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Abstract
The  formation  of  edible  organs  and  stress  adaption  are  two  major  focuses  of  the  studies  on  vegetable  species.  The  regulation  of  these  two

processes  often  involves  cell-to-cell  signaling.  In  most  plants,  including  vegetable  species,  intercellular  signaling  can  be  delivered  by  mobile

regulators that traffic through a channel called plasmodesmata connecting almost all cells. A large number of transcription factors and RNAs have

been discovered to move across plasmodesmata (called the symplastic way) to travel a short-range or a long-distance. This symplastic transport

of  signaling  molecules  has  emerged  to  be  an  important  regulation  of  a  wide  range  of  developmental  and  physiological  processes.  Callose

deposition  to  plasmodesmata  is  a  key  step  controlling  the  plasmodesmata  permeability  in  many  cell  types.  Here  we  summarize  the  recent

progress in our understanding of plasmodesmata-mediated signaling in plants.
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 Introduction

First visualized by Robert Hooke in 1665, cells had long been
regarded as individual units of a whole organism. Whether the
cell  represents  an autonomous entity  was a  question that  had
been  a  subject  of  debate  in  19th Century.  The  observation  of
intercellular bridges and plasmodesmata supports the idea that
the  cellular  structure  forms  the  protoplasmic  continuity,  high-
lighting the importance of reciprocal interaction of cells within
a multicellular  organism.  As  a  pioneering cell  biologist,  Wilson
wrote in 1923, "it is the 'organism as a whole' and a 'property of
the system as such'  "[1],  almost all  plant cells  are connected by
the intercellular channel called plasmodesmata (PD)[2].

Primary PD is a straight channel-like structure, as small as 30-
50 nm in diameter, connecting two neighboring plant cells[3,4].
A  major  component  of  this  channel  is  an  endoplasmic  reticu-
lum  (ER)  derived  central  membranous  strands  called  desmo-
tubles, which form presumably through trapping ER strands in
the  cell  plate  during  cytokinesis[5,6].  In  between  the  desmo-
tubule  and  flanking  plasma  membrane  is  the  cytosolic  space
called cytoplasmic sleeve[7,8]. Components including cytoskele-
tons,  a  GPI-anchor  protein  and  PD  localizing  proteins  (PDLP)
have  been  suggested  to  participate  in  the  organization  and
function of plasmodesmata[9,10].

More recently, sphingolipids were found to affect the pore size
of  plasmodesmata[11].  Interestingly,  analysis  of  Physcomitrium
patens  plasmodesmata  proteome  suggested  the  enrichment
of cell-wall located proteins including EXORDIUM-family mem-
bers  and  xyloglucan  transglycosylases  in  plasmodesmata[12].
In  particular,  this  study  identified  callose-degrading  glycolyl
hydrolase  family  17  (GHL17)  proteins  as  an  abundant  PD  pro-
tein family[12], suggesting the potentially conserved plasmodes-
mata regulation by callose (will be further discussed later in this
review) over the evolution.

Smaller molecules, ions and metabolic substance can all pass
through  PD  by  diffusion.  Other  micro-molecules  including

proteins  and  RNAs  are  thought  to  transverse  PD via active
transport[11−15]. Mobile molecules can move across PD via either
the cytoplasmic sleeve, or through the desmotubule (in lumen
or lateral diffusion in the desmotubule membrane), or via diffu-
sion in the flanking plasma membrane[16,17]. In support of these
hypotheses,  it  was  found  that  the  interference  of  the  mem-
brane structure affected PD permeability[17]. In old tissues, plant
cells  further  produce  secondary  PD  that  is  normally  branched
and complex in shape. Localized cell wall modification could be
involved in secondary PD formation, and the complexity of this
type  of  PD  is  correlated  with  reduced  PD  permeability[18,19].
Nevertheless，the  detailed  mechanism  and  the  exact  roles  of
secondary PD during development are still far from clear. Inter-
estingly,  multiple  types  of  PD  were  found  at  grafted  wounds,
suggesting  that  different  PD  types  could  have  distinct  func-
tions[20].  In this review, we focus on our current understanding
of cell-to-cell signaling across plasmodesmata.

 Mobile molecules across plasmodesmata

The observation of cell-to-cell movement of large molecules
initially  arose  from  the  micro-injection  of  fluorescent  dye  in
plant tissues[21−24].  The first endogenous protein exhibiting the
intercellular  mobility  is  KNOTTED1  (KN1),  a  homeodomain
protein essential for maintenance of the shoot apical meristem
(SAM)  in  maize[25,26].  Recently,  the  ribosomal  RNA-processing
protein  44A  (AtRRP44A)  was  shown  to  mediate  the  cell-to-cell
trafficking  of  KN1[27].  Since  then,  a  large  number  of  transcrip-
tion  factors  were  identified  in  plants  that  can  move  between
tissues  and cells  to  provide  positional  instruction during plant
development[21]. These mobile regulators can traffic across just
a  few  cell  layers  to  function  locally  or  over  a  long  distance  to
affect global developmental change.

