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Abstract
Chinese cabbage (Brassica rapa L. ssp. pekinensis), a leafy vegetable, exhibits a range of leaf colors, with the dark green varieties being favored by

consumers. Manual visual identification of Chinese cabbage leaf color phenotypes is subjective and it is difficult to distinguish between subtle

differences in leaf color, posing challenges for precision breeding. In this study, we constructed a partial least squares discriminant analysis (PLS-

DA) leaf  color  identification model  and compared four classification methods for  leaf  color,  namely red,  green,  and blue (RGB) channels,  hue,

saturation, and lightness (HSL) color space, multi-spectrum and data-fusion. The PLS-DA supervised leaf color phenotype identification model

based  on  data  fusion  can  improve  the  recognition  rate  by  1%−13%  compared  to  a  single  spectral  model.  To  further  validate  the  model,  we

conducted a bulked segregant analysis (BSA) of a mixed pool of a Chinese cabbage F2 population (F2-449) using whole-genome sequencing. The

candidate locus related to dark green leaf color was reduced by 9.76 Mb compared to the manual visual inspection which provides convenience

for the localization of candidate genes. Therefore, the development of a precise phenotypic identification system for Chinese cabbage that can

distinguish subtle leaf color differences using high-throughput phenotype analysis technology is of great significance and agricultural practical

value for the mining of high-throughput genomic data.
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 Introduction

Chinese  cabbage  (Brassica  rapa L.  ssp. pekinensis)  is  a  nutri-
tious  leafy  vegetable  that  comes  in  a  variety  of  colors,  includ-
ing light green, dark green, yellow, and purple[1,2].  Leaf color is
considered  an  important  agronomic  and  commercial  trait[3],
which is affected by both genetic and environmental factors[4].
Improving  leaf  color  is  a  central  goal  of  Chinese  cabbage
germplasm  mining,  which  will  require  robust  and  accurate
high-throughput  genetic  information.  The  recent  sequencing
and  assembly  of  the  whole  Chinese  cabbage  genome  has
provided  an  opportunity  for  molecular-assisted  breeding
aimed at improving leaf color[5,6].

Manual  visual  identification,  chlorophyll  and  SPAD  content
for  leaf  color  assessments  are  often  imprecise  and  inadequate
for  distinguishing  between  subtle  differences.  Furthermore,
traditional assessments often failed to provide adequate infor-
mation to describe the relationships between leaf  phenotypes
and  environmental  variables  in  a  sufficiently  quantitative  nor
systematic  manner[7].  It  is  therefore  difficult  to  match  pheno-
types to specific genes or loci using traditional methods. How-
ever,  recent  advances in  spectral  analysis,  artificial  intelligence
(AI), and machine vision technology have enabled the develop-
ment of new powerful tools for leaf color analysis. For instance,
visible  light,  multispectral,  hyperspectral,  and  fluorescence

imaging  techniques  are  increasingly  being  employed  in
modern agricultural breeding research[8−10]. Developing a novel
method for leaf color analysis using visible light and multispec-
tral  imaging  technology  would  be  of  benefit  to  biologists,
botanists, and plant breeders.

The  rapid  development  of  spectral  imaging  technology  has
made the application of these techniques to physiological and
biochemical systems a research hotspot. Furthermore, combin-
ing  spectral  imaging  and  computer  processing  technology
enables  the  development  of  non-destructive  diagnostic  tools,
making  smart  agriculture  possible[11,12].  Thus,  multispectral
imaging provides efficient, accurate, and nondestructive moni-
toring  of  crop  plants,  and  is  likely  to  replace  traditional  field
monitoring  methods[13−15].  In  addition,  when  coupled  with
bespoke algorithms, spectral imaging allows real-time monitor-
ing of crop plants[16,17]. Recently, spectral imaging has been suc-
cessfully  applied  to  the  study  of  plant  color  phenotypes[18,19].
Even  with  this  progress,  existing  spectral  imaging  techniques
cannot  accurately  distinguish  the  subtle  differences  in  leaf
color  of  different  Chinese  cabbage  cultivars.  Therefore,  a  fast
and nondestructive method that can accurately distinguish the
subtle  differences  in  Chinese  cabbage  leaf  colors  is  urgently
needed in the field of vegetable breeding.

Here,  we  comprehensively  compared  several  Chinese
cabbage  leaf  color  identification  methods.  A  PLS-DA  machine
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learning algorithm was used to construct and optimize a super-
vised  identification  model,  and  to  standardize  the  results.  The
fusion of different spectral data was constructed to improve the
identification  accuracy  of  the  model.  The  reliability  of  our
method was verified with the identified quantitative trait locus
(QTL) of F2 segregation population. Overall, our method enables
the accurate and precise identification of Chinese cabbage leaf
color  phenotypes,  and  would  greatly  benefit  studies  of  leaf
color, functional genomics, and molecular-assisted breeding of
Chinese cabbage.

