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Abstract
In  China,  the  issue  of  facility  succession  disorder  is  widespread.  Summer  catch  crop  is  an  effective  method  for  overcoming  the  continuous

cropping barrier in facility vegetables. In this study, we designed six summer filling treatments, reporting for the first time on these treatments,

which included newly planted New Zealand spinach (NZS) as well as spring-planted New Zealand spinach (I-NZS), Chinese mallow (I-CM), and

Malabar  spinach  (I-MS)  for  cucumber  intercropping  and  subsequent  summer  fallow.  Compared  to  CK,  all  six  fallow  treatments  significantly

reduced soil electrical conductivity (EC), increased soil organic matter (SOM) contents, and soil dehydrogenase activity (DHA) (p < 0.05). Among

the  six  summer-filling  treatments,  I-MS  and  I-NZS  treatments  had  significantly  higher  leafy  vegetable  economic  yields  (30.4,  28.3  t·ha−1,

respectively) and net income (USD  9,730, 17,622 ha−1, respectively) than the other treatments (p < 0.05). The research results provide a practical

reference for alleviating the soil secondary salinization of cucumber greenhouse. They also provide a technical basis and support for improving

the effectiveness of facility-based agriculture and enriching cropping systems.

Citation:   Wang D,  Yao J,  Sharif  R,  Chen K,  Lv  J,  et  al.  2024.  Evaluation of  the impact  of  different  summer catch crops on continuous cropping soil
properties under plastic tunnel cultivation. Vegetable Research 4: e009 https://doi.org/10.48130/vegres-0024-0008

 
 Introduction

Facility vegetable production in China is  primarily limited to
a few economically  beneficial  crops such as tomatoes,  cucum-
bers,  eggplants,  and  peppers.  However,  the  single  repetitive
planting  system,  high  multiple  cropping  index,  blind  use  of
pesticides  and  fertilizers[1−3],  combined  with  the  semi-closed
environment of the facilities have led to secondary salinization
of  the  soil,  and  decrease  in  organic  matter  content  as  well  as
enzyme  activity[4−8].  Research  has  shown  that  continuous
cropping  in  a  closed  facility  can  hinder  crop  growth  and
development[9] and  quality  of  produce[10,11].  Continuous  crop-
ping  has  become  a  bottleneck,  restricting  the  sustainable
development  of  the  facility  vegetable  industry  in  China[12].
Thus,  solving  the  continuous  cropping  obstacles  of  facility
vegetables has become a critical issue[13].

Currently, there are many in-depth studies on the causes and
mechanisms  of  cropping  constraints[14−17].  Some  measures
have been proposed to prevent  and resolve these constraints.
In  recent  years,  the  use  of  summer  cover  crops  to  restore  the
soil for continuous cropping has received attention[18]. Fallow is
essentially  a  short-term  form  of  crop  rotation[19],  compared  to
traditional crop rotation. It does not change the original plant-
ing  habits  of  only  planting  some  short-lived  crops  during  the
fallow  period[20].  Planting  catch  crops  can  not  only  effectively
increase surface coverage and suppress weeds[21,22], but reduce
water evaporation and salt accumulation, block soil N loss[23,24],
promote increased yield of subsequent crops[25−27] and reduces
mineral nutrient leaching[28,29]. Isık et al. found that cover crops
such as sorghum, and Sudan grass significantly suppressed the
growth  of  early  organic  lettuce  weeds[30].  Xiao  et  al.  observed

that  reduced  nitrogen  and  phosphorus  loss,  increased  soil
organic matter, and also considerable economic benefits weere
obtained  during  the  summer  fallow  period  in  plastic  green-
houses  by  planting  catch  vegetables  such  as  leafy  turnip,
pepper  leaf  and  edible  amaranth[31].  Qi  et  al.  studied  continu-
ous cropping corn and wheat as green manure in plastic green-
houses  for  two  years  during  the  summer  fallow  season.
Compared to the control,  with corn and wheat as catch crops,
the  EC  of  soil  decreased,  and  soil  organic  matter  content
increased  by  21.32%  and  51.61%.  The  of  soil  urease,  catalase,
and sucrase activities also all significantly increased.