One  of  the  central  questions  in  organogenesis  is  how  to
spatiotemporally  maintain  stem  cells  and  specify  cell  fates.  In
SAM, WUSCHEL  (WUS) is  expressed  in  the  organizing  center  of
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shoot apical meristem, but the protein moves to the layer1 and
2  (L1  &  2)  of  shoot  apical  meristem  where WUS triggers
CLAVATA  3  (CLV3) expression,  which  in  turn  inhibits WUS tran-
scription in L1 and L2 layer[28,29].  With this WUS-CLV3 feedback
loop,  plants  can  maintain  the  stem  cell  population  in  proper
size in SAM. With the similar strategy, plants maintain the root
stem  cell  niche via WOX5-CLE40 loop,  in  which WOX5 traffics
from  quiescent  center  (QC)  to  columella  stem  cell  (CSC)  to
repress the cell differentiation[30].  In Arabidopsis, SHOOT MERIS-
TEMLESS  (STM) and ARABIDOPSIS  KNOTTED-LIKE  (KNAT1)/BREVI-
PEDICELLUS (BP) are two homologs of the KN1 gene, previously
described  to  be  mobile  in  maize  SAM.  When  driven  by  an  L1
specific promoter, STM and KNAT1 were observed to move from
the L1 layer  into  the inner  cell  layers  of  the SAM[31,32].  In  addi-
tion, KNAT1 was able to pass the interface between cortex and
epidermis  in  Arabidopsis  when  mis-expressed  by  a  mesophyll
specific promoter[33].

In  embryogenesis, TARGET  OF  MONOPTEROS  7  (TMO7),
encoding  a  bHLH  transcription  factor,  is  essential  for  hypoph-
ysis, the founder cell for forming root apex during post-embry-
onic  growth. TMO7 is  transcribed  in  embryonic  cells  while  the
TMO7-GFP fusion can be detected in the neighboring hypoph-
ysis,  indicating  a  non-cell-autonomy  of  this  regulator[34,35].  In
post-embryonic  growth,  intercellular  movement  of  transcrip-
tional  factors  regulates  a  variety  of  developmental  aspects
ranging  from  root  radial  patterning  to  root  hair  and  trichome
initiation.  These  mobile  regulators  including  SHORT-ROOT
(SHR),  CAPRICE  (CPC),  TRANSPARENT  TESTA  GLABRA  1  (TTG1),
GLABRA 3 (GL3), ENHANCER OF TRY AND CPC 3 (ETC3)/ TRIPTY-
CHON (TRY),  UBIQUITIN-SPECIFIC  PROTEASE (UBP1)  have  been
well reviewed previously[15,21]. A previous screen estimated that
around  15%  of  transcriptional  factors  in  roots  can  move
between cells[36]. In contrast, we only have limited understand-
ing of the functionality of these mobile proteins.

Recently,  more  mobile  transcriptional  factors  have  been
identified (summarized in Table 1). Two closely related AT-hook

family members, AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN
3 (AHL3) and AHL4, were shown to interact in vivo and regulate
the boundaries  between the procambium and xylem[37].  Inter-
estingly, their interaction seemed to be required for their inter-
cellular trafficking. A SHR target,  SCL23 displays a bidirectional
radial  spread  and  long-range  movement  into  meristem  in
Arabidopsis roots.  Through  direct  interaction,  SCL23  controls
movement of SHR and participate in endodermal specification
in the root meristem[38].

Besides the local regulation, transcriptional factors were also
found to traffic  long-distance between organs to  direct  global
developmental transition in plants in Fig 1. An early example is
the  detection  of  FLOWERING  LOCUS  T  (FT)  trafficking  from
leaves where it is synthesized in response to day length, to the
SAM  to  trigger  flowering[39,40].  Recently,  a  light-activated  tran-
scriptional  factor, ELONGATED  HYPOCOTYL  5  (HY5) was  shown
to  move via phloem  from  shoot-to-root.  This  translocation  of
HY5 was proposed to mediate light-activated root growth and
N  uptake  from  the  soil  to  balance  photosynthetic  carbon  fixa-
tion in the leaf[41].

Considering  the  size  of  transcriptional  factors,  PD  seems  to
be  the  most  possible  way  for  the  intercellular  translocation.
With an iclas3m system (described in detail in a later part of this
review)  that  blocked  the  PD  between  stele  and  endodermis,
SHR intercellular  transport  was  terminated[3].  Another  piece  of
evidence  supporting  PD  transport  of  transcriptional  factors  is
the  blocked  movement  of  TMO7  from  meristematic  cells  into
the root cap in the cals3-2d, a mutant in which PD is restricted
by over-accumulated callose[35].  To get access to PD, transcrip-
tional  factors  could  exploit  intracellular  apparatus  including
microtubules  and  endomembrane  delivery  system[42,43].
Besides,  an  unknown  function  protein  named SHR  INTERACT-
ING  EMBRYONIC  LETHAL  (SIEL) was  shown  to  interact  with  a
number  of  mobile  transcriptional  factors  and  the  mutation  of
this gene seemed to reduce SHR intercellular movement[44].  As
SIEL partially localized to endosomes, it was proposed that this

Table 1.    Summary of the mobile transcription factors identified in plants.