 Materials and methods

 Plant materials
This study used a total of nine leaf color-diverse high-genera-

tion  inbred  lines  of  Chinese  cabbage,  their  F1 generation  and
two F2 segregation populations. The experimental plant materi-
als were obtained from the State Key Laboratory of North China
Crop  Improvement  and  Regulation  and  Key  Laboratory  of
Vegetable  Germplasm  Innovation  and  Utilization  of  Hebei,
College  of  Horticulture,  Hebei  Agricultural  University,  and
planted  in  Baoding,  China.  For  leaf  color  analysis,  the  upper
portions  of  the  fifth  leaves  (as  determined  from  the  inside  to
the  outside)  were  sampled  and  stored  in  a  low  temperature
environment until analysis.

Traditional assessments of leaf color are conducted based on
visual inspection. Visual inspection was carried out according to
the  distinctness,  uniformity,  and  stability  (DUS)  paradigm.  We
distinguished  the  color  according  to  The  Royal  Horticultural
Society's  Color  Chart  (RHSCC),  and  recorded  scores  by  visual
inspection.  Field  investigations  were  conducted  25−30  d  after
planting.  In  order  to  minimize  subjectivity  and  improve  accu-
racy,  three  separate  investigators  independently  scored  the
blade  samples  from  shallow  to  deep.  Each  investigator  had
normal color vision and was confirmed to not be colorblind or
have  weak  color  vision  or  other  visual  defects.  Grading  was
increased  as  the  color  depth  of  leaves  increased,  with  a  mini-
mum score of '1' and a maximum score of '5'. The visual assess-
ment  of  Chinese  cabbage  leaf  color  was  based  on  the  com-
bined results from each experimenter.

 Spectral imaging assessment of Chinese cabbage leaf
color

The VideometerLab 4 system (Videometer, Herlev, Denmark)
was  used to  capture  multispectral  images  of  Chinese cabbage
leaves.  This  system uses  19 LEDs (365,  405,  430,  450,  470,  490,
515,  540,  570,  590,  630,  645,  660,  690,  780,  850,  880,  940  and
970 nm) to capture multispectral images, including visible light
imaging, ultraviolet (UV) imaging, and near-infrared (NIR) imag-
ing.  The  region  of  interest  within  each  image  was  segmented
using  the  threshold  method.  The  average  reflectivity  of  each
wavelength  was  determined  by  analyzing  the  reflectivity  of
each of the 19 bands within the target region.

 Image processing and visible light color parameter
extraction

The  background  difference  method[20] was  used  to  process
the  original  images  captured  by  VideometerLab  4,  with  back-
ground  separation  achieved  based  on  the  background  differ-
ence.  Preprocessed  images  were  analyzed  using  ENVI  image
processing software (NV5 Geospatial,  Florida,  USA).  The region
of  interest  is  constructed  from  non-leaf  vein  regions  of  the

leaves.  The  average  values  for  the  red,  green,  and  blue  (RGB)
channels  were  extracted  as  color  parameters  for  each  pixel.
However, the color difference distinguished by RGB color space
is  non-linear  and  unintuitive.  Therefore,  hue,  saturation,  and
lightness  (HSL)  color  space  were  utilized  during  the  analysis
process. RGB values were converted to HSL values according to
Eqns (1), (2), (3), and (4) as follows:
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 PLS-DA model construction
Partial  least  squares  discriminant  analysis  (PLS-DA)  is  an

improved  supervised  classification  algorithm  for  discriminant
analysis.  PLS-DA  is  commonly  used  in  spectral  and  metabolic
analyses,  as  well  as  other  multidimensional  analyses[21−23].  The
basic principle is shown in Eqn (5),

Y =
∑n

i=1
βiλi+B (5)

Y i
βi i λi

i n

where  is the predicted value of the model,  is the wavelength
(nm),  is the regression coefficient at wavelength ,  is the leaf
reflectivity at wavelength ,  is the number of wavelengths, and B
is the intercept.

The model was constructed as follows. First, RGB values were
converted  to  HSL  values.  HSL  color  parameters,  multispectral
data,  and  multi-source  fusion  data  obtained  from  the  training
set  were  used  as  input  variables.  The  PLS-DA  models  were
established using spectral data (X) and visually-determined leaf
color classifications (Y). The number of main factors was deter-
mined  and  adjusted  according  to  the  change  of  model  fitting
index,  and  the  independent  variable  fitting  index  (R2X,  cum),
dependent variable fitting index (R2Y, cum), and model predic-
tion index (Q2,  cum) were obtained. When R2 and Q2 are > 0.5,
the model fitting is considered acceptable.

