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Abstract
In  eggplant  (Solanum  melongena.  L),  low light  during cultivation often hinders  proper pigmentation of  fruit.  While  some varieties  exhibit  less

susceptibility to low light for eggplant coloration, however, the genetic basis of such less-photosensitive fruit coloration remains unknown. In this

study, we characterized a less-photosensitive eggplant cultivar '609'. Under bagging conditions, fruits of '609' exhibited purple coloration, albeit

lighter than fruits grown under natural conditions. Genetic analysis showed that the less-photosensitive trait was controlled by a single dominant

gene, designated SmLP. Based on BSA and genetic recombination analyses, SmLP was mapped to the 7.4−12.5 Mb region on chromosome 10.

Within this genetic region, six genes with non-synonymous mutation and seven genes potentially involved in anthocyanin biosynthesis or light

signal  transduction  were  identified.  Further  RT-qPCR  analysis  revealed  that  only  three  out  of  these  genes  were  differentially  expressed  in

eggplant peel  tissues.  The three genes EGP21875, EGP21864 and EGP21911,  encoding MYB domain protein 113,  phototropic-responsive NPH3

family  protein,  and  protein  with  unknown  function,  respectively,  were  considered  as  the  putative  genes  associated  with  less-photosensitive

anthocyanin biosynthesis in eggplant fruits. These results would provide great help in casual gene identification for less-photosensitive trait and

promote an understanding of molecular mechanisms underlying less- and non-photosensitive coloration in eggplant.
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 Introduction

Eggplant (Solanum melongena.  L) in the Solanaceae family is
a  globally  and  economically  important  vegetable  crop  rich  in
nutrition[1−4].  The  color  of  eggplant  fruits,  primarily  purple,
white,  or  green,  is  an  important  quality  and  commercial
trait[5−7]. Purple color varieties, containing high levels of antho-
cyanins in the fruit peel, are commonly found in the market[8,9].
As  a  branch  of  flavonoids  in  secondary  metabolites,  antho-
cyanin  is  a  water-soluble  natural  pigment  responsible  for  the
blue, purple, and red color of many plant tissues[10−12].

The  biosynthesis  pathway  of  anthocyanin  has  been  exten-
sively  studied  in  many  plant  species[13−16].  Both  structural  and
regulatory  genes  have  been  found  to  participate  in  antho-
cyanin  biosynthesis.  Structural  genes  encode  enzymes  that
directly  catalyze  anthocyanin  biosynthesis,  while  regulatory
genes  mainly  refer  to  those  coding  for  transcription  factors
(TFs)  that  manipulate  the  expression  of  structural  genes[17−19].
TFs regulating anthocyanin biosynthesis have also been identi-
fied in eggplant,  such as SmMYB113, SmGL3[20−23].  In addition,
anthocyanin  production  is  affected  by  various  environmental
conditions  including  light  and  temperature[24−27].  Among
them,  light  is  a  particular  important  regulator  of  anthocyanin
biosynthesis[28−31].  However,  the  anthocyanins-related  pig-
menting  is  not  or  less  influenced  under  darkness  in  specific
materials  of  sweet  cherry,  chrysanthemum,  mango,  turnip,
grape, and eggplant[20,32−36].

Fruit color under calyx is an indicator of light requirement in
eggplant[37,38].  Specifically,  fruits  with  green  peel  under  the
calyx  always  undergo  a  color  change  to  white  after  bagging,
which  is  known  as  the  photosensitive  or  light-induced
type[39,40].  In  contrast,  fruits  with  purple  peel  under  the  calyx
often maintain their purple coloration after bagging, and these
eggplants  are  referred  to  as  the  non-photosensitive  type[20].
Most  quantitative  trait  locus  (QTLs)  responsible  for  purple
coloration under calyx in eggplants were detected on chromo-
some 10[41−45]. In addition, a recent study showed that SmFTSH
10 (filamentation  temperature  sensitive  10)  was  the  most  possi-
ble  candidate  gene  of  non-photosensitivity  in  eggplant[45].
Interestingly,  we  found  that  some  cultivars  exhibited  light
purple  under  the  calyx,  while  under  bagging  conditions,  the
fruits  displayed  a  purple  coloration  overall,  which  was  signifi-
cantly  lighter  compared  to  the  fruits  that  grew  under  natural
conditions.  Therefore,  we  classify  these  varieties  as  the  less-
photosensitive type.