Mobile TFs Function Moves from:to Reference

HY5 Root growth and N uptake Shoot-to-root Chen et al. (2016)[41]

DWARF14 Regulate the development of AMs Through phloem into axillary meristems (AMs) Kameoka et al. (2016)[139]

BdMUTE BdMUTE is required for subsidiary cell
formation

GMCs to neighboring cell files Raissig et al. (2017)[97]

SPCH Stomatal cell fate Cell-to-cell diffusion in the leaf epidermis of chorus Guseman et al. (2010)[96]

AN3 Leaf development From the mesophyll to the epidermis in leaves Kawade et al. (2013)[140]

WUS Meristem maintenance From the organizing centre to L1, L2 layers Yadav et al. (2011)[28]

KN1/STM Meristem maintenance Broadly in the SAM Kim et al. (2003)[31], 2005[32]

PLT2 Longitudinal root zonation Longitudinally from the root meristem forming a
gradient

Mahonen et al. (2014)[141];
Galinha et al. (2007)[142]

SHR Root radial patterning and RAM
maintenance

Within Stele; Stele into endodermis, QC, CEI and CED Koizumi et al. (2011)[44],
Nakajima et al. (2001)[78]

AHL3/AHL4 Xylem specification From procambium cells to the xylem Zhou et al. (2013)[37]

WOX5 Stem cell maintenance QC to CSC Pi et al. (2015)[30]

TMO7 Recruitment of the hypophysis Embryo into the upper cell of suspensor Schlereth (2010)[34]; Lu et al.
(2018)[35]

Cyp1 Root growth From leaves to root in tomato Spiegelman et al. (2015)[143]

UBP1 Transition from cell division to elongation Stele and LRC to cells into transition/elongation zone Tsukagoshi et al. (2010)[144]

SCL23 Endodermal cell fate Bidirectional radial spread and movement into
meristem

Long et al. (2015)[38]

TTG1 Trichome patterning Atrichoblasts into trichome initials

CPC Trichome patterning, root hair initiation Trichome initials into Atrichoblasts; non-root hair cell
into root hair cell

Wester et al. (2009)[90]

GL3/EGL3 Root hair initiation Root hair cell into non-root hair cell Kang et al. (2013)[91]
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protein  could  function  as  a  'shuttle'  to  facilitate  delivery  of
mobile  transcriptional  factors.  In  addition,  some  facilitating
proteins have also been identified. After passing through PD, a
few  mobile  proteins  including APS  KINASE  1  (KN1),  SHOOT
MERISTEMLESS (STM) and TRANSPARENT TESTA GLABRA 1 (TTG1)
were  discovered  to  associate  with  a  group  of  type  II  chaper-
onin  complexes  consisting  of  CHAPERONIN  CONTAINING  T-
COMPLEX  POLYPEPTIDE-1  SUBUNIT  7  and  8  (CCT7  &  CCT8),
which  facilitate  the  movement  possibly  by  promoting  the
protein refolding after the PD cross-over[27].

Although  no  specific  domain  has  been  identified  that
accounts  for  intercellular  mobility,  the  cell-to-cell  transport  of
transcriptional  factors  seemed  to  be  protein  sequence-depen-
dent.  Homeodomain  (HD)  and  the  helical  domains  have  been
shown  to  be  necessary  and  sufficient  for  PD-mediated  trans-
port  of  KN1.  Unlike  this,  three  conserved  domains  (HD,  WUS-
box,  and  EAR-like  domain)  in  WUS are  not  required  for  its
movement. Instead, WUS mobility seems to be controlled by a
non-conserved  sequence  between  the  HD  domain  and  WUS-
box[29].  Despite  triple  GFP  Tag  impaired  TMO7  movement,
protein  size  did  not  seem  to  be  the  primary  determinant  of
intercellular  transport.  Instead,  TMO7  was  found  to  move  in  a

sequence-dependent manner, and both nuclear residence and
protein modification are important for TMO7 mobility[35]. In two
other mobile transcriptional factors, CPC and SHR, the mobility
relied on multiple  regions within the proteins.  In  addition,  the
mobility  of  these  two  proteins  seemed  to  be  associated  with
the  subcellular  distribution  in  both  the  cytoplasm  and  the
nucleus.

In addition to transcriptional factors, small RNAs also partici-
pate in transcriptional regulation of diverse developmental and
physiological  events  in  plants.  Small  RNAs  are  21−24  nt  long
and can be generally divided into siRNAs and miRNAs[45]. Small
RNAs function either through degrading target genes by near-
perfect  complementarity,  or via transcriptional  silencing  by
histone  modification  and  DNA  methylation[46−50].  Small  RNAs
were  often  regarded  as  the  long-distance  signals  as  the  initial
efforts dissecting their mobility exploited the grafting system in
which  mutants  defective  in  small  RNAs  biogenesis  were
included.  Facilitated  by  high-throughput  sequencing  tech-
niques, researchers identified a large number of mobile siRNAs
that  can  traffic  from  shoot  to  root  presumably via phloem.
Besides  siRNA,  a  large  number  of  miRNAs  were  discovered  to
traffic  in  phloem exudates  over  long distance.  Low-phosphate