Finally,  the  permutation  test  was  used  to  verify  the  model.
After  replacing  the  samples,  the  statistical  distribution  and  P-
value were calculated.  The order  of  Y  is  repeated 200 times at
random,  and  the  separated  model  is  fitted  to  all  displaced  Y
while extracting as many components as the original matrix Y.
To verify the predictive capability of the model, the cumulative
cross  effectiveness  (Q2)  was  calculated.  To  verify  the  explana-
tory  power  of  the  model,  the  cumulative  variance  (R2)  was
calculated.  Negative  Q2 intercept  values  indicate  that  the
model is not overfitted. The independent variable fitting index
(R2X),  dependent  variable  fitting index  (R2Y),  model  prediction
index (Q2), and comprehensive identification rate were used as
the model evaluation criteria. We explained the working flow of
this study in Fig. 1, showing the overall processing process from
data acquisition to modeling.
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 Whole genome resequencing
All  samples  with  the  uniform  phenotype  except  leaf  color

and no insect damage and other malformations were taken for
whole  genome  re-sequencing.  After  screening  for  extremely
light  phenotypes  (A)  and  extremely  dark  phenotypes  (E)  by
visual  inspection  and  PLS-DA  supervised  leaf  color  phenotype
identification  model  based  on  data  fusion  separately,  22  light
green  phenotypes  and  22  dark  green  phenotypes  were
selected for further analyses. The genomic DNA of each individ-
ual  plant  was  extracted  separately  using  a  modified  CTAB
method.  DNA  quality  and  concentration  were  assessed  by
agarose  gel  electrophoresis.  The  extracted  DNA  was  mixed  in
equal amounts and sent to Shanghai Meiji Biomedical Technol-
ogy  Co.,  Ltd  (Shanghai,  China)  for  library  construction  and
sequencing  on  the  Illumina  NovaSeq  platform  (PE150).  The
base  quality  and  content  distribution  of  raw  data  were  evalu-
ated,  and  clean  reads  were  compared  with  the  reference
genome  (www.bioinformaticslab.cn/EMSmutation/download/)
using  BWA  software.  To  evaluate  comparison  efficiency  and
depth  distribution,  the  MEM2  comparison  method  was  used.
The  GATK  Haplotyper  method  was  used  to  detect  single
nucleotide  polymorphisms  (SNPs)  and  indels  with  default
parameters.  In  combination  with  genomic  annotation,  the
SnpEff  program  was  used  to  perform  location  annotation  and
mutation  efficacy  prediction  for  mutation  sites.  Genetic  mark-
ers  were  screened  for  homozygous  differences  (except  for  F1

populations) to select SNP and indel markers. Finally, an analy-
sis was conducted on the mixed offspring pools. After compar-
ing to the reference genome and detecting mutation sites, the
obtained loci were filtered and subjected to noise reduction to
identify  candidate  genomic  regions  related  to  dark  green  leaf
color in Chinese cabbage.

 Results

 Visual assessment of Chinese cabbage leaf color
Chinese cabbage variety 'A03', a homozygous line with light

green  leaf  color,  was  crossed  with  eight  other  homozygous
high-generation inbred lines with diverse green leaf colors. The
leaf color phenotypes of the F1 generation are shown in Fig. 2a.
RHSCC  is  used  to  exhibit  the  color  of  leaves.  Of  these,  'F1-442'
and  'F1-449'  were  self-crossed  to  obtain  the  F2 generation  'F2-
442'  and  'F2-449'  segregation  populations,  which  exhibited
subtle  differences  in  leaf  color.  A  total  of  348  plants  from  the
'F2-442' population and 450 plants from the 'F2-449' population
were obtained.  'F2-442'  was composed of F2 segregations with
light  green,  oily  green,  and  intermediate  leaf  colors.  'F2-449'
was  composed  of  F2 segregations  with  light  green,  blackish
green,  and  intermediate  leaf  colors  (representative  plants  are
shown in Fig. 2b & c).

The phenotypic data of nine high-generation inbred lines of
Chinese  cabbage  as  well  as  their  'F2-442'  segregation  popula-
tions were obtained by visual inspection carried out by experi-
mental  personnel.  According  to  the  visual  inspection  grade,
120 samples representing different leaf colors were selected for
examination.  The  samples  exhibited  a  maximum  score  of  15
points and a minimum score of 3 points, with an average score
being  9.25  points.  Leaf  color  was  concentrated  around  7−11
points, exhibiting a normal distribution (p < 0.05). According to
the  scoring  results,  the  samples  were  divided  into  five  color
categories  (Fig.  2d & e).  These  categories  were  used  as  the
comparison  and  evaluation  standard,  and  the  identification
rate was calculated by comparing the results of different identi-
fication methods.

 Comparison of leaf color identification accuracy based
on K-means

The spatial distribution of RGB and HSL parameters was plot-
ted according to the visual inspection level, as shown in Fig. 3a
& b.  Using the RGB and HSL parameters,  Chinese cabbage leaf
color  grades  were  identified  by  K-means  clustering  and  the
results  were  statistically  matched  with  the  recognition  rate  of
the  actual  grade  based  on  visual  inspection  (Supplemental
Table S1). The comprehensive identification rate of the RGB and
HSL  parameters  was  80%  and  87%,  respectively.  HSL  parame-
ters were more effective in distinguishing the C, D, and E types,
which  were  difficult  to  differentiate  using  RGB  color  models.
Thus,  HSL-based  identification  was  more  accurate  than  RGB-
based identification.

