy  tissues  are  conducive  to
reductions  in  transpiration,  increases  in  the  water  storage
capacity, and increases in crop drought tolerance[25]. Therefore,
vegetables growing under high VPD (2.22 kPa) for long periods
under  adequate  irrigation  have  thicker  leaves  and  spongy
tissues  compared  with  those  grown  under  low  VPD  (0.95  kPa)
to reduce transpiration water consumption and increase water
storage capacity[12]. However, this varies among crops. The leaf
thickness and spongy tissue thickness of cucumber and melon
are  lower  under  high  VPD  (ranging  from  2–6  kPa)  under
adequate irrigation than under low VPD (1.50 kPa), which might
be  related  to  variation  in  the  suitable  VPD  ranges  among
crops[2].  Palisade tissue is  the main site  of  photosynthesis,  and
higher  palisade  tissue  thickness  is  conducive  to  increases  in
photosynthesis.  Higher  palisade  tissue  thickness  and  palisade
tissue  thickness/spongy  tissue  thickness  have  been  observed
under  low  VPD,  and  the  high  thicknesses  of  these  tissues
provide sufficient sites for photosynthetic carbon assimilation[2,12,26].
Generally,  a  high  density  of  veins  facilitates  the  transport  of
water  to  all  parts  of  the  leaves[27].  High  atmospheric  evapora-
tion demand under high VPD (2.22 kPa)  compared with under
low VPD (0.95  kPa)  causes  water  to  evaporate  into  the  atmos-
phere quickly,  which reduces water transport  in the leaf  veins,
leaf  vein  density,  and  the  leaf  relative  water  content[12].  The
mesophyll  structure  determines  the  diffusion  pathway  of  CO2

in  mesophyll  tissue.  According  to  the  one-dimensional  diffu-
sion model of  CO2 in mesophyll  tissue,  the mesophyll  conduc-

tance  (Gm)  can  be  divided  into  two  parts:  gas  phase  conduc-
tance  and  liquid  phase  conductance[28].  The  fraction  of  meso-
phyll  tissue  occupied  by  intercellular  air  spaces  (fias)  and  the
mesophyll  thickness  (Tmes)  determine  the  path  length  of  CO2

diffusion  from  the  stomatal  cavity  to  the  outer  surface  of  the
cell  wall[29,30].  Therefore,  the  diffusion  conductance  of  CO2 in
the gas phase is  largely affected by fias and Tmes.  The response
of Gm to  environmental  changes  is  mainly  regulated  by  liquid
phase conductance. The surface of mesophyll exposed to inter-
cellular  air  spaces  (Sm/S)  is  the  main  structure  affecting  the
diffusion of CO2 in the liquid phase. Decreases in VPD (1.48 kPa)
increase Sm/S and  CO2 diffusion  conductance  in  the  liquid
phase compared with high VPD (2.55 kPa) under adequate irri-
gation, which increases the Gm and photosynthesis of protected
vegetables.  The  diffusion  of  CO2 from  outside  the  cell  wall  to
inside the chloroplast is determined by the structural character-
istics  at  the  organelle  level[28,31].  Cells  are  closely  arranged
under  high  VPD  (2.55  kPa),  which  results  in  a  reduction  in  the
effective contact area between CO2 and the chloroplast and the
amount  of  CO2 entering  the  chloroplast.  Additionally,  the
distance  between  the  chloroplast  and  the  cell  membrane
increases under high VPD (2.55 kPa), which lengthens the diffu-
sion  path  of  CO2 in  the  cytoplasm,  increases  the  resistance  of
CO2 transport into the chloroplast, and results in a reduction in
Gm and Pn