In China, there is typically a 1–2-month summer break period
(July–September),  which  is  the  high-temperature  season  and
also the off-season for leafy vegetables in northern China. There
have  been  numerous  reports  of  planting  cover  crops  during
summer breaks,  such as  legumes,  green manures  (hairy  vetch,
soybeans),  grains  (such  as  wheat,  rice,  sweet  corn),  as  well  as
vegetables (like pak choi and amaranth)[22,26,32−34].  These crops
however  had  relatively  low  economic  value  and  limited  bene-
fits for farmers in terms of increasing their income. For the first
time,  we  utilized  the  previous  intercrops  of  New  Zealand
spinach (I-NZS), Malabar spinach (I-MS), and Chinese mallow (I-
CM),  as  well  as  newly  planted  New  Zealand  spinach  (NZS),
which is of great economic value, for summer filling in cucum-
ber  continuous  cropping  greenhouses.  In  addition,  it  also  in-
cluded  summer-filled  edible  amaranth  (EA)  and  water  spinach
(WA).

In this study, we used no catch crop as the control (CK) , and
after planting the six catch crop treatments mentioned above,
we  investigate:  (1)  whether  the  current  status  of  secondary
salinization  in  continuous  cropping  soils  has  been  mitigated?
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(2)  does  the  soil  organic  matter  content  of  continuous
cropping  soils  increase?  (3)  how  does  soil  enzyme  activity
change in continuous cropping soils?

 Materials and methods

 Site description
This  experiment  was  conducted  at  the  Horticulture  Field  of

Northwest A&F University in Yangling, China (34°17' N, 108°4' E).
A steel frame structure plastic greenhouse with a width of 8 m
and  a  length  of  40  m  was  used  in  this  study.  The  greenhouse
had been used to grow cucumbers for eight consecutive years,
leading  to  the  secondary  salinization  of  greenhouse  soil  and
damage  to  the  cucumber  plant  system.  The  parameters
analyzed  for  control  soil  yielded  the  following  data:  the  EC
value  was  379 µS·cm−1,  the  Na+ content  1.09  g·kg−1,  the  TN
content  1.35  g·kg−1,  the  TP  content  0.965  g·kg−1,  and  the  TK
content was recorded as 8.36 g·kg−1.

 Experimental materials
This study selected five types of vegetables as catch crops for

summer  fallow  cultivation,  including  water  spinach  (Ipomoea
aquatica F.),  Chinese  mallow  (Malva  verticillata L.),  Malabar
spinach  (Basella  alba L.),  edible  amaranth  (Amaranthus
mangostanus L.), and New Zealand spinach (Tetragonia tetrago-
nioides L.).  These  five  vegetables  were  chosen  from  the  leafy
vegetable family, which have a tendency to remove salt. There-
fore,  we  selected  them  for  further  summer  filling  experiments
within a cucumber greenhouse facility.

 Experimental design and crop management
This  experiment  was  conducted  based  on  the  spring  inter-