K-means  clustering  analysis  was  carried  out  for  the  average
reflectivity  of  the  19  channels,  with  K  set  to  '5'  to  obtain  five
cluster centroids (C1−C5).  Each cluster centroid had 19 dimen-
sions,  and  the  final  spectral  cluster  center  was  obtained
through  iterative  algorithmic  calculation  (Supplemental  Fig.
S1a).  This  algorithm  classified  each  sample  into  the  nearest  Ci
class  according  to  the  distance  between  the  sample  and  the
cluster center. Comparing the classification results of the multi-
spectral data with the manual visual data, the recognition rates
of the five manually surveyed levels were 89%, 93%, 89%, 83%,
and  100%,  respectively,  with  a  total  recognition  rate  of  91%
(Fig.  3c & Supplemental  Table  S1).  These  results  suggest  that
multispectral  identification  offered  improved  accuracy  com-
pared  to  RGB  and  HSL  parameters  and  can  be  used  to  more
accurately identify and classify Chinese cabbage leaf color.

Multispectral
data

Original
image

RGB color
parameters

HSL
color parameters

Data
fusion

Validation
set

Training
set

Establishment of
PLS-DA model

 
Fig. 1    Establishment of PLS-DA model for accurate identification
of Chinese cabbage leaf color based on multispectral imaging.
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A comprehensive analysis of Chinese cabbage leaf color data

indicated  that  both  HSL  parameters  and  multispectral  data

based on digital images could effectively identify and classify leaf

colors.  However,  a  simple  unsupervised  classification  method

based  on  K-means  cannot  guarantee  classification  accuracy,

lacks a unified scale, and cannot compare identification results

a

b c

d

e

10 cm

10 cm
10 cm

 
Fig. 2    Visual assessment of leaf color phenotype. (a) The leaf color phenotypes of nine homozygous high-generation inbred lines and their F1

generation. The figure references the Grass green, Emerald green, May green, and Yellow green in 'The Royal Horticultural Society's Color Chart'
as color comparisons. Representative materials of (b) 'F2-442' and (c) 'F2-449' in F2 population of Chinese cabbage. (d) Visual inspection on the
difference of leaf color of population. (e) Color difference classification of samples. Scale bars = 10 cm.

a

c

b

 
Fig. 3    Comparison of leaf color identification accuracy of Chinese cabbage based on K-means. Spatial distribution of (a) RGB parameters and
(b) HSL parameter identification results. (c) K-means clustering recognition rate of RGB parameters, HSL parameters and multispectral data.
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across  different  groups.  To  improve  the  accuracy  and  systematicity  of  the
model,  we  used  a  PLS-DA  machine  learning  algorithm  to  establish  a  super-
vised leaf color identification model based on sample spectral data, randomly
selected samples were used as the verification set.

 Establishment of PLS-DA-based Chinese cabbage leaf color
identification models

According to the manual visual inspection, the values of the five grades of
leaf  color  (from  shallow  to  deep,  A−E)  were  reassigned  as  1−5.  The  actual
category  of  leaf  color  determined  by  visual  inspection  was  taken  as  the
dependent  variable,  and  the  RGB  parameters  obtained  from  digital  images
were  taken  as  independent  variables  for  PLS-DA  analysis.  The  projection  of
each sample on the plane composed of the first and second principal compo-
nents  (PCs)  is  shown  in Supplemental  Fig.  S2a.  The  sample  distribution  was
relatively concentrated, with B/D and C/E exhibiting partial cross-mixing. The
fitting recognition rate  for  each grade was  100%,  84%,  57%,  92%,  and 69%,
respectively,  with  a  comprehensive  fitting  recognition  rate  being  80%.  The
best  fit  was  observed  for  classes  A  and  D.  The  worst  fit  was  observed  for
classes  C  and  E,  which  did  not  meet  the  recognition  requirements.  The
dependent  variable  fitting  index  (R2Y)  and  the  model  prediction  index  (Q2)
for each type of sample are listed in Table 1. After 200 permutation tests, the
intersection points  between the Q2 regression line and the vertical  axis  was
less than zero (Supplemental Fig. S2b), suggesting that the model was stable
without over-fitting. The number of main factors was 3, the independent vari-
able fitting index (R2X) was 1, the dependent variable fitting index (R2Y) was
0.34,  and  the  model  prediction  index  (Q2)  was  0.3.  For  our  model,  Q2 <  0.5,
resulting in a relatively poor fit and discrimination accuracy.