loweringF

O

L

R

S

Root growth and N uptate

E

E

S AM maintenance

nvironmental stress

pidemis

ignalling molecules

oot development

eaf development

vule development

 
Fig. 1    Mobile proteins and RNAs in plant development and stress response. The mobile regulators participate widely in the development of
different organs (as illustrated). They can travel short-range to regulate local tissue patterning or long-distance to transduce systemic signaling.
Gray  arrow:  phloem-based  long-distance  movement. WUS and STM regulate  SAM  maintenance; SPCH,  BdMUTE,  AN3,  TTG1,  GL3 and CPC are
involved  in  epidermal  patterning.  In  roots, PLT2,  SHR,  AtDof4.1,  AHL3/AHL4,  WOX5,  TMO7,  UBP1 and SCL23 govern  a  variety  of  processes
including cell  division,  radial  patterning,  stem cell  maintenance and developmental  transition.  Long-distance signaling regulators such as FT
and HY5 can traffic from leaves to SAM to promote flowering, and from shoot to root to regulate root growth and nitrate uptake respectively.
Environmental  stresses  can  induce  PD  closure.  Small  RNAs  including miR399d,  827 and 2111 move  from  aerial  parts  to  roots  in  response  to
phosphate starvation.
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induced miR399s exhibited  a  shoot-to-root  movement  to
repress  downstream  targets  including PHO2 in  the  root[51].
Similarly，miR399d,  miR827 and miR2111 were  all  found  in
grafting  experiments  to  relocate  from  aerial  parts  to  roots  in
response to phosphate starvation[52]. During rhizobial infection,
miR2111 functioned as  long-distance  signals  to  post-transcrip-
tionally  regulate  symbiosis  suppressor TOO  MUCH  LOVE in
roots[53]. miR395 can  also  translocate  from  wild-type  scions  to
rootstocks  of  the  miRNA  processing  mutant hen1-1 to  target
the APS gene[54].  In  addition,  both miR156 and miR172 have
been  confirmed  as  potentially  phloem-mobile  miRNAs  that
regulate tuber formation[55−57].

In grafting system, only small RNAs transporting from shoot-
to-root via phloem  could  be  analyzed.  Other  approaches  that
allow for the comparison between the expression areas and in
situ RNA  distribution  patterns  may  help  the  identification  of
small  RNAs  acting  locally  as  non-cell  autonomous  signals.  To
establish  adaxial–abaxial  leaf  polarity,  a  member  of  Trans-
acting small  interfering RNA (ta-siRNA) family forms a gradient
across the leaves by intercellular diffusion. This diffusion-driven
pattern  of  ta-siRNA  shapes  the  expression  pattern  of AUXIN
RESPONSE  FACTOR3  (ARF3),  an  abaxial  determinant  gene.
Another  small  RNA, miR390 was  proved  to  regulate  the  leaf
polarity by the cell-to-cell movement from vasculature and pith
region  below  the  shoot  apical  meristem  to  the  vegetative
apex[54].  In  addition, miRNA165/166 were  discovered  to  move

from  the  endodermis  into  the  stele  to  regulate  the  xylem  cell
fate[58].  Moreover, miR394 was  shown  to  regulate  stem  cell
maintenance  in  SAM  by  the  PD-mediated  movement  from  L1
to  inner  cell  layers  to  repress LEAF  CURLING  RESPONSIVENESS
(LCR) expression[59].

In  addition  to  siRNA  and  miRNA,  mRNAs  have  also  been
found to travel beyond the cells in which they are expressed in
Fig 1. In addition to the early example of mobile mRNAs of KN1,
potato  sucrose  transporter SUC1 mRNA  was  also  confirmed  to
be  mobile.  In  grafting  experiments,  a  number  of  mRNAs  were
found  to  travel,  such  as FT,  FVE and AGL24 in Arabidopsis[60],
Aux/IAA in melon and Arabidopsis[61], PP16 and NACP in pump-
kin[62,63], BEL5 and POTH1 in potato, SLR/IAA14 in apple[64], PFP-
T6 and PS in  tomato[65] (summarized in Table 2).  Recently,  Luo
et al. developed a fluorescence-based mRNA labeling system to
identify  mobile  mRNAs  targeted  to  PD[66].  Their  analyses
revealed  that  only  mobile  rather  than  not  non-mobile  mRNAs
were selectively targeted to PD, providing further evidence for
PD  mediated  transport  of  mRNAs.  Interestingly,  using  a Nico-
tiana benthamiana/tomato heterograft system, Xia et al.  found
some  mRNAs  have  bidirectional  mobility  between  shoots  and
roots.  In  addition,  forced  expression  of  non-mobile  mRNAs  in
the companion cells did not confer the mobility[67−71]. Thus, the
movement  of  mRNA  is  likely  an  actively  regulated  process.
Moreover,  a  large  number  of  graft-transmissible  mRNAs  have
been identified by high throughput sequencing in a variety of

Table 2.    List of mobile RNAs with functions in organ development.

Mobile factor Function Moves from: to Reference

mRNA
KN1 SAM maintenance injected cell to neighbouring cells Lucas et al. (1995)[26]

SUC1 Sucrose transport companion cells to sieve elements Kuhn et al. (1999)[145]

FT1 Flowering induction Leaf to SAM Lu et al. (2012)[60]

Aux/IAA18 Root development Leaf to root Notaguchi et al. (2012)[61]

PP16 RNA transport Phloem to shoot apex Xoconostle-Cazares et al.
(1999)[62]

NACP Meristem maintenance Phloem to shoot apex Ruiz-Medrano et al.
(1999)[146]

StBEL5 Tuber formation Leaf to root Banerjee et al. (2009)[147]

POTH1 Leaf development Leaf to root Mahajan et al. (2012)[148]

SLR/IAA14 Lateral root formation Shoot to root Kanehira et al. (2010)[64]