cropping  of  cucumber  with  leafy  vegetables  in  2020.  For  the
experiment,  a  trench of  50 cm deep was dug in the intercrop-
ping  area  and  a  plastic  cloth  was  used  to  vertically  divide  the
area. There were seven treatments, including: (1) using no catch
crop  as  the  control  (CK);  (2)  broadcasting  water  spinach  20  g
per  area  (WS);  (3)  broadcasting  edible  amaranth  1  g  per  area
(EA);  (4)  planting  New  Zealand  spinach  seedlings  with  3–4
leaves  stage,  averaging  48  plants  per  area  (NZS);  (5)  planting
cucumber  about  10  d  after  spring,  broadcasting  Chinese
mallow  in  the  intercropping  area  (5  g  per  area)  during  the
cucumber intercropping period, and leaving Chinese mallow in
the  intercropping  area  after  the  cucumber  is  removed  (I-CM);
(6)  planting  cucumber  about  10  d  after  spring,  broadcasting
Malabar  spinach  in  the  intercropping  area  (40  g  per  area)
during  the  cucumber  intercropping  period,  and  leaving
Malabar spinach in the intercropping area after the cucumber is
removed (I-MS);  (7)  planting New Zealand spinach (1 row × 12
plants·row−1)  in  the intercropping area 28 cm apart  from each
other  in  two  rows  of  cucumber  per  plot  during  the  cucumber
intercropping period,  and leaving New Zealand spinach in the
intercropping area after the cucumber is removed (I-NZS). Each
treatment  was  repeated  three  times,  for  a  total  of  21  filling
areas,  each with an area of 4.2 m2 (3.5 m × 1.2 m).  The experi-
ment  lasted  33  d,  from  June  29,  2020,  to  August  1,  2020.  All
treatments  were  not  fertilized  and  were  watered  normally
during  the  growing  period  (Supplemental  Fig.  S1).  Special
attention needs to be paid to the fact that the last three treat-
ments  (I-CM,  I-MS,  I-NZS)  utilize  the  previous  (spring  2020)
residual crop.

 Soil sample collection
Soil  sampling  was  carried  out  at  the  beginning  and  end  of

the experiment. A 5 cm diameter soil auger was used to collect
the top 0~10 cm of soil. 'S' mixed sampling method was used to
collect  soil  samples  in  each  plot.  After  collection,  the  soil
samples  were  crushed  and  mixed  in  an  iron  pan,  and  then
placed in a cool place to air dry. The soil samples were used for
analysis  of  soil  chemical  characteristics  and  determination  of
soil enzyme activity.

 Determination of soil chemical properties
Soil samples with a diameter of 1 mm are used to determine

the content  of  soil  pH,  EC,  and total  nitrogen (TN),  total  phos-
phorus (TP), and total potassium (TK). Soil samples with a diam-
eter of 0.150 mm are used to analyze the content of soil organic
matter  (SOM),  calcium  (Ca),  magnesium  (Mg),  sodium  (Na+),
and  chloride  (Cl−).  The  EC  value  of  the  soil  leachate  is  deter-
mined  by  electrical  conductivity,  following  the  method  of
Paladino et al.[35]. The SOM content was determined by the ASI
method,  following  the  method  of  Mehlich[36].  The  TN  content
was  quantified  by  the  Kjeldahl  method,  whereas  the  TP
contents  were  measured  by  the  molybdenum  blue-ascorbic
acid  method.  Additionally,  the  method  of  Fan  et  al.  used  to
examine  the  TK  content[37].  The  content  of  Ca,  Mg,  and  Na+ is
determined  by  atomic  absorption  spectrophotometry,  follow-
ing the methods of Han et al.[38]. The Cl− content is determined
by  a  mercury  thiocyanate  spectrophotometer,  following  the
methods of Cherif et al.[39]. Except for Cl−, the contents of other
mineral elements in the table are the sum of soluble and insolu-
ble elements.

 Determination of soil enzyme activities
The  crushed  soil  sample,  after  being  screened  through  a

0.150  mm  sieve,  is  used  for  determining  soil  enzyme  activity.
Soil  urease  activity  (URE)  is  determined  using  the  phenol-
sodium salicylate colorimetric  method while  soil  neutral  phos-
phatase  activity  (NP)  was  quantified  using  the  sodium  phos-
phate-phenol  colorimetric  method.  The  soil  sucrase  activity
(SUC)  was  inspected  using  the  3,5-dinitrosalicylic  acid  colori-
metric method. We also investigated the catalase activity (CAT)
using  ultraviolet  spectrophotometry.  The  soil  dehydrogenase
activity  (DHA)  was  tested  using  the  chloro-triphenyl-tetra-
zolium method. The above methods of determination are refer-
enced by Guan[40].  The incubation time of  soil  catalase was 20
min, the other four kinds of soil enzymes were cultured for 24 h.