In  this  study,  two  eggplant  parental  lines  with  photosensi-
tive  and  less-photosensitive  coloration  and  their  crossing  F2

progenies  were  used  for  genetic  analysis,  bulked  sergeant
analysis  (BSA)-based  sequencing  and  expression  analysis  to
identify  the  causative  genes  conferring  less-photosensitive
anthocyanin  biosynthesis.  The  candidate  genes  identified  in
this  study  would  facilitate  gene  identification  for  the  less-
photosensitivity  trait  and  be  helpful  for  the  study  of  the

ARTICLE
 

© The Author(s)
www.maxapress.com/vegres

www.maxapress.com

http://orcid.org/0000-0002-1686-9005
http://orcid.org/0000-0002-1686-9005
mailto:jjz1971@aliyun.com
mailto:chenxueping@hebau.edu.cn
https://doi.org/10.48130/VR-2023-0032


mechanism of  less-photosensitive  anthocyanin  biosynthesis  in
eggplant.

 Materials and methods

 Eggplant varieties and phenotypic assessment
A  photosensitive  cultivar  '749'  and  a  less-photosensitive

cultivar '609' were used as parent lines to develop the F2 popu-
lation. All eggplants grew in the greenhouse in the experimen-
tal  fields  of  Hebei  Agricultural  University,  Baoding,  China.
Eggplant fruits were bagged on the 5th day after flowering, and
fruit  color  observation  were  conducted  on  the  14th day  under
bagging  condition,  with  the  fruits  growing  in  natural  condi-
tions as control.

 Whole genome sequence of bulked DNA
Total genomic DNA of the two parent lines and the F2 popu-

lation was extracted from young leaves using a modified cetyl-
trimethylammonium  bromide  (CTAB)  method[46].  For  genome
sequencing,  equivalent  amounts  of  DNA  from  30  plants  with
purple-bagged and white-bagged fruits were mixed separately,
named 'P Bulk' and 'G bulk' respectively. The qualified DNA was
randomly  broken into  fragments  with  a  length of  350 bp,  and
sequencing libraries were generated using a TruSeq Nano DNA
HT Sample preparation Kit (Illumina USA), followed by Illumina
PE150 sequencing.

After  quality  control,  the  clean  reads  of  each  sample  were
aligned  against  the  eggplant  reference  genome[47] using  BWA
software[48].  The  Unified  Genotyper  function  in  GATK3.8
software[49] was  used to  detect  SNP and Indel  of  each sample,
and Variant Filtration parameter in GATK was used to filter the
SNPs  and  Indels.  Euclidean  Distance  (ED)  algorithm  was
employed  to  predicted  candidate  region  associate  with  less-
photosensitivity[50].  Sequencing  depth  of  differential  SNPs  in
each mixed pools were counted to calculate ED on each site. ED
was raised to ED^5 to minimize noise of small variation[50].

 Obtaining recombinants
To  narrow  down  the  candidate  region,  molecular  markers

(Supplemental  Table  S1)  were  developed  based  on  the  SNP
sites  of  the  two  bulks  from  the  sequencing.  All  plants  in  F2

population  and  the  two  parental  lines  were  genotyped  using
Kompetitive  allele  specific  PCR  (KASP)  technology  with  linked
SNP markers, that were used to screen recombinants.