Using the actual  category of  leaf  color,  which was measured manually,  as
the  dependent  variable  and  the  HSL  parameters  obtained  from  digital
images as the independent variable,  we constructed a PLS-DA model (Table
1).  The  projection  of  each  sample  on  the  plane  composed  of  the  first  and
second PCs is shown in Supplemental Fig. S2c, with no cross-mixing observed
among  the  samples.  The  fitting  recognition  rate  for  each  grade  was  100%,
85%, 70%, 92%, and 79%, respectively, with an overall fitting recognition rate
being 85%. The best fit was observed for class A, while the fit for categories B,
C,  and  E  was  relatively  poor.  After  200  permutation  tests,  the  intersection
points between the Q2 regression line and the vertical axis was less than zero
(Supplemental Fig. S2d), again suggesting that the model was stable without
over-fitting.  The  number  of  main  factors  was  2,  the  independent  variable
fitting  index  (R2X)  was  0.99,  the  dependent  variable  fitting  index  (R2Y)  was
0.34, and the model prediction index (Q2) was 0.34. Again, Q2 < 0.5, resulting
in a relatively poor fit. However, this model was more effective than the RGB-
based model.

Multispectral data from multiple identification methods, including NIR and
fluorescence  data,  can  better  reflect  complex  leaf  color  phenotypes  and
improve the accuracy of K-means-based identification. However, our original
spectral  data  was  noisy  due  to  instrumental  and  environmental  factors.  To
minimize  the  impact  of  adverse  factors  such as  non-uniform samples,  base-
line  drift,  high-frequency  noise,  and  stray  light,  we  normalized  the  data  by
using  Savitzky-Golay  smoothing  (SG)[24] five  times,  with  15  points  (Supple-
mental  Fig.  S1b).  Then,  the  PLS-DA  discriminant  model  of  Chinese  cabbage
leaf  color  was  established  using  a  set  of  training  data  and  tested  using  the
validation  data.  Specifically,  when  constructing  the  model,  the  actual  cate-
gory  of  leaf  color  determined  by  visual  inspection  was  taken  as  the  depen-
dent  variable,  and  the  19-dimensional  multispectral  data  were  taken  as  the
independent variables (Table 1). The projection of each sample on the plane
composed of the first and second PCs is shown in Supplemental Fig. S2e. The
sample  distribution  was  relatively  concentrated,  with  no  cross-mixing
observed.  The  fitting  recognition  rate  for  each  grade  was  100%,  87%,  78%,
100%, and 82%, respectively,  with an overall  fitting recognition rate of 89%.
The best fit was observed for classes A and D, while the fit for classes C and E
was  relatively  poor.  After  200  permutation  tests,  the  intersection  points Ta
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between  the  Q2 regression  line  and  the  vertical  axis  was  less
than  zero  (Supplemental  Fig.  S2f),  again  suggesting  that  the
model  was  stable  without  over-fitting.  Thus,  our  model  was
more accurate than either the RGB-based or HSL-based models,
and the root-mean-square error (RMSE) was lower. The number
of  main  factors  was  4,  the  independent  variable  fitting  index
(R2X)  was  0.98,  the  dependent  variable  fitting  index  (R2Y)  was
0.48, and the model prediction index (Q2) was 0.43. In this case,
Q2 is close to 0.5, indicating this model is better than the above-
mentioned ones.

Based on the disparate components of different spectra, our
data  was  highly  heterogeneous.  Such  heterogeneity  can
improve  the  accuracy  of  model-based  identification.  Here,  we
combined visible light color parameters and multispectral data
to construct a comprehensive Chinese cabbage leaf color iden-
tification  model.  The  actual  category  of  leaf  color  determined
by visual  inspection was taken as the dependent variable,  and
the  25-dimensional  RGB,  HSL,  and  multispectral  data  were
taken  as  the  independent  variables  to  establish  the  PLS-DA
model  (Table  1).  The  projection  of  each  sample  on  the  plane
composed of the first and second PCs is shown in Supplemen-
tal  Fig.  S2g.  The  sample  distribution  was  relatively  concen-
trated,  with  no  cross-mixing  observed.  The  fitting  recognition
rate  for  each  grade  was  92%,  92%,  93%,  100%,  and  100%,
respectively, with an overall fitting recognition rate being 95%.
The best  fit  was observed for  classes A and D,  while  the fit  for
classes B and C was relatively poor. After 200 permutation tests,
the intersection points between the Q2 regression line and the
vertical  axis  was  less  than  zero  (Supplemental  Fig.  S2h),  again
suggesting that the model was stable without over-fitting. The
data  fusion  model  exhibited  higher  accuracy  than  any  of  the
single  spectral  data  models,  and  the  RMSE  was  significantly
reduced.  The  number  of  main  factors  was  7,  the  independent
variable fitting index (R2X) was 1, the dependent variable fitting
index (R2Y) was 0.66,  and the model  prediction index (Q2)  was
0.55. Thus, this model produced the best fit.