 Data analysis
The data was analyzed using Microsoft Excel 2010 for statisti-

cal  analysis  and IBM SPSS Statistics  23 (Duncan's  new multiple
comparison method) for significance analysis (p < 0.05). Graphs
were generated using GraphPad.Prism.9.5.0.730 and R language
(the 'Hmisc' and 'corrplot' packages).

 Results

 Effects of summer catch leafy vegetables on soil
chemical properties of continuous cucumbers
cropping

At the end of the summer season, the soil EC, Cl−, TN, TP, and
TK  content  under  leafy  vegetable  crops  were  significantly
reduced  compared  to  the  CK.  On  the  contrary,  the  soil  SOM
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content increased significantly compared to the CK. Under the
I-MS,  I-NZS,  and  EA  treatments,  the  Ca  contents  were  signifi-
cantly reduced compared to the CK. The Mg content in the soil
used  for  EA,  I-CM,  and  I-NZS  was  considerably  reduced
compared to that of CK. Except for the I-CM treatment, the Na+

content  of  other  filling  treatments  was  significantly  reduced.
New Zealand spinach,  due to  its  larger  biomass,  absorbs  large
amounts of soluble salts, Ca2+, and Na+, and has a stronger abi-
lity  to  utilize  N,  P,  and  K  (p <  0.05).  There  are  also  differences
among  different  plants  in  terms  of  nutrient  utilization,  with  I-
NZS  and  I-MS  showing  a  stronger  ability  to  absorb  nitrogen
(Table 1).

 Effects of summer catch leafy vegetables on soil
enzyme activities of continuous cucumbers
cropping

The majority of the soil enzymes are released by microorgan-
isms.  Exploring  the  changes  in  soil  enzyme  activity  in  high-
intensity cucumber cropping facilities can reflect the activity of
microorganisms  to  some  extent.  At  the  end  of  the  summer
catch  crop,  except  for  the  NZS  treatment,  the  decrease  in
urease activity  was significant  for  all  other  summer catch crop
treatments  when  compared  to  the  CK.  Excluding  I-NZS  treat-
ment, all catch crop treatments showed a significant increase in
neutral  phosphatase  activity.  The  sucrase  activity  for  all  catch
crop treatments was significantly lower than CK. The changes in
catalase  activity  were  significantly  different  for  all  catch  crops
except EA.  The dehydrogenase activity for  all  catch crop treat-
ments was significantly higher than CK (Table 2).

 Analysis of yield and net income of summer catch
leafy vegetables

$

The  economic  and  biological  yields  of  different  summer
catch  crops  are  significantly  different,  with  I-NZS  and  I-MS
having the highest yields (Figs 1 & 2).  For WS, EA, NZS, I-CM, I-
MS,  and  I-NZS  treatments:  (1)  the  average  economic  yields  of
leafy  vegetables  were  4,071,  7,691,  7,439,  6,877,  30,395,  and
28,262 kg·ha−1,  respectively (Fig. 1); (2) the actual selling prices
of leafy vegetables were CNY¥ 3, 2, 10, 7, 4, and 8 kg−1, respec-
tively  (Supplemental  Table  S1);  (3)  leafy  vegetables  profit
margins were 45%, 50%, 20%, 55%, 55%, and 55%, respectively
(Supplemental  Table  S1);  (4)  net  profits  were USD  800,  1,119,
1,990,  3,853,  9,730,  and  17,622  ha−1 (Fig.  3).  Among  them,  the
I-NZS and I-MS generated the highest net income compared to
all  catch crops (Fig. 3).  Net income was calculated by multiply-
ing  the  economic  production  of  leafy  vegetables,  the  price  of
leafy  vegetables  and  the  profitability  of  leafy  vegetables.  The
exchange rate between the US dollar and the Chinese yuan was
6.87212 (Supplemental Table S1).