 Gene expression analysis
Eggplant fruits of '609' and '749' were bagged on the 5th day

after flowering, and the fruit peel was harvested on the 14th day
after  bagging  for  gene  expression  analysis,  using  the  peel  of
fruits  grown  under  natural  conditions  as  control.  The  expres-
sion  of  candidate  genes  was  detected  using  qRT-PCR.  Primer
Premier 5.0 software was used to design the primers, which are
listed  in Supplemental  Table  S2.  Total  RNA  of  fruit  peel  was
extracted  with  RNAprep  Pure  Plant  Plus  Kit  (Tiangen,  Beijing,
China). A total of 1 µg RNA per sample was reverse transcribed
to cDNA using the PrimeScript™ reagent Kit  with gDNA Eraser
(TaKaRa,  Beijing,  China)  in  20 µL  of  reaction mixture.  The qRT-
PCR  was  performed  using  THUNDERBIRD  SYBR  qPCR  Mix
(TOYOBO, Shanghai, China) in a LightCycler® 96 System (Roche,
Basel, Switzerland). The expression of the candidate genes was
quantified  by  2−ΔCᴛ method,  with SmGAPDH (EGP1067575)  as
housekeeping  gene.  The  analysis  was  performed  with  three

biological  replicates.  Significant  differences  between  groups
were  assessed  by  one-way  analysis  of  variance  (ANOVA)
followed  by  Tukey's  test  (p <  0.05)  using  SPSS  16.0  Statistics
(SPSS Inc., Chicago, IL, USA).

 Results

 Inheritance of the less-photosensitive trait
Under  natural  growth  conditions,  both  '609'  and  '749'  exhi-

bited dark purple fruit  coloration,  with the peel  under calyx of
'609' being light purple and that of '749' being green (Fig. 1). To
investigate  their  responses  to  darkness,  fruits  were  bagged  to
block the exposure to light. Under such conditions, '609' plants
had  significant  lighter  purple  fruits  compared  to  those  grown
under  natural  conditions,  while  '749'  plants  had  white  fruits
(Fig. 1).

The  F1 hybrids  ('609'  ×  '749')  and  F2 populations  were  used
for  studying  the  inheritance  of  less-photosensitive  trait.  The
fruit color after bagging of each plant was visually examined. It
was  shown  that  under  bagging  conditions,  the  fruits  of  15  F1

individuals  generated  by  crossing  '609'  and  '749'  displayed  a
light  purple  coloration.  Among  178  F2 individuals,  139  and  39
plants  had light  purple  and white  fruits  after  bagging,  respec-
tively,  and  this  rate  approximately  fitted  an  expected
Mendelian  inheritance  ratio  of  3:1  (χ2 =  0.91  < χ2 0.05,1 =  3.84)
(Table  1).  These  results  indicated  that  the  less-photosensitive
trait  was controlled by a dominant gene, which was named as
SmLP hereafter.

 Identification of candidate region for SmLP through
BSA analysis

To  map SmLP,  BSA-based  sequencing  was  carried  out  by
bulking 30 F2 individuals with white-bagged fruits and purple-
bagged  fruits,  respectively.  The  high-throughput  sequencing
generated  78.25  Gb  clean  data,  which  comprised  122,455,776

 
Fig. 1    Fruits of '609' and '749' under (L) natural and (D) bagging
conditions.  CUC  indicates  the  color  under  calyx.  Eggplant  fruits
were  bagged  on  the  5th day  after  flowering,  and  the  picture  was
taken  on  the  14th day  after  bagging,  with  the  fruits  growing  in
natural conditions as control.
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and  138,367,408  high  quality  reads  from  'G  bulk'  and  'P  bulk'.

The Q30 ratio was higher than 93.50% (Supplemental Table S3).

The mapping rate exhibited an average cover depth of 99.63%

(Supplemental  Table  S4).  These  results  suggested  that  the

sequencing data were reliable and suitable for SNPs and Indels

detection.

A total of 60,648 poly morphic sites (43,725 SNPs and 16,923
Indels)  were  detected  in  the  BSA  data.  The  median  plus  three
standard  deviations  (SD)  of  the  fitted  values  at  all  loci  were
used as the association threshold for analysis, which was deter-
mined  to  be  0.49.  Based  on  this  association  threshold,  signifi-
cant  associations  were  detected  on  Chromosome  10  (Fig.  2a),
spanning a total length of 15.82 Mb and located at 4.38−20.15
Mb (Fig. 2b).