A  comprehensive  evaluation  of  the  model  was  conducted
using parameters including R2X, R2Y and Q2,  and the statistical
results are shown in Fig. 4a. Overall,  the data fusion-based leaf
color identification model was superior to traditional methods,
with  all  models  ranked  as  follows:  data  fusion  model  >  multi-
spectral data model > HSL color parameter model > RGB color
parameter  model.  Subsequent  research  was  carried  out  to
substitute  the  spectral  data  of  the  validation  samples  into  the
PLS-DA model, calculate the leaf color type of the samples, and

expand the samples for model identification and validation. By
using  different  spectral  parameters  as  input  data,  the  super-
vised  leaf  sample  PLS-DA  model  achieved  satisfactory  identifi-
cation of  the validation set  of  leaf  samples.  Statistical  compar-
isons between manual visual inspection and model-based iden-
tification  methods  are  shown  in Fig.  4b and Supplemental
Table  S2.  The  data  fusion  model  produced  the  highest  overall
identification  rate  (96%),  followed  by  the  multispectral  model
at  95%.  Both  models  were  effective  in  identifying  leaf  colors
and assigning them to correct leaf color categories. In compari-
son, the RGB-based model produced the lowest overall identifi-
cation  rate  (83%),  and  could  not  accurately  discern  between
samples with light leaf color (D and E).

In  summary,  we  established  a  multispectral  PLS-DA-based
model,  which  is  a  supervised  classification  model  based  on  a
training  set,  with  unified  identification  indicators  and  strong
systematicity. This model can accurately detect and distinguish
between Chinese cabbage leaf  colors.  For  instance,  the model
can  accurately  determine  the  leaf  color  of  a  single  plant,  and
can also compare the leaf colors of different populations. Thus,
our  model  lays  a  foundation  for  the  accurate  identification  of
leaf  color  traits  in  Chinese  cabbage,  auxiliary  functional  gene
mining, and biotechnology-based breeding.

 Application of data fusion-based PLS-DA model to
accurately identify the leaf color of Chinese cabbage

In  the  previous  experiment,  we  used  manual  visual  inspec-
tion  to  classify  the  leaf  colors  of  the  'F2-449'  population.
Through  bulked-segregant  analysis  sequencing  (BSA-seq)  of
two  extreme  phenotype  pools,  we  obtained  a  candidate
genetic  locus  for  dark  green leaf  color  (49,732,120−60,494,964
bp)  on  chromosome  9  (chr9),  which  contains  a  total  of  3450
SNP  mutations  (Table  2 & Fig.  5a).  The  data  fusion-based  PLS-
DA supervised leaf color identification model was applied to re-
identify the 'F2-449' population resulting from the cross of dark
green Chinese cabbage '449' and light green Chinese cabbage
'A03'.  Because  of  diverse  and  subtle  variations  in  leaf  color
across the F2 isolated populations, the quantification and iden-
tification of leaf color phenotypes were very complex.

Samples  of  'F2-449'  population  leaves  were  collected  and
imaged using VideometerLab 4,  and the color parameters and
multispectral data were extracted (Supplemental Table S3). The
coefficient of variation for HSL saturation (S) was 28%, the coef-
ficient of variation for the multispectral data at 590 nm and 630
nm was 15%, and the coefficient of  variation for  the green (G)

a b

 
Fig. 4    PLS-DA model parameters. (a) Model fitting index for each sample type on image RGB, HSL color parameters, multispectral data and
data fusion. (b) Overall recognition rate of RGB parameters, HSL parameters, multispectral data and data fusion.
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RGB channel was 13%. Overall, the population was differentiated
of leaf color, indicating that the spectral data were available.

The data fusion-based PLS-DA leaf color identification model
was used to evaluate and identify the leaf  color of  the 'F2-449'
population (Supplemental Fig. S3). The leaf color of the 450 'F2-
449' plants was classified from shallow to deep (A−E). Leaf color
tended  to  be  concentrated  between  classes  B−D,  of  which  C
accounted for 29%, B accounted for 25%, and D accounted for
24%. The extreme dark green phenotype (E) accounted for 14%
and the extreme light green phenotype class (A) accounted for
8%.

Based on the identification results of the F2 isolated popula-
tion,  BSA  mixed-pool  sequencing  was  carried  out  by  combin-
ing  reference  genome  splicing  data  and  parental  re-sequenc-
ing data.  The interval  with the largest ratio was defined as the

candidate  genomic  interval  related  to  the  dark  green  leaf
phenotype,  located  between  53,002,792  and  53,999,899  on
chr9,  with  1539  detected  SNPs  (Table  2).  The  Gprime  analysis
results is shown in Fig. 5b. Notably, the candidate region identi-
fied  using  the  data  fusion-based  PLS-DA  model  was  much
smaller  than  that  identified  using  manual  observation  data.
Taken  together,  these  results  suggest  that  the  data  fusion-
based  PLS-DA  model  is  more  accurate  in  identifying  subtle
differences  in  leaf  colors  and  has  significant  potential  for  the
precision breeding of Chinese cabbage.

 Discussion

 Comparison between traditional phenotypic
identification and spectral phenotypic identification
methods

The  accurate  determination  and  comparison  of  phenotypes
is  essential  for  plant  molecular  breeding  and  functional
genomics  study[25].  Traditional  visual  inspection  methods  can
discern  between  Chinese  cabbage  leaf  colors  to  some  extent.
However, they are cumbersome, lack unified classification stan-
dards,  and  are  unable  to  distinguish  between  subtle  pheno-
types.  As  a  result,  traditional  leaf  color  survey  methods  are

Table 2.    Candidate region statistics.