[31].
Although  the  water  transport  resistance  is  highest  in  the

leaves, the stems and roots also play an important role in water
transport resistance, which accounts for approximately 40% of
the  total  resistance[23].  Excessive  negative  air  water  potential
interrupts long-distance water transport through xylem cavita-
tion  and  xylem  embolism  under  high  VPD[32,33].  In  general,
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Fig. 2    Schematic model for moderating effects of low VPD on water transport by increasing xylem vessel area and leaf vein density and on
photosynthetic  limitation by  decreasing stomatal  and mesophyll  CO2 diffusion resistance.  There  are  three  main  processes.  (I)  Reducing VPD
increases  the  leaf  vein  density  and  the  cross-sectional  area  of  xylem  vessels  in  roots  and  stems via the  long-term  optimization  of  plant
structure. (II) Reducing VPD reduces stomatal resistance and maintains stomatal openness by reducing excessive transpiration and moderating
plant  water  stress.  (III)  Reducing  VPD  reduces  mesophyll  resistance  by  reducing  the  average  distance  from  the  cell  membrane  to  the  outer
membrane of the chloroplast and increasing the number of chloroplasts in a single mesophyll cell.
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reductions  in  the  cross-sectional  area  of  xylem  vessels  can
effectively  reduce  the  risk  of  xylem  cavitation  and  xylem
embolism[32,34,35].  Therefore,  the  xylem  vessel  cross-sectional
area  decreased  in  the  stems  and  roots  under  high  VPD  (2.22
kPa)  under  adequate  irrigation.  Low  VPD  (0.95  kPa)  increases
the cross-sectional area of xylem vessels in the roots and stems,
reduces  the  risk  of  xylem  cavitation  and  embolism,  and  in-
creases water transport[12,36,37].

 Response of the stoma to VPD

Stomata  are  small  pores  formed  by  two  guard  cells  on  the
epidermis  of  leaves  that  control  leaf  temperature,  water  tran-
spiration, and photosynthesis[38,39]. The stomata open when the
guard  cells  absorb  water,  and  stomatal  movement  is  mainly
regulated  by  plant  water  status  and  the  surrounding  environ-
ment[40].  Rapid  increases  in  VPD  lead  to  decreases  in  stomatal
size  and  stomatal  conductance  (Gs).  In  seed  plants, Gs

temporarily increases within 2–25 min of increases in VPD; that
is, the stoma will 'suddenly open' before closing[41,42]. This tran-
sient  response  is  derived  from  the  decrease  in  the  stomatal
pressure  of  epidermal  cells  under  high  VPD,  and  the  steady-
state response is derived from the increase in the water poten-
tial  in  guard  cells  caused  by  ion  efflux,  the  increase  in  water
loss  in  guard  cells,  and  the  reduction  or  even  closure  of  the
stomata[43].  There is  no consensus on the exact mechanism by
which  increases  in  VPD  induce  stomatal  closure;  physiological
and metabolic changes might be induced by the perception of
changes in VPD by cells in leaves, and hormone signals such as
abscisic acid (ABA) might also play an important role[43−45]. The
transpiration rate is the product of Gs and VPD under the same
boundary layer conductance of the leaves, and the magnitude
of the increase in VPD is far greater than the magnitude of the
decrease in Gs,  which results in an increase in the transpiration
rate  under  high  VPD[46].  A  higher  transpiration  rate  results  in
lower turgor of guard cells and higher water loss. Evaluation of
the  response  of  transpiration  and Gs to  VPD  has  revealed  that
stomatal closure is the result of increased transpiration through
stomata  after  signals  associated  with  VPD  changes  are
perceived  by  guard  cells.  This  result  confirms  that  increases
in  transpiration  are  proportional  to  increases  in  VPD,  and
increases  in  leaf  transpiration  contribute  to  decreases  in  leaf
temperature[47].

The  sensitivity  of  the  stomata  to  environmental  change  is
enhanced  under  high  VPD,  which  alleviates  the  effect  of
drought stress on vegetable growth[40,48,49]. In angiosperms, the
response of  the stomata to changes in  leaf  turgor  is  mediated
by ABA, which stems from the slight decrease in leaf turgor and
triggers the rapid synthesis of ABA in the leaves; this is followed
by  stomatal  closure  within  10  -  20  min[45,50].  This  turgor-medi-
ated ABA synthesis  indicates  that  ABA plays  an important  role
as a metabolic signal in the hydraulic conduction of leaf guard
cells[43,51].  The  ABA  signal  pathway  comprises  ABA  receptors,
type  2C  protein  phosphatase  co-receptors  (PP2Cs),  and  SnRK2
protein kinases (including OST1). ABA combines with receptors
to form receptor-ABA-PP2C complexes, which lead to the inac-
tivation of  PP2Cs to  activate  SnRK2 protein  kinases[52,53].  Addi-
tionally, OST1 activates the downstream chronic anion channel
SLAC1,  which  triggers  stomatal  closure[39].  Some  studies  have
shown that ABA is not necessary for the stomatal VPD response
because the response of  an ABA-deficient  and ABA-insensitive