PFP-T6 Leaf development Leaf to leaf primordia Kim et al. (2001)[65]

PS Pathogen resistance Shoot to root and vice versa Zhang et al. (2018)[149]

GAI Leaf development host to parasite Roney et al. (2007) [150];
David-Schwartz et al.
(2008)[151]

ATC Floral initiation Leaf to flower apices Huang et al. (2012)[152]

FVE floral regulators Root to SAM Yang and Yu (2010)[153]

AGL24 floral regulators Root to SAM Yang and Yu (2010)[153]

siRNA

ta-siRNA Establishment of leaf polarity the adaxial to the abaxial side of the leaf Chitwood et al. (2009)[154]

hc-siRNA DNA methylation Shoot to root Baldrich et al. (2016)[155]

miRNA

miR165/166 Xylem specification endodermis into the stele Carlsbecker et al. (2010)[58]

miR390 Leaf polarity vasculature and pith region below the SAM to SAM Chitwood et al. (2009)[154]

miR394 Meristem maintenance L1 to inner layers in the shoot meristem Knauer et al. (2013)[59]

miR395 Sulfate homeostasis graft unions Buhtz et al. (2010)[54]

miR399d Phosphate homeostasis shoot to root and vice versa Pant et al. (2008)[156]; Lin et
al. (2008)[51]

miR172 regulate tuber formation Leaf to root Martin et al. (2009)[55]

miR2111 Phosphate homeostasis;
Rhizobial infection;

shoot to root and vice versa Huen et al. (2017)[52];
Tsikou et al. (2018)[53]

miR827 Phosphate homeostasis shoot to root and vice versa Huen et al. (2017)[52]
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species  including Arabidopsis,  tobacco,  grape,  cucumber  and
tomato[67−72].

 Symplastic transport across plasmodesmata
during plant development

A  plant  organ  is  usually  composed  of  morphologically  and
functionally  different  cell  types  in  different  positions.  Small
molecules can move between cells and across plasmodesmata,
which  mediates  crucial  intercellular  communication  for  the
growth  and  development  of  plant  tissues  and  organs.  For
example,  a  plant  root  is  composed  of  concentrically  arranged
cell  layers  with epidermis,  cortex,  endodermis,  and stele locat-
ing from outside to inside[73]. This anatomic arrangement high-
lights  the  regulation  of  tissue  patterning  instructed  by  posi-
tional  information,  often  through  the  exchange  of  signaling
molecules  between  cells.  A  number  of  developmental  pro-
cesses  including root  radial  patterning,  root  hair  initiation and
trichome  formation,  have  emerged  as  the  model  system  for
studying tissue patterning in plants.

In root, the formation of the endodermal cell layer starts from
the endodermal  and cortex initial  cells  in  root  stem cell  niche,
where  two  transcriptional  factors, SHR and SCARECROW  (SCR)
promote the  expression of CYCD6;1 to  allow the  switch  of  cell
division pattern from anticlinal to periclinal[74−77]. This results in
the  formation of  two distinct  layers  of  cells  within  the  ground
tissue,  and the  role  of  SHR in  specifying the  endodermal  layer
was proposed based on the fact that the endodermal layer was
completely absent in shr-2 mutant. Intriguingly, SHR expression
is restricted in stele, but the SHR protein is actively transported
through  PD  from  stele  toward  the  outside  to  play  non-cell-
autonomous  roles[78,79].  In  the  enodermis,  SHR  directly  acti-
vates  SCR  which,  in  turn,  physically  binds  to  SHR  to  trap  this
mobile  transcription  factor  in  the  nucleus  of  the  endodermis,
preventing  further  movement[77].  This  mechanism  was  discov-
ered  to  be  conserved  in  rice  and  thus  was  proposed  to  be  an
evolutionarily  conserved  mechanism  defining  a  single  endo-
dermal  cell  layer  in  almost  all  land plants[74].  However,  a  study
on rice SHR homologs suggested that SHR alone is insufficient
to determine endodermal cell fate[80]. Consistent with this argu-
ment,  mis-expression  of  SHR  indicated  that  SHR  ability  to
confer  endodermal  identity  partially  relied  on  cell  lineage  and
was  coordinated  by  uncharacterized  positional  information,
presumably derived from stele.

Specific  expression  of  marker  genes,  as  often  used  previ-
ously to determine endodermal cell fate, is sometimes mislead-
ing. A prominent feature of the endodermis is the formation of
the Casparian Strip (CS), an apoplastic barrier between vascular
tissues and outer ground tissues[81]. The presence of functional
CS is therefore a better trait for precise evaluation of endoder-
mal identity. Two recent studies revealed that SHR does serves
as  a  master  regulator  activating  a  hierarchical  downstream
network  for  CS  formation[82,83].  The  combination  of  SHR  medi-
ated cascade and another independent peptide signal derived
from  stele  forms  the  minimum  set  of  regulators  that  program
endodermal  identity,  exemplified  by  the  formation  of  func-
tional  CS[83].  Since  both  SHR  and  the  peptide  are  specifically
expressed in vascular tissues, CS formation represents the elab-
orate  developmental  control  by  stele-to-endodermis  move-
ment  of  mobile  regulators.  Besides  CS,  SHR  and  its  down-
stream target SCR can activate the expression of miRNA165/166