Leaf color recognition
method Chromosome Position SNV

number

Manual visual inspection Chr 9 49732120-
60494964

3450

Data fusion-based PLS-DA
leaf color identification

Chr 9 53002792-
53999899

1539

a

b
Chromosome

Chromosome 
Fig. 5    Display the distribution map of SNP index on chromosomes using Gprime's computational model. The Gprime analysis results of BSA
sequencing for identifying 'F2-449' population leaf color classification results based on (a) visual inspection and (b) PLS-DA fusion model (b).
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insufficient  for  the  biotechnology-assisted  precision  breeding
of Chinese cabbage.

Recent advances in spectral  analysis,  AI,  and machine vision
technology  have  enabled  the  development  of  new  powerful
tools for leaf color analysis. In fact, most plant phenotypic infor-
mation  can  be  obtained  and  analyzed  through  spectral  imag-
ing  processing[26].  In  this  study,  we  explored  the  feasibility  of
classifying  Chinese  cabbage  leaf  color  utilizing  two  aspects  of
color depth: visible light digital camera imaging and multispec-
tral  imaging.  Based  on  visible  light  imaging,  the  RGB  and  HSL
color parameters of random samples were obtained. A K-means
algorithm was  used to  classify  random samples  based on RGB
and HSL color parameters. The matching rate between the visi-
ble  light  imaging  classification  results  and  manual  visual  leaf
color  classification  results  was  80%  and  87%,  respectively,
consistent  with  the  accuracy  reported  in  a  study  by  Kendal  et
al.[27] that quantified human perception of plant color and color
difference  using  digital  images.  Our  analyses  showed  that  the
random  leaf  color  samples  were  distributed  discretely  in  the
RGB  and  HSL  color  spaces.  Dark-colored  samples  exhibited
obvious separation while light-colored samples did not exhibit
a  significant  separation,  with  some  degree  of  overlap,  in  the
RGB space. In contrast, different leaf color samples were clearly
separated in HSL space, with the S and L axes being obviously
separated. However, no separation was observed for the H axis,
which  may  be  due  to  the  consistency  of  H  between  subtly
different  samples.  Taken  together,  these  results  illustrate  that
the visible light color parameters of leaves can be used to clas-
sify leaf color, and that the leaf color of individual samples can
be determined based on these color parameters.

RGB images only record information related to the R, G, and
B bands, resulting in the loss of a considerable amount of spec-
tral  reflection  information[28,29].  In  order  to  improve  the  accu-
racy  of  leaf  color  identification,  we  conducted  a  multispectral
feature  analysis  of  Chinese cabbage leaves.  The spectral  curve
of Chinese cabbage leaves exhibited obvious and highly differ-
ent absorption peaks in the 500−700 nm and NIR bands, which
may  have  resulted  from  different  chlorophyll  absorption  of
different  leaves.  A  K-means  clustering  analysis  was  conducted
on the average reflectivity of 19 spectral  channels.  The match-
ing rate between the multispectral classification results and the
manual visual leaf color classification results was 91%, suggest-
ing  that  multispectral  data  can  more  accurately  classify  and
discern  Chinese  cabbage  leaf  color  than  visible  light  imaging
data,  especially  considering  that  the  spectral  characteristics  of
differently-colored  Chinese  cabbage  leaves  are  significantly
different.

 Optimization of PLS-DA model for subtle leaf color
identification based on spectral phenotype

Traditional  phenotypic  identification  methods  have  the  dis-
advantages,  such  as  a  tedious  identification  process,  destruc-
tive  sampling,  and  large  errors.  However,  our  study  demon-
strates  that  both  visible  light-based  color  parameters  and
multispectral  data  can  be  effectively  utilized  to  identify  and
classify  Chinese  cabbage  leaf  color  phenotypes.  Similar  to  the
challenges  faced  by  Zhang[30] in  studying  the  multispectral
characteristics  and  quantitative  models  of  Chinese  cabbage
leaves, our simple unsupervised model based on K-means had
limitations  in  ensuring  the  category  accuracy,  lacked  a  unified
scale, and could not compare identification results across differ-
ent populations.  To improve the accuracy and systematicity of

the  model,  we  employed  a  PLS  machine  learning  algorithm.
Specifically,  we  used  training  samples  to  construct  a  super-
vised model and applied it to identify the leaf color of leaves in
the  validation  set  samples.  In  this  way,  we  developed  a  stable
and  systematic  leaf  color  identification  model  for  Chinese
cabbage.