Arabidopsis  thaliana mutant  to  VPD  is  similar  to  that  of  wild-
type plants[54]. In another study, the final Gs value (expressed as
a percentage of the initial value) after increasing VPD was 32%,
55%, and 53% in aba2-13, ost1-4,  and wild-type plants, respec-
tively,  indicating  that  stomatal  closure  may  only  be  partially
dependent  on  ABA[55].  Additionally,  research  has  shown  that
ABA  is  a  highly  mobile  molecule  that  affects  plant  growth
through short- and long-distance signal transduction[56−58]. The
stomatal  response  of  plants  to  ABA  decreases  under  low  VPD,
which may be related to the ease of ABA to be decomposed in
leaves under  low VPD[38].  The ABA level  in  the leaves  of  broad
bean plants is lower when they are grown under low VPD (0.23
kPa)  than  under  high  VPD  (1.17  kPa)[59].  Additionally,  when
plants grown under high VPD are transferred to low-VPD envi-
ronments, the ABA level decreases sharply, which confirms that
low  VPD  promotes  the  decomposition  of  ABA.  Additionally,
previous  studies  have  shown  that  protein  kinase  OST1  is
partially  independent  of  ABA,  and  OST1  rather  than  the  ABA
concentration  plays  a  role  in  the  VPD-induced  stomatal
response[60].  The  ABA  concentration  of  guard  cells  or  phloem
companion  cells  is  increased  to  activate  protein  kinase  OST1
and induce stomatal closure under high VPD. Stomatal closure
is also induced by a passive hydraulic regulation mechanism[60].

There  is  a  positive  correlation  between  water  transport  and
stomatal  conductance  and  size[61,62].  Higher  stomatal  conduc-
tance  and  size  result  in  higher  water  transpiration  and  water
transport[63,64], as well as higher CO2 absorption and photosyn-
thesis[65,66] under  the  same  environmental  conditions.  Higher
stomatal  conductance  and  size  also  increase  the  transpiration
of  leaves,  which  promotes  the  passive  transport  of  water[48].
Increases  in  photosynthesis  increase  the  accumulation  of
photosynthetic  products  in  leaves,  reduce  the  water  potential
in  leaves,  and  increase  the  transport  of  water  to  leaves[67].
Stomatal conductance and size are higher under low VPD (0.95
kPa) than under high VPD (2.22 kPa), which results in increases
in CO2 absorption, Pn, and water transport under adequate irri-
gation[12].

 Mechanism by which high VPD hinders
photosynthetic carbon assimilation

Photosynthesis plays a key role in primary metabolism and is
affected  by  many  environmental  factors  such  as  temperature,
light,  VPD,  and  soil  moisture[68−70].  VPD  represents  the  atmo-
spheric water deficit and is one of the most important environ-
mental  factors  affecting  photosynthesis[71].  Vegetables  grow-
ing under high VPD usually have a lower Pn under adequate irri-
gation[14,15].  CO2 diffuses  from  the  atmosphere  to  chloroplast
carboxylation  sites  for  photosynthesis  through  stomata  and
mesophyll[72].  Many  studies  have  shown  that  the  reduction  in
Gs under high VPD (ranging from 2–6 kPa) leads to a reduction
in the intercellular  CO2 concentration (Ci),  thereby limiting the
Pn of leaves[14,73]. Studies of the effect of VPD on Gm have shown
that Gm decreases or does not significantly vary with increases
in  VPD[74−77].  VPD  can  also  regulate  the  movement  of  chloro-
plasts.  Chloroplasts  are  located  closer  to  the  cell  membrane
under  low  VPD  (1.48  kPa)  than  under  high  VPD  (2.55  kPa),
which  reduces  the  distance  between  the  cell  membrane  and
the outer membrane of chloroplasts and the distance between
adjacent  chloroplasts;  this  results  in  reductions  in  cytoplasmic
resistance  in  the  process  of  CO2 transport  and  improves  the
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efficiency  of  CO2 carboxylation[31].  The  surface  of  chloroplasts
exposed to the intercellular space is higher under low VPD (1.48
kPa)  than  under  high  VPD  (2.55  kPa),  which  increases Pn

[31].
Additionally,  chloroplast  movement  is  closely  related  to  light
intensity  and  light  quality  under  different  VPD  conditions.
Therefore,  the  effects  of  light  intensity  and  light  quality  on
chloroplast  movement  under  different  VPD  conditions  require
further study.