 Relationship between the yield of summer catch
crops and soil

The  economic  yield  of  leafy  vegetables  is  positively  corre-
lated with the biological yield of leafy vegetables. The decrease
of  TN,  TK,  Ca,  EC,  and  TP  are  negatively  correlated  with  the
dehydrogenase,  urease,  and  catalase  activity.  The  relationship
between soil EC and soil properties such as TN, TK, Ca, Na+, TP,
Mg,  Cl−,  and the decrease in  sucrase activity  is  positive.  Mean-
while, a negative relationship between urease and dehydroge-
nase activity was also observed (Fig. 4).

Table 1.    Effects of summer catch leafy vegetables on soil chemical properties of continuous cucumber cropping.

Treatments EC
(µS·cm−1)

SOM
(g·kg−1)

TN
(g·kg−1)

TP
(g·kg−1)

TK
(g·kg−1)

Ca
(g·kg−1)

Mg
(g/kg−1)

Na+

(g·kg−1)
Cl−

(g·kg−1)

CK −21 ± 6.18d 0.432 ± 0.00a 0.273 ± 0.07e 0.010 ± 0.01d −0.05 ± 0.07d −0.02 ± 0.32c −0.04 ± 0.24b 0.017 ± 0.04d −0.002 ± 0.02d
WS 40 ± 1.41b −0.615 ± 0.11c 0.487 ± 0.12d 0.170 ± 0.02b 0.42 ± 0.41c 0.22 ± 0.15c 0.39 ± 0.12ab 0.162 ± 0.04b 0.036 ± 0.0abc
EA 81 ± 13.06a −0.649 ± 0.20c 0.676 ± 0.05c 0.207 ± 0.06b 1.05 ± 0.15b 1.54 ± 0.50b 0.99 ± 0.66a 0.336 ± 0.01a 0.051 ± 0.02a
NZS 18 ± 6.65c −0.623 ± 0.08c 0.730 ± 0.10bc 0.075 ± 0.03c 0.58 ± 0.15c 0.43 ± 0.20c 0.46 ± 0.39ab 0.069 ± 0.02c 0.022 ± 0.00c
I-CM 27 ± 9.43c −0.777 ± 0.24c 0.549 ± 0.06d 0.415 ± 0.04a 0.95 ± 0.13b 0.77 ± 0.02c 0.91 ± 0.39a 0.032 ± 0.02d 0.043 ± 0.01ab
I-MS 40 ± 3.68b −0.592 ± 0.08c 0.819 ± 0.09ab 0.379 ± 0.07a 1.37 ± 0.20a 2.62 ± 0.57a 0.38 ± 0.33ab 0.134 ± 0.04b 0.021 ± 0.01c
I-NZS 87 ± 6.50a −0.458 ± 0.04b 0.900 ± 0.05a 0.223 ± 0.04b 1.61 ± 0.14a 1.91 ± 0.58ab 0.80 ± 0.00a 0.135 ± 0.01b 0.029 ± 0.00bc

CK: bare cultivated land as a control, WS: water spinach, EA: edible amaranth, NZS: newly planted New Zealand spinach, I-CM: Chinese mallow, I-MS: Malabar
spinach,  I-NZS:  the  previous  New  Zealand  spinach.  EC:  electrical  conductivity,  SOM:  organic  matter,  TN:  total  nitrogen,  TP:  total  phosphorus,  TK:  total
potassium. The soil chemical property data are the values corresponding to the initial stage of the summer catch period minus the values corresponding to
the  end  of  the  summer  catch  period,  the  negative  sign  '−'  indicates  an  increase  in  the  value  of  a  soil  chemical  property  and  vice  versa.  The  significant
difference in confidence level p < 0.05.