 Further mapping of SmLP by screening recombinants
In order to further determine the positioning range of SmLP,

178  individuals  in  the  F2 population,  and  10  KASP  primers,
which  were  designed  to  uniformly  cover  the  preliminary
mapping  interval,  were  used  to  analyze  the  polymorphism  of
the two parental lines. The SmLP locus was finally mapped to a
region  between  the  markers  SNP9  and  SNP3  (with  a  physical
ranging  from  7.4  Mb  to  12.5  Mb),  based  on  52  recombinant
individuals  (Fig.  3).  Within  the  candidate  interval,  there  were
280 SNPs and 74 Indels in total (Table 2). These SNPs and Indels
were  associated  with  116  genes  (Supplemental  Table  S5),

Table 1.    Genetic analysis of fruit peel pigmentation after bagging in F2

population.

Generation Numbers
of plants

Number of
plants with
light purple

fruit peel after
bagging

Number of
plants with
white fruit
peel after
bagging

Expected
ratio

χ2

609 10 10 0
749 10 0 10
(609 × 749) F1 15 15 0
(609 × 749) F2 178 139 39 3:1 0.91

Note: χ2 0.05 = 3.84, df = 1.

a b

 
Fig. 2    Distribution of ED-based linkage value on (a) all chromosomes and (b) on Chromosome 10. Each colored dot represents an ED-based
linkage value of an SNP site. Black lines represents ED value after fitting. Red dashed lines represents linkage threshold.

 
Fig.  3    Genotype  and  phenotype  analysis  of  recombinant  plants  in  the  F2 population  derived  from  a  cross  between  '609'  and  '749'.  (a)
Genotype of the photosensitive parent '749'.  (b) Genotype of the less-photosensitive parent '609'.  (h) Heterozygote of the '749' and '609'.  W,
White fruit peel after bagging; P, Purple fruit peel after bagging.
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among  which  six  genes  had  non-synonymous  mutations
(Table 3).

 Identification of candidate genes potentially
regulating less-photosensitivity

The  biosynthesis  pathway  of  anthocyanin  has  been  studied
and characterized very clearly in different plants; related genes
controlling  the  pathway  have  been  classified  into  structural
genes,  encoding  enzymes  that  directly  catalyze  stepwise  the
anthocyanin  biosynthesis  process,  and  regulatory  genes
controlling  the  expression  of  structural  genes[13].  The  expres-
sions of structural genes and regulatory genes were influenced
by  both  intrinsic  biological  factors  (such  as  hormones,  circa-
dian  rhythms)  and  external  environmental  factors  (such  as
light, temperature, insects, and fungi)[25,30,51−57]. Based on gene
functional  annotation  and  homologous  gene  functional  stud-
ies,  the SmLP region  was  analyzed  in  search  of  anthocyanin
biosynthesis-related  and  light  signal  transduction-related
genes,  and there were seven high confidence genes observed
in  this  region  (Table  4).  Among  them,  there  were  three  MYB
transcription factors. Both EGP21874 and EGP21875 encode a TF
SmMYB113, and they were homologs of AtMYB113 in Arabidop-
sis.  AtMYB113  was  identified  as  one  of  the  members  of  the

MBW  complex,  directly  regulating  the  expression  of  structural
genes[58]. EGP22005 is  homologs  of  the  gene AtMYB16 in
Arabidopsis,  which  is  involved  in  controlling  trichome  matura-
tion and cuticle formation[59,60].  In addition, EGP21863 encodes
auxin response factor 16 (ARF16),  and some ARFs were known
to  negatively  regulate  the  biosynthesis  of  anthocyanins,  such
as  ARF13  and  ARF2[61,62]. EGP21864 encodes  a  phototropic-
responsive  NPH3  family  protein. EGP21891 and EGP21908
encode phytochrome kinase substrates  (PKSs).  It  was reported
that under blue light, phototropins (PHOTs) could interact with
NPH3  and  PKSs,  regulating  the  bending  of  the  hypocotyl
during  phototropism[63−65].  Therefore, EGP21864, EGP21891,
and EGP21908 may  be  involved  in  responses  to  light,  particu-
larly to blue light.