in the endodermis which in turn moves back to vasculature to
repress  a  class  III  homeodomain-leucine  zipper  transcription
factors  for  proper  xylem  formation[58].  Thus  the  reciprocal
communication between ground tissue and vasculature in root
spatially  defines  the  radial  patterning  in  root.  In Cardamine,  a
recent study indicated that a differential  spatial  distribution of
miR165/166 is responsible for forming the extra cortex layer[84].
In  addition  to  roots, miR165/166 also  function  in  other  organs
including  leaf  primordial  and  ovule.  By  restricting PHB expres-
sion  in  incipient  inner  integument, miR165/166 promotes  the
correct  ovule  patterning[85].  Interestingly,  a  callose  synthase
mutant in maize, named tie-dyed2 (tdy-2), affects the develop-
ment  of  vasculature,  suggesting  the  mechanism  of  vascular
development  directed  by  intercellular  communication  (possi-
bly via miR165/166) is likely conserved in crops[86,87]. In addition
to roots, plasmodesmata also plays a key role in regulating leaf
development, particularly the formation of leaf veins[88].

Trichomes  and  root  hairs,  originating  from  the  epidermis  in
leaves and roots respectively play important roles in protecting
plants  from  bio/abiotic  stresses,  and  promoting  nutrient
absorption[89,90].  In Arabidopsis,  the  initiation  of  trichomes  and
root  hairs  is  precisely  patterned  in  epidermis,  indicating  an
essential role of cell-to-cell communication in these processes.

In  trichome  initiation,  both  positive  regulator TRANSPARENT
TESTA  GLABRA  (TTG1) and  negative  regulator  ENHANCER  OF
TRY AND CPC 3 (ETC3) and CAPRICE (CPC) move between cells.
In incipient trichome cells, TTG1 protein accumulates through a
trapping/depletion mechanism mediated by GLABRA3 (GL3)[91].
On  the  other  hand,  the  repressor  of ETC3 and CPC move  into
the  neighboring  non-trichome  cells  (also  regulated  by GL3),
forming  inactivated MYB/bHLH/WD40 to  inhibit  the  develop-
ment  towards  trichomes[92].  Recently, PdBG4 has  been  impli-
cated  in  regulating  PD  permeability  in Arabidopsis trichome
development[93].  In  root  hairs, CPC serves  as  a  positive  regula-
tor and it is trapped in the hair-position root epidermis by inter-
acting  with EGL3  and GL3 after  the  movement[94].  The trn1
mutant  is  defective  in  the  position-dependent  pattern  of  root
hairs  and  cause  the  ectopic  expression  of WER,  GL2  and  EGL3,
suggesting  that TRN1 also  participates  in  the  position-depen-
dent cell fate determination[95,96].

Stomata  on  epidermis  are  responsible  for  water  and  gas
exchange  between  the  plants  and  the  environments.  The
mature  stomata  structure  is  produced  through  successive  cell
division  and  differentiation  process,  with  both  processes
subject  to  highly  spatiotemporal  regulation[97].  In  a GLUCAN
SYNTHASE-LIKE 8 (GSL8) mutant in which normal callose deposi-
tion is  disrupted,  SPCH-GFP diffused to neighboring cells  from
meristemoids,  resulting  in  excessive  proliferation  of  stomatal-
lineage  cells.  This  observation  suggests  that  proper  gating  of
critical  regulators,  likely  through  callose  regulation,  regulates
the  correct  patterning  of  stomata  complex[98]. MUTE,  another
key  transcriptional  factor  required  to  terminate  asymmetric
division and promote the  transition of  meristemoids  to  GMCs,
was shown in Brachypodium to move from GMCs to neighbor-
ing cells to induce the subsidiary cells (SCs) formation[99].

 The importance of callose in plasmodesmata
function

Plants  respond to  stresses  often by accumulation of  callose,
which is  negatively correlated with PD permeability in Fig 2.  A
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variety  of  abiotic  stresses  have  been  associated  to  callose
induction,  such  as  cold  stress[100,101],  wounding[102,103],  heat
stress[104,105],  and  heavy  metals[106−109].  Although  detailed
mechanism  is  not  entirely  clear,  callose  synthases  were  found
to participate in the callose regulation. In Arabidopsis, there are
12  callose  synthase  (CalS)  family  members.  When  exposed  to
excess  iron,  the cals5 and cals12 mutants  showed  an  attenu-
ated callose deposition in phloem, compared to wild type and
other cals mutants.  This  result  suggests  that cals5 and cals12
may play specific roles in iron stress response in Arabidopsis[110].
In tomato, cold stress has long been known to cause catfacing
fruits  or malformed fruits  by breeders and gardeners.  A recent
study  proved  this  phenomenon  was  caused  by  the  restriction
of SlWUS intercellular  movement via plasmodesmata  in  floral
meristem[101].  The  cold  induced  callose  accumulation  blocked
the  plasmodesmata,  resulting  in  the  excessive  activation  of
CLV3 and TAG1,  and  disrupted WUS-CLV3/WUS-TAG1 negative
feedback loops[101].