Reductions  in  VPD  can  increase  the Pn in  various  plant
species, including tomatoes[14,15], ferns[78], and white birches[79].
Similarly,  reductions  in  VPD  (1.20  kPa)  increase  the Pn,  total
diffusion conductance, Gs, Gm, Ci, and intracellular CO2 concen-
tration  (Cc)  in  different  tomato  cultivars,  and  the  increases  are
more pronounced under deficit irrigation than under adequate
irrigation[4].  This  indicates  that  high  VPD  (2.55  kPa)  inhibits
photosynthesis,  increases  resistance  to  CO2 diffusion,  and
reduces the available CO2 concentration in leaves[31]. Deficit irri-
gation can exacerbate the inhibition of high VPD (ranging from
2–5  kPa)  on  plant  growth[4].  Photosynthesis  can  use  light
energy  to  convert  inorganic  CO2 into  organic  matter,  which
provides  material  and  energy  needed  for  plant  growth.  The
internal regulation of leaf photosynthesis is mainly affected by
the  concentration  of  CO2 and  the  carboxylation  metabolic
activity.  CO2 from  the  atmosphere  needs  to  pass  through  sto-
mata  and  mesophyll  tissue  to  reach  chloroplast  carboxylation
sites. The diffusion resistance of CO2 in these two parts is called
stomatal resistance and mesophyll resistance[80]. The reciprocal
of  stomatal  resistance  and  mesophyll  resistance  is Gs and Gm,
respectively.  In  photosynthesis,  changes  in Gs and Gm indicate
changes  in  CO2 diffusion  from  the  atmosphere  to  chloroplast
carboxylation sites. Generally, Gs and Gm are strongly correlated,
and  the  ratio  between  them  reflects  the  degree  of  environ-
mental  stress[66].  High-VPD  environments  lead  to  significant
increases in Gm/Gs in tomato[81].  Regulating Gs is  less costly for
vegetables  than  regulating Gm.  The  stomatal  opening  is
passively  regulated  by  hydraulic  changes.  The  regulatory
process can take as little as a few minutes and as long as several
hours.  This  process  does  not  involve  changes  in  metabolic
processes[82,83]. In areas lacking water resources, rapid responses
of Gs can  effectively  reduce  water  loss,  thereby  alleviating  the
tension  between  water  molecules  in  the  xylem  and  reducing
the  risk  of  xylem  embolism[84]. Gs is  also  affected  by  stomatal
density  and  size.  The  reduction  in  stomatal  size  and  density
under  high  VPD  indicates  reduced  investment  in  stomatal
formation[14,85]. Changes in Gm increase the need for photosyn-
thates  to  be  distributed  to  leaf  tissue  to  a  greater  degree
compared  with  changes  in Gs

[86,87],  which  means  that  the  cost
of  regulating Gm is  higher  than  the  cost  of  regulating Gs,  and
the  presence  of  excess  photosynthates  in  leaf  tissue  does  not
promote  plant  growth[31,88,89].  The Gs of  vegetables  decreases
under high VPD, which leads to decreases in Ci. Decreases in Gm

limit  the  CO2 concentration  in  chloroplasts,  thereby  reducing
Pn

[14,90,91].
High  VPD  results  in  decreases  in  tomato Pn.  Decreases  in Pn

under  high  VPD  are  mainly  caused  by  stomatal  restriction
according  to  previous  quantitative  analyses  of  the  relative
contributions of stomatal restriction, mesophyll restriction, and
biochemical  restriction  to  decreases  in  photosynthesis[74−76].
This shows that Gs is more sensitive and responds more rapidly
to  changes  in  VPD  than Gm. Gm does  not  regulate  water  loss,
and  reductions  in Gs can  effectively  reduce  water  loss[66].

Because  the  amount  of  water  molecules  passing  through  the
stomata is approximately two orders of magnitude higher than
the  amount  of  CO2 molecules  passing  through  the  stomata,
changes  in Gs can  regulate  water  use  efficiency[92].  High  VPD
(ranging from 2–5 kPa) reduces Gs and Gm, and reductions in Gs

are  much  larger  than  reductions  in Gm.  Therefore,  high  VPD
increases  stomatal  and  mesophyll  restriction.  Furthermore,
high  VPD  (ranging  from  2–5  kPa)  aggravates  stomatal  and
mesophyll  restriction  under  deficit  irrigation;  thus,  reducing
VPD (1.20 kPa) can greatly increase Gs and Gm and reduce stoma-
tal and mesophyll restriction under deficit irrigation[4].