The expression analysis of seven genes potentially participat-
ing  anthocyanin  biosynthesis  and  light  signal  transduction
(Table 4) and six genes with non-synonymous mutations (Table
3)  showed  that  only EGP21875, EGP21864,  and EGP21911 were
expressed in the '609'  and '749'  peel  (Fig.  4, Supplemental  Fig.
S1).  Therefore,  these  three  genes  were  considered  as  putative
genes controlling less-photosensitive coloration in eggplant.

EGP21875 encodes  a  MYB  TF  SmMYB113,  which  has  been
reported to participate in regulating the biosynthesis of antho-
cyanin  in  eggplant[20,22,23].  In  this  study,  the  expression  of
SmMYB113 in  the  '749'  peel  was  significantly  downregulated
after  bagging.  Whereas  the  expression  of SmMYB113 in  the
'609' peel was not affected by light (Fig. 4). There was one SNP
22.9 kb upstream of the start codon and one SNP 13 kb down-
stream of the stop codon of EGP21875, respectively (Table 5).

EGP21864 encodes  a  phototropic-responsive  NPH3  (Non-
Phototropic  Hypocotyl  3)  family  protein.  Studies  have  shown
that AtNPH3 is involved in regulating photomorphogenesis and
light-mediated  growth  responses  in Arabidopsis[66,67].  After
bagging, the expression of EGP21864 was downregulated in the
peel of both '609' and '749'. Notably, under bagging conditions,
the  expression  of EGP21864 in  the  peel  of  '609'  was  signifi-
cantly  higher  than  that  in  '749'  (Fig.  4).  There  was  one  SNP
within the intronic region of EGP21864 (Table 5).

EGP21911 encodes  a  protein  with  unknown function.  A  SNP
(G/A) in '609' identified through sequencing analysis resulted in
an  amino  acid  change  from  Ala-15  to  Thr-15  in  the  first  exon
(Table  5).  Under  natural  conditions, EGP21911 showed  no
distinctively  different  expression  level  between  the  two
parental lines. However, under bagging conditions, the expres-
sion  of EGP21911 was  significantly  higher  in  the  peel  of  '609'
compared with '749' (Fig. 4).

Table 2.    Classifications of SNPs and Indels in the candidate region.

Category The number of SNPs The number of Indels

Intergenic 222 56
Upstream 23 5
3'UTR 0 1
Non-synonymous 6 0
Synonymous 1 0
Intronic 9 1
Downstream 19 11

Table 3.    Nonsynonymous SNPs and their related genes in the candidate
region.

Gene ID SNP loci Base
substitution type Annotation

EGP21857 7447780 C- > T Uncharacterized protein
LOC102595296

EGP21873 7722116 C- > G 12-oxophytodienoate
reductase 1

EGP21911 9870254 C- > T Undefined
EGP21972 11985911 C- > T Hypothetical protein

BC332_00197
EGP21983 12225282 G- > A Putative GDSL

esterase/lipase-like
EGP22005 12532757 G- > A MYB domain protein 113

Table 4.    Candidate genes involved in biosynthesis of anthocyanin and light signal transduction.