Table 2.    Effects of summer catch leafy vegetables on soil enzyme activities of continuous cucumber cropping.

Treatments
URE

(mg NH3-N/g soil)
NP

(mg Phenol/g soil)
SUC

(mg Glu/g soil)
CAT

(mmol H2O2/g soil)
DHA

(µg TTC/g soil)

CK 0.929 ± 0.21a −0.023 ± 0.01b 0.64 ± 0.13d 0.74 ± 0.11a 10.53 ± 0.20a
WS 0.386 ± 0.00b −0.086 ± 0.00c 5.05 ± 0.53bc −0.28 ± 0.02d −1.27 ± 0.14b
EA −0.230 ± 0.00c −0.168 ± 0.02ef 6.33 ± 0.66a 0.69 ± 0.21a −3.29 ± 0.31d
NZS 0.802 ± 0.25a −0.137 ± 0.02de 4.27 ± 0.19c 0.07 ± 0.00c −2.68 ± 0.25c
I-CM 0.360 ± 0.03b −0.133 ± 0.02d 4.97 ± 0.33bc −1.31 ± 0.23e −5.48 ± 0.40e
I-MS 0.319 ± 0.02b −0.185 ± 0.02f 5.21 ± 0.74b −1.63 ± 0.00f −3.52 ± 0.42d
I-NZS 0.164 ± 0.12b 0.072 ± 0.01a 4.49 ± 0.08bc 0.32 ± 0.07b −11.18 ± 0.05f

CK: bare cultivated land as a control, WS: water spinach, EA: edible amaranth, NZS: newly planted New Zealand spinach, I-CM: Chinese mallow, I-MS: Malabar
spinach,  I-NZS:  the previous New Zealand spinach.  URE:  urease activity,  NP:  neutral  phosphatase activity,  SUC:  sucrase activity,  CAT:  catalase activity,  DHA:
dehydrogenase activity. The enzyme activity data are the values corresponding to the initial stage of summer catch period minus the values corresponding to
the  end  of  summer  catch  period,  the  negative  sign  '−'  indicates  an  increase  in  soil  enzyme  activity  and  vice  versa  for  a  decrease  in  enzyme  activity.  The
significant difference confidence level p < 0.05.
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 Discussion

High concentrations of salt can reduce the quality of agricul-
tural soil[41], and eventually bring harm to the production[42−45].
Secondary  salinization  of  soil  has  become  the  main  constraint
in protected vegetable production, and it  occurs mainly in the

top  0~10  cm[46].  Soil  EC  is  an  indicator  for  evaluating  soil
soluble  salt  content[47].  This  paper  studied  the  reducing  effect
of  water  spinach,  Chinese  mallow,  Malabar  spinach,  edible
amaranth, and New Zealand spinach on the secondary saliniza-
tion  of  soil  in  cucumber  greenhouse.  The  results  not  only
showed  a  significant  positive  correlation  between  the  reduc-
tion of soil EC and the decrease of Ca, Mg, Na+, and Cl− (Fig. 4),
but  also  indicated  a  significant  positive  correlation  with  the
biological  yield of  leafy vegetables (Fig.  4).  All  five cover crops
can  significantly  reduce  the  soluble  salt  content  in  the  soil
(Table  1),  indicating  that  summer  cover  cropping  can  effec-
tively  reduce secondary salinization.  Among all  treatments,  EA
and I-NZS treatments showed the greatest decrease in soluble
salt content in the soil (Table 1), highlighting the importance of
selecting  appropriate  vegetable  catch  crops.  Considering  the
comprehensive  salt  removal  effect,  economic  benefits,  and
labor  savings,  the  best  summer  cover  crops  were  I-MS  and  I-
NZS  (Table  1, Fig.  3).  This  occurred  because  these  two  crops
were  interplanted  with  spring  cucumbers  and  were  left  for
summer  cover  cropping  post-cucumber  harvest.  During  this
period,  the  growth time of  Malabar  spinach and New Zealand
spinach became longer, resulting in greater biomass. These two
crops were not only efficient for salt removal but also proved to
be  lucrative  during  the  off-season  when  the  supply  was  rela-
tively short.