Comparison of the effects of different VPD conditions on the
light response curve and CO2 response curve has revealed that
the maximum Pn of protected vegetables under CO2 saturation
(Pn-CO2)  and  light  saturation  (Pn-I)  decreases  significantly  under
high VPD (ranging from 2–5 kPa), especially under deficit irriga-
tion[4]. Pn-CO2 is 1.20 times higher than Pn-I under low VPD (1.20
kPa)  and  1.09  times  higher  than Pn-I under  high  VPD  (ranging
from  2–5  kPa).  This  shows  that  increases  in  the  atmospheric
CO2 concentration  under  low-VPD  treatment  can  promote
photosynthesis compared with high VPD. Low VPD (2 kPa) and
high CO2 concentrations significantly increase the Pn and yield
of  vegetables under adequate irrigation in a greenhouse envi-
ronment  compared  with  high  VPD  (ranging  from  2–6  kPa)[93].
Low  VPD  (1.20  kPa)  promotes  the  opening  of  the  stomata,
reduces  the  CO2 diffusion  resistance  from  the  atmosphere  to
leaves,  and  provides  sufficient  substrates  for  photosynthesis,
thus  eliminating  restrictions  on  photosynthetic  raw  materials
and  improving Pn

[22,94].  Therefore,  increases  in  CO2 and  the
regulation  of  VPD  can  increase  the  photosynthetic  capacity  of
vegetable crops in greenhouse cultivation.

 VPD regulates the accumulation of nutrient
elements in vegetable crops

VPD  indicates  the  dryness  of  the  atmosphere.  Changes  in
VPD affect water transport from the roots to the leaves,  which
affects  the absorption and distribution of  nutrient elements in
vegetable  crops[16].  A  suitable  VPD  can  promote  water  trans-
port and nutrient absorption. An excessively high VPD can lead
to substantial increases in transpiration, and vegetables wither
if  the  root  water  and  nutrient  supply  are  unable  to  meet  the
transpiration  demand[95].  Additionally,  VPD  regulates  water
transport  and  the  absorption  and  distribution  of  nutrients  by
altering stomatal morphology, which affects Gs and the transpi-
ration rate[16]. Therefore, VPD has a major effect on the absorp-
tion  and  distribution  of  nutrients  in  vegetables.  The  transpira-
tion  rate  and  nutrient  concentration  decrease  under  low
VPD[96−98],  which  might  stem  from  the  positive  correlation
between  the  transpiration  rate  and  nutrient  absorption[99−101].
Furthermore,  the  dilution  effect  caused  by  the  increase  in
photosynthetic  carbon  assimilation  might  also  contribute  to
reductions  in  nutrient  concentrations[102].  However,  nutrient
accumulation increases under low VPD, which might stem from
increases in the root absorption surface area and xylem vessel
cross-sectional area, which promotes the absorption and trans-
port  of  water  and  nutrients[103,104].  Additionally,  nutrient  accu-
mulation is the product of nutrient concentration and dry mass.
Nutrient accumulation under adequate irrigation might increase
when the magnitude of increases in dry mass is far greater than
the  magnitude  of  decreases  in  nutrient  concentrations  under
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low VPD[26,105]. Furthermore, increases in atmospheric humidity
during  the  daytime  increase  the  water  flux  at  night,  which
might contribute to increases in nutrient accumulation[106].