It  has  been  reported  that  PD  regulation  serves  as  an  innate
defense strategy[111].  Pathogens trigger  both pathogen-associ-
ated  molecular  pattern  (PAMP)  and  PAMP-triggered  immunity
(PTI)  systems,  which  have  been  reported  to  induce  callose
deposition[112].  Upon  SMV  virus  invasion,  callose  was  accumu-
lated in soybean phloem which prevents the virus from travel-
ing  long  distances[113].  Salicylic  acid  (SA)  is  a  plant  immune
signal produced upon pathogen infection, which has also been
shown to trigger PD closure and affect symplastic communica-
tion.  Elevation  of  SA  level  seemed  to  be  necessary  for  the  PD
response  during  bacterial  infection,  and  the  expression  of
bacterial  derived  salicylate  hydroxylase  (NahG)  gene  in  plants
resulted  in  higher  susceptivity  to  bacteria[113].  Biotic  stresses
including pathogen infection are known to modulate ROS level
and  callose  abundance  in  infected  regions,  which  is  presum-
ably responsible for the altered PD permeability[114,115].

Virus can also regulate the mesenchymal plasmodesmata in
tobacco[109] and it was recently reported that ROS-mediated PD
closure  is  controlled  by  multiple  pathways,  either  in  SA-  or
PDLP5-dependent  manners.  Change  of  callose  level  in  biotic
stresses is also modulated by callose synthase members[112,113].

SA-dependent  PD  regulation  requires  the  function  of  callose
synthase1  (CalS1).  However,  the  CalS8  seemed  to  be  more
involved  in  basal  and  ROS-dependent  PD  regulation[103].
Callose  synthase  members  have  also  been  widely  reported  in
recent years. CsCalS4 function was identified in pollen develop-
ment  in  cucumber,  and CsCalS1/8 homologous  genes  were
induced by cucumber fungus and functioned as the key factors
in  response  to  biological  stress[114]. GhCalS5 and ZmCals were
found  to  promote  callose  synthesis  in  cotton  and  maize  in
responsive to stresses[116,117].

In addition, PD-localized proteins also emerged as the regu-
lator  of  PD  aperture  during  biotic  stresses.  It  was  shown  that
the PD closure triggered by chitin was dependent on the activ-
ity  of  PD-localized  receptor-like  protein  LYM2[111].  Besides,
bacterial  flagellin  could  rapidly  activate  the  expression  of
CML41, a PD-localized Ca2+-binding protein, which is necessary
for the induction of callose at PD.

Callose is the linear polysaccharide that is composed of β-1,3-
glucan. It is a component of cell wall and is frequently found to
deposit at PD, where it is believed to control the PD permeabil-
ity during plant development and stress response. It was found
the precise developmental transition often relies on the regula-
tion of symplastic continuity. In birch, bud dormancy entry and
release  are  associated  with  the  shift  between  callose  produc-
tion  and  turnover.  Callose  accumulation  at  PD  in  the  shoot
apical and rib meristems can seal off the symplastic communi-
cation and promote the bud dormancy[116−121]. A period of chill-
ing,  however,  triggers  gibberellin  biosynthesis,  resulting  in
increased  expression  of  1,3-β-glucanases  and  degradation  of
callose.  Accumulating  evidence  suggests  that  callose  regula-
tion  is  actually  implicated  in  a  wide  range  of  developmental
processes,  including  seed  germination,  embryogenesis,  cell
division, flowering and reproduction[122−124]. In tomato, a short
period  of  cold  stress  is  sufficient  to  induce  callose  accumula-
tion  in  floral  meristem  and  blocked  intercellular  movement
of  SlWUS,  resulting  in  malformed  fruits[101].  In  olives,  callose
deposition,  as  part  of  cell  wall  modification,  regulates  fruit
abscission[114].
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Through  a  genetic  screen  for  defective  vascular  develop-
ment,  Vaten  et  al.  (Helariutta  group)  identified  three  semi-
dominant  alleles  of CALLOSE  SYNTHASE  3  (cals3d) that  caused
an  increase  in  callose  deposition  at  PD  and  abnormal  plant
growth[3,19].  In  the  root, cals3d mutants  all  showed  aberrant
radial  patterning  and  misspecification  of  the  phloem  and  the
xylem.  Consistent  with  these  phenotypes, cals3d roots  exhib-
ited decreased PD-mediated symplastic movement of free GFP,
SHR  and miRNA165/66[3,125].  It  thus  seemed  that  the  identified
dominant  mutations  can  substantially  enhance  the  ability  of
CALS3  to  promote  callose  deposition  at  PD.  By  combining
these  mutations  in  a  vector  containing  LexA-VP16-ER  (XVE)-
based  estradiol  inducible  cassette,  the  Helariutta  group
designed an elegant tool named as the 'icals3m system'. Driven
by  specific  promoters,  this  system  can  potentially  be  used  to
temporally manipulate callose at PD and symplastic communi-
cation in particular cell types[3,126].