Soil  SOM is  a  key factor  in soil  fertility[48] and can directly  or
indirectly  impact  crop  growth  by  providing  nutrients  or
improving  soil  physical  and  chemical  properties[45,49].  A  soil
SOM content below the critical threshold can result in a serious
decline  in  soil  quality[50].  Cover  crops  can  increase  soil  SOM
content[51].  It  has  been  reported  that  multiple  cropping  broc-
coli  can  significantly  increase  soil  organic  carbon  post-bean
harvest  period,  possibly  due  to  root  deposition[52].  There  are
also opinions suggesting that the residues of cover crops (such
as  fallen  leaves)  are  also  beneficial  in  increasing  soil  SOM
content[53].  This  experiment  found  that  at  the  end  of  the
summer filling period, the soil SOM content of all the filled leafy
vegetables increased significantly (Table 1),  with EA's soil  SOM
increasing by  19.46% (Table  1).  Our  study was  in  line  with  the
study of Xiao et al.  who reported that the soil SOM of summer
filled  amaranth  increased  by  16.47%[31].  The  soil  SOM  content
of  the  CK  decreased  (Table  1),  which  may  be  due  to  degrada-
tion and loss of soil SOM in the summer break[54].  The changes
in soil SOM of different treatments indicated that summer-filled
leafy vegetables were beneficial in improving soil SOM values.

NH+4

Most soil enzymes come from soil microorganisms[55−57] and
play  a  key  role  in  the  decomposition  of  soil  organic  matter,
nutrient  cycling,  and  humus  synthesis [51,58].  Soil  enzyme  acti-
vity  is  sensitive  to  changes[59],  and  directly  alters  the  soil
microbiome[60].  Generally, soil with higher enzymatic activity is
highly  fertile[61].  Previous  reports  have  indicated  that  soil
urease, phosphatase, sucrase, catalase, and dehydrogenase can
serve as  sensitive enzyme indicators  for  soil  in  facilities[62].  Soil
urease  is  used by  microorganisms as  both an intracellular  and
extracellular enzyme and mainly functions outside of cells[63,64].
Urease is used by the microorganism to catalyze the hydrolysis
of urea in soil into ammonium carbonate, which further decom-
posed  to  release  and  CO2

[65].  Soil  phosphatase  catalyzes
the  transformation  of  organic  phosphorus  into  inorganic
phosphorus[66],  serving  as  a  biological  indicator  for  predicting
soil  phosphorus  quality[67].  Soil  sucrase  enzyme  plays  an
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Fig. 1    Economic yield of summer catch leafy vegetables. CK, bare
cultivated  land  as  a  control;  WS,  water  spinach;  EA,  edible  ama-
ranth;  NZS,  newly  planted New Zealand spinach;  I-CM,  previously
intercropped chinese mallow; I-MS, previously intercropped mala-
bar spinach; I-NZS, previously intercropped New Zealand spinach.
The significant difference confidence level is p < 0.05.
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Fig. 2    Biological yield of summer catch leafy vegetables. CK, bare
cultivated  land  as  a  control;  WS,  water  spinach;  EA,  edible  ama-
ranth;  NZS,  newly  planted New Zealand spinach;  I-CM,  previously
intercropped  chinese  mallow;  I-MS,  previously  intercropped
malabar  spinach;  I-NZS,  previously  intercropped  New  Zealand
spinach. The significant difference confidence level is p < 0.05.
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Fig.  3    Net  income  of  summer  catch  leafy  vegetables.  CK,  bare
cultivated  land  as  a  control;  WS,  water  spinach;  EA,  edible  ama-
ranth;  NZS,  newly  planted New Zealand spinach;  I-CM,  previously
intercropped  chinese  mallow;  I-MS,  previously  intercropped
malabar  spinach;  I-NZS,  previously  intercropped  New  Zealand
spinach. The significant difference confidence level is p < 0.05.
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important role in increasing soil carbon sources, catalyzing the
hydrolysis  of  sucrase  into  glucose  and  fructose,  which  can  be
absorbed and utilized by plants and microorganisms. Soil cata-
lase  is  an  oxidoreductase[68],  found  in  all  aerobic  bacteria  and
most  facultative  aerobic  bacteria[69],  catalyzing  the  decompo-
sition  of  H2O2 to  reduce  oxidative  stress.  Although  its  high
enzyme activity has a stronger detoxifying potential  but is  not
favorable for soil microorganism growth[70]. Soil dehydrogenase
is  a  major  representative  of  oxidoreductases[71],  which  only
exist  in  living  cells[72] and  are  involved  in  the  respiratory  and
metabolic  pathways  of  both  aerobic  and  anaerobic
microorganisms[73].  It  oxidizes  soil  organic  matter  by  transfer-
ring  protons  and  electrons  from  the  substrate  to  the
acceptor[70] and is often used as a measure of overall soil micro-
bial activity[63,74,75].