The transpiration rate of protected vegetables decreases but
nutrient  accumulation  increases  under  low  VPD  (0.90  kPa),
which  indicates  that  increases  in  root  morphology  indirectly
compensate for the effects of reduced transpiration on nutrient
absorption  under  adequate  irrigation.  High  dry  mass  also
promotes  nutrient  accumulation  under  low  VPD  (0.90  kPa)
under  adequate  irrigation[26,105].  Additionally,  the  allocation  of
nutrients  to  the  stems  and  roots  increases  and  that  to  the
leaves decreases under low VPD (0.63 kPa) under adequate irri-
gation.  This  is  because a lower transpiration rate increases the
retention of nutrients in the roots and stems[46,107]. Additionally,
the  nutrient  content  in  substrate  decreases,  and  the  nutrient
absorption  in  vegetables  increases  under  low  VPD  (0.90  kPa)
under  adequate  irrigation[26,105].  Furthermore,  less  energy  is
required  for  nitrate  to  contribute  to  osmotic  adjustment.
Increases  in  nitrate  absorption  reduce  the  energy  loss  of
vegetable crops and increase nitrogen absorption and assimila-
tion  efficiency  under  low  VPD  (0.90  kPa)  and  adequate  irriga-
tion[105].  In  high-temperature  environments,  moderate  potas-
sium application under low VPD (1.50 kPa) and high potassium
application under high VPD (ranging from 4−5 kPa at noon) can
lead  to  increases  in  dry  mass  and  nitrogen,  phosphorus,  and
potassium  accumulation  and  alleviate  the  inhibition  of  high
temperature  on  photosynthesis[107].  Therefore,  reductions  in
VPD increase nutrient accumulation and reduce the amount of
potassium  fertilizer.  Potassium  ions,  which  are  the  main
osmotic  solute  in  cells,  enter  the  guard  cells  through  potas-
sium ion channels on the plasma membrane, which causes the
water potential of the guard cells to decrease; the water is then
absorbed by the guard cells, and the stomata are opened. Low
VPD (1.50 kPa) can increase potassium accumulation in leaves,
increase the leaf water potential,  and promote stomatal  open-
ing and CO2 absorption in  leaves[108].  Furthermore,  changes in
potassium  accumulation  and Gs are  consistent  under  different
VPD  conditions[107].  The  long-distance  transport  of  calcium
mainly  occurs  in  the  xylem.  VPD  affects  calcium  transport
through its effects on transpiration[108,109]. Calcium transport in
vegetables  and  calcium  accumulation  in  fruits  are  closely
related to transpiration[110].  The transpiration of leaves is much
higher  than  that  of  fruits,  which  makes  leaves  a  competitive
pool  for  the  directional  flow  of  calcium  accumulation  in
fruits[111,112].  Reductions  in  leaf  transpiration  can  increase
calcium absorption in fruits, thereby reducing blossom-end rot
and  increasing  yield[113,114].  Therefore,  low  VPD  (0.95)  can
increase calcium absorption in fruits and calcium accumulation
in the pericarp under adequate irrigation[12].

 VPD adjustments for increasing water use
efficiency, yield, and quality

An appropriate VPD can significantly increase water use effi-
ciency  at  the  leaf,  plant,  and  yield  levels  under  greenhouse
conditions[5,12].  Water  use  efficiency  can  be  expressed  in  vari-
ous  ways,  and  the  information  provided  by  these  different
types of water use efficiency varies[115,116]. The leaf instant water
use  efficiency  (WUEinstant)  is  defined  as  the  ratio  of Pn to  the
transpiration rate. The WUEinstant in vegetables decreases signifi-
cantly  under  high  VPD  (2.22  kPa)  and  adequate  irrigation,

indicating that leaves growing under high VPD lose more water
than  those  growing  under  low  VPD,  which  results  in  the
production  of  less  dry  mass[12].  Furthermore,  leaf  transpiration
is  directly  related  to  VPD[17].  Therefore,  the  decrease  in  WUEin-

stant under high VPD mainly stems from the increase in transpi-
ration,  followed  by  the  decrease  in Pn.  The  intrinsic  water  use
efficiency  (WUEintrinsic)  can  be  determined  by  the  ratio  of Pn to
Gs.  WUEintrinsic is  high  under  high  VPD  (ranging  from  2–6  kPa)
under  adequate  irrigation,  which  indicates  that  vegetable
growth  under  high  VPD  increases  water  use  capacity[22,117].
Many studies have shown that WUEintrinsic and Gm/Gs are signifi-
cantly  positively  correlated[117,118].  If Gs and Gm are  indepen-
dent  of  each other, Gm affects  WUEintrinsic,  but  if Gs and Gm are
non-independent, Gm does not have a major effect on increases
in  WUEintrinsic

[66,119].  Crop  water  use  efficiency  (WUEcrop)  and
crop water productivity (WPcrop) have been estimated by calcu-
lating the ratio of crop dry mass and yield to crop evapotranspi-
ration,  respectively[115].  Crop  evapotranspiration  is  controlled
by  the  atmospheric  evaporation  capacity  and  crop  growth.  At
the initial  stage of  crop growth,  VPD regulation has no signifi-
cant  effect  on  the  daily  evapotranspiration  of  vegetable  crops
because  the  area  of  leaves  is  small.  As  the  leaf  area  increases,
crop  evapotranspiration  per  plant  increases  under  different
VPD conditions. The water-saving effect on crop luxury transpi-
ration  increases  gradually  with  growth  stage  under  low  VPD
(1.20  kPa)  under  adequate  irrigation[5].  Water  consumption
during crop growth includes irrigation water consumption and
humidification  water  consumption.  The  cumulative  irrigation
water consumption of vegetable crops is lower under low VPD
(1.20  kPa)  than  under  high  VPD  (ranging  from  2–5  kPa)  under
adequate irrigation[5]. Because water is needed to regulate VPD,
both substrate irrigation water and air humidification water are
used  to  regulate  crop  growth  under  low  VPD.  The  humidifica-
tion  water  consumption  of  each  crop  is  related  to  planting
density; thus, the water use efficiency of vegetable crops varies
with planting density under low VPD. When six tomatoes were
planted per square meter, no significant differences in WUEcrop