The initial attempts using this system in vascular tissues and
lateral root development proved to be successful[3,125,127].  With
specific  induction  of icals3m system  in  xylem  pole  pericycle,
Benitez-Alfonso et al. detected a significantly increased number
of  initiated primordial [126].  Together  with the observation of  a
transient symplastic isolation of the primordium prior to emer-
gence,  they  confirmed  the  essential  role  of  callose  based
symplastic  connectivity  between  pericycle  cells,  founder  cells,
and  the  neighboring  tissue  during  lateral  root  patterning[122].
More recently, icals3m system was used to dissect  the roles  of
symplastic communication in root apical stem[122]. Driven by an
endodermis-specific  EN7  promoter, icals3m induced  symplas-
tic  blockage  led  to  severe  root  patterning  defects,  shown  by
disrupted cell  division direction, misspecification of cell  fate as
well  as  impaired  cell  polarity.  In  root  tip,  different  cell  types
including endodermis all derived from the root stem cell niche,
where  QC  was  believed  to  repress  the  differentiation  of
surrounding stem cells  based on an early  classic  laser  ablation
experiment  carried  out  in  the  1990's[127].  However, icals3m
system provides an alternative non-invasive approach to exam-
ine the role of QC. With the expression under WOX5 promoter,
icals3m system was clearly shown to induce callose specifically
in QC[128]. The visible callose signal based on aniline blue stain-
ing  was  detected  as  quickly  as  6  h  after  the  estradiol
induction[129]. This icals3m system was further used to study the
interaction between root cap and the root meristem[124,128−130].
When  the  symplastic  communication  between  root  cap  and
root  meristem  was  disrupted,  developmental  defects  were
observed in both parts: In meristem, stem cell maintenance was
affected  while  in  root  cap  the  starch  granules,  the  marker
commonly  used  as  an  indicator  of  columella  differentiation,
disppeared[125]. An earlier study showed that starch granules in
columella  cells  relied on auxin concentration[131].  In  this  study,
short-term  disruption  of  symplastic  communication  was  suffi-
cient  to  cause  defects  in  stem  cells,  while  it  took  longer  for
auxin  distribution  in  root  meristem  to  occur[125].  In  fact,  plas-
modesmata  itself  can  act  as  the  channel  for  auxin  flow[131,132].
Furthermore, icals3m system also was employed in the study of
phloem  unloading[132].  A  phloem  pole  pericycle  specific
promoter  CalS8  and  a  companion  cell  and  metaphloem  sieve
element  specific  promoter  psAPL  were  both  used  to  drive
icals3m to block the connection between different phloem cell
types[133].  A  direct  developmental  defects  arose  from  the
blocked plasmodesmata in phloem was the reduced growth of
axillary buds[50].

To  summarize,  callose  regulation  is  a  central  mechanism  to
control  symlastic  communication  during  plant  development.
Spatiotemporal  expression  of icals3m system  can  be  an  effec-
tive  tool  to  deepen  our  understanding  of  the  developmental
regulation  mediated  by  symplastic  signals.  The  power  of  this
system  can  be  even  higher  with  the  combination  with  other
techniques  including  cell  type  specific  OMICs.  The  application
of this  system in vegetable studies would greatly enhance our
ability  to  dissect  various  aspects  of  development  and  physiol-
ogy  in  vegetable  species  ranging  from  fruit  development  to
stress resistance.

 Summary and perspective

Intercellular  signaling  across  plasmodesmata  plays  crucial
roles in a wide range of processes in plants. The currently iden-
tified  signaling  molecules  across  plasmodesmata  are  mainly
transcription  factors  and  RNAs.  However,  accumulating  evi-
dence suggests  that  many other  signaling pathways including
calcium  signaling,  redox  signaling,  phosphorylation  signaling,
and  hormone  signaling  can  also  function  in  non-cell-autona-
mous  manner[134−136].  As  these  pathways  are  often  complex
and interplay with each other, it is still difficult to unravel such
non-cell-autonamous functions. With the advance in high-reso-
lution  imaging  techniques,  such  as  super-resolution
microscopy,  researchers  will  be  able  to  visualize in  vivo the
action and mobility  of  the molecular  players  involved in  inter-
cellular signaling[137].

In  addition  to  visualizing  the  intercellular  mobility  of
molecules, it is crucial to precisely evaluate the phenotype with
a specific intercellular signaling disrupted. Developing cell type
specific  approaches  is  the  key  step  and  thus  identification  of
promoters  with  restricted  expression  in  certain  cell  types  is
important.  Furthermore,  abolishing gene function in  a  specific
cell  type  is  a  valuable  tool  for  studying  intercellular  signaling.
Previously,  cell-specific  RNAi  was  employed but  the  intercellu-
lar  mobility  of  small  RNAs  prevents  the  precise  evaluation  of
gene function. Recent rapid development of CRISPR-Cas9 tech-
nique  has  emerged  as  a  powerful  tool  for  this  purpose.  The
combination  of  cell-specific  expression  of  Cas9  with  reporters
that  allows  for  visualizing  the  gene  editing  in  different  cells
could greatly enhance our ability to precisely evaluate the func-
tion of mobile regulators.

Lastly,  to  gain  a  more  comprehensive  understanding  of  the
plasmodesmata  mediated  intercellular  signaling,  it  is  impor-
tant  to  integrate  multiple  approaches,  such  as  high-resolution
imaging,  single-cell  technique,  multi-omics,  and  computa-
tional  modeling.  Although  the  cell-to-cell  signaling  often
occurs  locally,  the  impact  could  be  systemic  in  plants.  The
complete  assessment  of  plasmodesmata-mediated  intercellu-
lar  signalling,  as  well  as  derived  tissue-  or  cell-type-specific
techniques,  will  not  only  benefit  the  study  of  plant  develop-
ment,  but  also  provide  the  opportunity  for  future  biotechno-
logical renovation of plants.
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