Previous studies have shown that continuous cultivation can
reduce  soil  enzyme  activity [5,76],  while  fallow  is  beneficial  for
improving  soil  quality[26].  Karasawa  &  Takahashi  found  that
covering crops appropriately in summer or winter can improve
soil  phosphatase activity[77].  This study showed that compared
with the CK, the soil-neutral phosphatase activity (except for I-
NZS)  and  dehydrogenase  activity  of  summer-cover  leafy
vegetables  increased  significantly  (Table  2).  The  soil  urease
activity of EA was high (Table 2), which was consistent with the
report of Tian et al.[22]. The soil sucrase activity of summer cover
leafy  vegetables  was significantly  lower  than that  of  CK (Table
2),  indicating  that  summer  break  can  restore  soil  fertility  to

some extent, which was contrary to the view of Zhang et al.[78].
This  difference  may  be  attributed  to  the  different  types  of
summer-cover leafy vegetables. Some studies have shown that
soil  enzyme  activity  is  influenced  by  factors  such  as  season[79]

and  cover  crops[80].  In  this  experiment,  all  the  neutral
phosphatase  and  dehydrogenase  activities  of  summer  cover
leafy  vegetables  increased  significantly  (Table  2),  while  the
urease  and  sucrase  activities  of  the  treatments  decreased
(Table  2).  The  catalase  activity  of  different  treatments  showed
both  increases  and  decreases  (Table  2),  which  could  be  facili-
tated by the combined effects of season and treatment[22].

 Conclusions

Summer filling of leafy vegetables is  an effective strategy to
alleviate soil  succession disorder in the cucumber greenhouse.
Compared  to  CK,  all  summer-filling  treatments  significantly
improved soil secondary salinization, increased the soil organic
matter content, and enhanced the soil dehydrogenase activity.
In  addition,  the  economic  yield,  biological  yield,  and  net
income  of  leafy  vegetables  were  significantly  higher  than  CK,
especially  in  the  I-MS  and  I-NZS  treatments.  Considering  the
net benefits of summer filling and the effects of mitigating the
facility's  successive soils,  we recommend using the I-MS and I-
NZS  treatments  during  the  summer  break  period,  i.e.,  to  fully
utilize  the  previous  crop,  Malabar  spinach  and  New  Zealand
spinach.

 
Fig. 4    The relationship between the yield of summer catch leafy vegetables and soil. EC, electrical conductivity; SOM, organic matter; TN, total
nitrogen; TP, total phosphorus; TK, total potassium; URE, urease activity; NP, neutral phosphatase activity; SUC, sucrase activity; CAT, catalase
activity; DHA, dehydrogenase activity.
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