and  WPcrop were  observed  under  different  VPD  conditions
under adequate irrigation.  When nine plants were planted per
square  meter,  WUEcrop and  WPcrop were  significantly  higher
under  low  VPD  (1.20  kPa)  than  under  high  VPD  (ranging  from
2–5 kPa) under adequate irrigation. When the water consump-
tion for humidification and planting density are not considered,
the  WUEcrop and  WPcrop are  65%  higher  under  low  VPD  (1.20
kPa)  than  under  high  VPD  (ranging  from  2–5  kPa)  under
adequate  irrigation[5].  Increases  in  WUEcrop and  WPcrop are  far
greater  under  deficit  irrigation  than  under  adequate
irrigation[4].  Moderate deficit  irrigation can increase WPcrop

[120];
however, reducing VPD under deficit irrigation can make up for
the loss of yield caused by deficit irrigation and greatly increase
WPcrop

[4].
Yield  is  a  key  factor  in  agricultural  production  that  not  only

affects  WPcrop but  also  farmer  income  and  market  demand.
Many  studies  have  shown  that  reducing  VPD  can  increase  the
yield of vegetable crops. The yield of different tomato cultivars
is higher under low VPD than under high VPD, which indicates
that  tomato yield  can be  increased in  several  tomato cultivars
by  reducing  VPD[5,12].  When  using  a  fog  generation  system  to
keep the  VPD lower  than 1.20  kPa  (low VPD)  in  a  greenhouse,
the tomato yield is 14.6% (Jinpeng) and 16.7% (Fenguan) higher
under  low  VPD  (1.20  kPa)  than  in  the  natural  environment
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(ranging from 2–5 kPa) under adequate irrigation[5].  When low
VPD  (0.95  kPa)  and  high  VPD  (2.22  kPa)  are  maintained  in  a
climate  chamber,  the  tomato  yield  is  62.11%  (Jinpeng)  and
56.36% (Zhongza) higher under low VPD under adequate irriga-
tion[12],  which  indicates  that  the  positive  effect  of  VPD  on
vegetable  crop yield  was  not  only  related to  cultivars  but  also
related  to  the  magnitude  of  and  temporal  stability  in  VPD.
Similarly, reductions in VPD significantly increase the yield and
fruit  dry  mass  of  melon  and  cucumber  under  adequate  irriga-
tion,  which might be related to the increase in photosynthetic
capacity  and  water  transport  capacity  under  low  VPD  (1.50
kPa)[2]. Increasing CO2 application while decreasing VPD signifi-
cantly  increases  the  yield  of  vegetable  crops  under  adequate
irrigation. This might stem from the fact that an increase in CO2

application increases the photosynthetic capacity and accumu-
lation  of  photosynthetic  products  in  vegetable  crops,  thus
improving the water transport capacity and yield of tomato[93].
Therefore,  reducing VPD is  effective  for  increasing the yield  of
different vegetable crops, but the optimal VPD range for differ-
ent  crops  at  different  growth  stages  needs  to  be  determined.
The fruit yield and dry mass are related to soil water conditions.
The fruit  yield  and dry  mass  are  higher  under  adequate irriga-
tion  than  under  deficit  irrigation[120].  Decreasing  VPD  can  lead
to  increases  in  fruit  yield  and  dry  mass.  The  positive  effect  of
low  VPD  (1.20  kPa)  on  fruit  yield  and  dry  mass  is  more
pronounced under deficit irrigation than under adequate irriga-
tion,  which  indicates  that  low VPD can make up for  the  nega-
tive  effect  of  deficit  irrigation  on  plant  growth  to  a  certain
extent[4].  Reductions  in  VPD  increase  the  yield  of  vegetable
crops.  On  the  one  hand,  reductions  in  VPD  reduce  transpira-
tion  water  consumption  and  increase  water  accumulation  in
fruit,  thus  improving  yield.  On  the  other  hand,  reductions  in
VPD  drive  cell  expansion,  thus  increasing  single  fruit  mass.
Furthermore,  decreases  in  VPD  also  increase  nutrient  element
accumulation  in  reproductive  organs,  reduce  blossom-end  rot
and fruit cracking, and thus increase yield[12].