Gene ID SNP category Indel category Annotation

EGP21874 Intergenic region in upstream, Intergenic
region in downstream

Intergenic region in downstream MYB domain protein 113

EGP21875 Intergenic region in upstream, Intergenic
region in downstream

− MYB domain protein 113

EGP22005 Upstream, Non-synonymous − MYB domain protein 16
EGP21863 Upstream Intergenic region in upstream Auxin response factor 16
EGP21864 Intron − Phototropic-responsive NPH3 family

protein
EGP21891 Intron, Downstream, Intergenic region in

downstream
Intergenic region in downstream Phytochrome kinase substrate 2

EGP21908 Intergenic region in downstream Intergenic region in downstream Phytochrome kinase substrate 1
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 Discussion

Eggplant  fruit  pigmentation  is  usually  affected  by  low  light
conditions[39].  While  the accumulation of  anthocyanins  in  less-
and  non-photosensitive  varieties  was  less  influenced  by  dark-
ness  (Fig.  1)[20,38],  thus  identification  of  the  genes  responsible
for  less-  and  non-photosensitivity  is  crucial  for  breeding  low
light-tolerant  varieties.  Most  previous  studies  focused  on
mapping  genes  related  to  purple  coloration  under  the  calyx,
but  did  not  distinguish  between  less-  and  non-
photosensitivity[41,43,44].  A  related  study  reported  that  a  domi-
nant  gene  controlling  non-photosensitivity  in  eggplant  was
mapped  between  19.9−20.2  Mb  on  chromosome  10[45],  which
is  close  to,  but  does  not  overlap  with  the  candidate  region
(7.4−12.5  Mb)  we  identified  for  controlling  less-photosensitiv-
ity in this study. Considering the different mapping results and
the distinct phenotypes observed after bagging treatment, we
speculated  that  the  loci  controlling  non-photosensitivity  and
less-photosensitivity in eggplant may be different.

In  this  study,  we  identified  three  putative  genes  conferring
less-photosensitivity  in  eggplant. EGP21875 encodes  a  MYB TF
SmMYB113, which plays critical roles in regulating anthocyanin
biosynthesis  by  activating  the  expression  of  structural
genes[22,23].  Overexpression of SmMYB113 in  eggplant  resulted
in  a  significant  upregulation  of  the  expression  levels  of  struc-
tural  genes,  such  as SmCHS, SmCHI, SmF3H and SmANS,  and  a
substantial  accumulation  of  anthocyanins  in  the  regenerating
shoots  of  eggplant[23],  indicating  that  upregulation  of  the
SmMYB113 may  directly  increase  anthocyanin  accumulation.
Moreover, the expression level of EGP21875 in the peel of '609'
was significantly higher than that of '749' under bagging condi-
tions  (Fig.  4).  Therefore,  the  coloration  of  the  '609'  fruit  peel
under bagging conditions may be associated with the upregu-
lation of SmMYB113 expression, which may attribute to SNPs in
the intergenic region.

Another  potential  candidate  is EGP21864 encoding  a
phototropism  response  NPH3  family  protein.  Studies  have
shown NPH3 is  involved in the perception and transduction of
light  signals,  allowing  plants  to  properly  orient  their  growth
towards  light.  The  hypocotyl  of nph3 mutant  in Arabidopsis
thaliana failed  to  exhibit  bending  towards  light  and  remains
mostly  straight,  resulting  in  a  defective  phototropic
response[66−68].  The  expression  of EGP21864 was  down-regu-
lated both in  the peel  of  '609'  and '749'  under  bagging condi-
tions,  compared  with  that  in  natural  conditions.  And  the
expression  of EGP21864 in  '609'  was  significantly  higher  than
that  in  '749'  under  bagging  conditions  (Fig.  4).  Therefore,  the
SNP  of EGP21864 may  affect  the  sensitivity  of  plants  to  light.
However, there was no literature or report indicating the direct
involvement of phototropism response NPH3 family protein in
anthocyanin biosynthesis, and future functional studies should
be conducted to validate its specific contribution to fruit  color
determination.

In  addition, EGP21911,  a  gene  with  non-synonymous  muta-
tion SNP, encodes a protein with unknown function. Its expres-
sion  in  '609'  and  '749'  peel  was  not  regulated  by  light.  Under
bagging  condition,  the  expression  in  the  peel  of  '609'  was
significantly  higher  than  that  of  '749'.  Whether  this  gene  is
involved  in  anthocyanin  biosynthesis  remains  to  be  further
studied.