Taking  the  RGB,  HSL,  and  multispectral  data  of  the  training
images as model input variables, different spectral phenotype-
based  quantitative  identification  models  of  Chinese  cabbage
leaf  color  were  established,  all  of  which  could  identify  dark
green  Chinese  cabbage  leaves  to  some  extent.  However,  in
terms  of  accuracy,  the  models  were  ranked  as  follows:  multi-
spectral  model  (R2Y  =  0.48,  Q2 =  0.43)  >  HSL  color  parameter
model  (R2Y  =  0.34,  Q2 =  0.34)  >  RGB  color  parameter  model
(R2Y  =  0.34,  Q2 =  0.3).  The  high  accuracy  of  the  multispectral
model may be attributed to the multispectral imaging system's
ability to capture more channel information, which reflects the
internal  physiological  parameters  of  leaves,  such  as  water
content,  chlorophyll  content,  and  anthocyanin  content.  Addi-
tionally,  multispectral  imaging showed a wider range of  appli-
cation  scenarios  and  increased  accuracy[27].  In  our  study,  we
also  applied  SG  smoothing  to  the  multispectral  data,  which
helps  eliminate  the  influence  of  noise,  leading  to  improved
stability and prediction rates.

Compared  to  single-sensor  leaf  color  classification  models,
which are limited by sensor data type, multi-sensor data fusion
offers greater potential in leaf color classification[31]. By combin-
ing  visible  light  color  parameters  with  multispectral  data,  we
established  a  PLS-DA  model  of  the  classification  variable  Y  of
leaf  color.  The  fitting  parameters  of  the  model  were  R2X  =  1,
R2Y  =  0.66,  and  Q2 =  0.55.  Compared  to  the  single  parameter
model,  the  data  fusion  model  exhibited  stable  discrimination
performance and higher discrimination accuracy, with an over-
all  recognition  rate  reaching  96%.  The  performance  of  our
several quantitative identification models for Chinese cabbage
leaf  color  based  on  spectral  phenotype  was  also  comprehen-
sively  evaluated  using  the  model  fitting  parameters  R2X,  R2Y,
and  Q2,  as  well  as  each  model's  comprehensive  recognition
rate.  The  results  indicate  that  the  data  fusion-based  Chinese
cabbage  leaf  color  identification  model  was  superior  to  all
these quantitative models.

 The combination of spectral model and high
throughput genome resequencing data

In this experiment, the original image and multi-spectral data
of Chinese cabbage leaves were obtained by using Videometer-
Lab 4 system. RGB parameters and HSL parameter are extracted
from the original image. RGB data, HSL data and multi-spectral
data are combined to form 25-dimensional fusion data. PLS-DA
models  were  established  with  training  samples.  Comparative
analysis  shows  that  the  25  dimensions  data  fusion  model  is
superior to any other single data model.  Through the compre-
hensive  comparison  of  verification  sets,  we  finally  get  PLS-DA
model for accurate identification of Chinese cabbage leaf color
based on multispectral imaging. Based on this model, we accu-
rately  identified  the  leaf  color  traits  of  the  F2-449  population
and applied the results to BSA sequencing.

The  efficacy  of  BSA  largely  depends  on  the  feasibility  of
dividing  individuals  into  groups  with  extreme  phenotypes,
namely accuracy of  phenotypic  identification[32,33].  The precise
phenotype also depends on the use of  new field technologies
(such  as  remote  sensing  techniques  for  precise  evaluation  of
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secondary  traits)  and  the  correct  selection,  calibration,  and
application of phenotype instruments (such as neutron probes,
radiation sensors, chlorophyll, and photosynthesis meters). This
experiment upgraded the recognition ability of dark green leaf
color  through  machine  learning,  improving  the  accuracy  of
evaluating  extreme  phenotypes.  The  candidate  area  for  dark
green leaf color was reduced from 10.76 Mb manually observed
to 1.00 Mb, providing great convenience for subsequent analy-
sis.

 Conclusions

In this study, we comprehensively compared several Chinese
cabbage leaf color identification methods. Identification meth-
ods based on RGB, HSL, and multispectral imaging all exhibited
good  recognition  accuracy,  with  the  comprehensive  recogni-
tion  rate  of  the  multispectral  imaging  method  reaching  91%.
However,  the  simple  unsupervised  classification  model  based
on  a  K-means  algorithm  lacks  a  unified  scale  and  could  not
compare  identification  results  across  different  populations.  To
address  this  issue,  a  PLS-DA  machine  learning  algorithm  was
used  to  construct  and  optimize  a  supervised  identification
model,  and  to  standardize  the  results.  The  fusion  of  different
spectral data was found to improve the identification accuracy
of  the  model.  The  data  fusion-based  PLS-DA  supervised  leaf
color  phenotype  identification  model  exhibited  a  Q2 of  0.55,
with  a  comprehensive  recognition  rate  reaching  96%.  This
recognition  rate  was  1%−13%  higher  than  that  of  the  single
spectral models. The accurate Chinese cabbage leaf color iden-
tification  model  was  applied  to  the  'F2-449'  population.  The
sequencing results of the BSA mixing pool preliminarily identi-
fied  the  candidate  genetic  locus  related  to  dark  green  leaf
color, located between 53,002,792 and 53,999,899 bp on chro-
mosome  9.  Notably,  the  candidate  locus  identified  using  the
data  fusion-based  PLS-DA  model  was  much  smaller  than  that
identified using manual observation data.
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