The  quality  of  vegetable  crops  can  be  divided  into  appear-
ance  quality,  nutritional  quality,  and  flavor  quality[120,121].
Appearance  quality  usually  includes  single  fruit  mass,  fruit
transverse  and  longitudinal  diameter,  fruit  shape  index,  and
fruit  color.  Low  VPD  (1.60  kPa)  can  increase  single  fruit  mass
and  transverse  and  longitudinal  diameter,  which  stems  from
increases  in  the  water  content  in  fruit  under  low  VPD[122].  No
significant  differences  in  the  fruit  shape  index  (approximately
0.85)  of  tomato  under  different  VPD  conditions  have  been
observed.  However,  high  VPD  (2.20  kPa)  can  improve  fruit
color[122].  Lycopene,  an important  antioxidant,  plays  a  key role
in  enhancing  the  nutritional  quality  of  tomato.  Low  VPD  can
increase  the  lycopene  content  and  antioxidant  activity  in
several  tomato  cultivars[13,122].  The  content  of  sugar  and  acid
and  the  ratio  of  sugar  to  acid  in  fruit  are  key  factors  affecting
tomato flavor quality. The content of soluble solids and soluble
sugar and the ratio of glucose to fructose are higher in tomato
under  high  VPD  (2.20  kPa)  than  under  low  VPD  (1.60
kPa)[15,122,123].  Nutrient  absorption  in  tomato  fruit  and  fruit
flavor  quality  are  increased  under  drought  stress  because
plants redistribute sucrose to fruits under drought stress[124,125].
Water evaporation in the leaves is strong under high VPD (2.22
kPa), the water flowing from the xylem to the fruit decreases[12],
and  the  solute  concentration  of  phloem  sap  increases;  this
increases  the  concentration  of  sugar  and  acid  in  fruit  and

improves  fruit  quality[126].  Drought  stress  promotes  the  accu-
mulation  of  starch  in  developing  fruits[127] and  the  conversion
of  starch  into  hexose  in  mature  fruits,  thus  increasing  the
content  of  soluble  solids  and  soluble  sugar  in  fruits[128].  The
content of titratable acid in tomato does not vary under differ-
ent  VPD  conditions,  but  the  ratio  of  sugar  to  acid  is  signifi-
cantly higher under high VPD than under low VPD[15].  In short,
high  VPD  can  improve  the  color  and  flavor  quality  of  tomato
fruit  but reduce the single fruit  mass and nutritional  quality of
tomato fruit.

 Conclusion and challenges ahead

Global VPD has increased in recent decades and is expected
to  continue  to  rise  in  the  future.  Under  high  VPD,  the  atmo-
spheric transpiration and water transport of the SPAC increase,
the  stomatal  conductance  and  photosynthesis  decrease,  and
nutrient  accumulation  is  hindered.  Although  the  results  of
previous studies vary among species, crop yield and water use
efficiency decrease under high VPD in the long term, and crop
mortality  increases.  In  nature,  high-VPD  environments  are
usually  concurrent  with  environmental  stresses  such  as  high
light  intensity  and  high  soil  evapotranspiration,  which  exacer-
bates  the  effect  of  environmental  stress  on  plant  growth.
Changes in  plants  in  response to environmental  stress  are  not
only  caused  by  changes  in  VPD  but  also  might  be  related  to
other  environmental  factors.  Therefore,  future  studies  are
needed  to  clarify  how  VPD  can  be  modified  in  climate  cham-
bers  to  enhance  crop  growth  and  yield.  The  mode  of  chloro-
plast  movement  varies  under  different  VPD  conditions,  and
chloroplast  movement  is  also  closely  related  to  light  intensity
and  light  quality.  Therefore,  additional  studies  are  needed  to
clarify  the  effect  of  light  intensity  and  light  quality  on  chloro-
plast  movement  under  different  VPD  conditions.  Additionally,
cultivation media affect soil water retention, which affects crop
growth  under  VPD  regulation.  Therefore,  the  effects  of  VPD
regulation  on  crop  growth  under  different  cultivation  media
require further study.  Root pressure plays an important role in
water  transport.  Therefore,  additional  studies  are  needed  to
characterize  the  effects  of  VPD  regulation  on  crop  root  pres-
sure.  The regulatory effects of VPD on stomata are affected by
many  factors,  such  as  passive  hydraulic  regulation  and
hormone  signals;  thus,  the  specific  regulatory  mechanism  of
stomatal  movement  requires  clarification.  More  VPD gradients
need  to  be  established  to  characterize  the  optimal  VPD  range
of different cultivars in different growth periods.
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