This study focused on mining the genes responsible for less-
photosensitivity using BSA analysis,  while other reported stud-
ies  have  utilized  various  methods  such  as  traditional  QTL
mapping  and  Genome  Wide  Association  Studies  (GWAS)  to
identify  the  locus  for  fruit  color  under  the  calyx[41−45].  In  BSA
analysis,  individuals  with  similar  phenotype  are  grouped
together,  and  molecular  markers  are  used  to  analyze  the
pooled  samples  in  order  to  identify  loci  associated  with  the
traits of interest.  BSA analysis has been widely utilized in gene
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Fig. 4    The transcript level of EGP21875, EGP21864 and EGP21911 in the fruit peel of '609' and '749'. The y axis indicated the relative expression
levels of each gene. L, Under natural conditions; D, Under bagging conditions. The relative expression was determined by 2−ΔCᴛ method. The
date are means from three biological  replicates with three technical  replicates.  Error bars indicate SEs.  Letters above each column represent
significant differences based on one-way analysis of variance (ANOVA) followed by Tukey's test (p < 0.05).

Table 5.    Candidate genes involved in less-photosensitive anthocyanin biosynthesis in the peel of '609'.

Gene ID SNP loci Substitution type SNP category Distance Annotation

EGP21875 7808145
7770881

C- > A
T- > C

Intergenic region in upstream,
Intergenic region in downstream

22,893 bp
13,006 bp

MYB domain protein 113

EGP21864 7625998 C- > T Intron − Phototropic-responsive NPH3 family
protein

EGP21911 9870254 C- > T Non-synonymous − −
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mapping  due  to  its  advantages  of  high  efficiency,  low  cost,
time-saving,  and  labor-saving[69−72].  QTL  mapping  has  been
proved to be a powerful method to identify regions of genome
that  co-segregate  with  a  given  trait,  especially  quantitative
traits.  But  QTL  mapping  is  highly  time-consuming  and  labor-
intensive[73−76].  Based  on  linkage  disequilibrium,  GWAS  is  an
effective  analytical  tool  for  deciphering  the  genetic  basis  of
phenotypic  diversity  in  crops.  It  possesses  significant  advan-
tages  of  high  throughput,  efficiency,  and  reduced  time
consumption[77−79]. The aforementioned studies were primarily
conducted  on  the  basis  of  second-generation  sequencing  or
existing molecular markers, obtaining multiple QTLs, candidate
genes,  or  molecular  markers  associated  with  fruit  color  under
the  calyx[41−45].  Additionally,  except  for  SNPs  and  Indels,  some
tissue color variations in horticultural crops were reported to be
related  to  variations  in  large  genomic  segments,  such  as
promoter variations,  insertion of transposons,  multiple repeats
sequence,  deletion  of  segments,  etc[80−86].  The  detections  of
such variations may necessitate more refined sequencing tech-
niques, such as third-generation sequencing.

In summary, EGP21875 encoding a MYB TF, EGP21864 encod-
ing a phototropic response NPH3 family protein, and EGP21911
encoding an unknown functional  protein were putative genes
for  regulating  less-photosensitive  anthocyanin  biosynthesis  in
eggplant.  Of  note, EGP21875 (SmMYB113)  was  the  best  candi-
date  gene.  Future  studies,  including  functional  validation  and
genetic  mapping,  will  help  to  unravel  the  intricate  regulatory
networks  and  molecular  mechanisms  involved  in  less-photo-
sensitive coloration in eggplant.

 Conclusions

The  less-photosensitive  pigmentation  in  eggplant  was
controlled  by  a  single  dominant  gene.  The  causal  gene  was
mapped on chromosome 10, spanning from 7.4 Mb to 12.5 Mb.
Three candidate genes, namely EGP21875 (MYB domain protein
113), EGP21864 (Phototropic-responsive  NPH3  family  protein)
and EGP21911 (Unknown  protein),  were  identified  as  the
putative  genes  conferring  less-photosensitive  coloration  in
eggplant.
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