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Abstract
Yams, belonging to Dioscorea species, are abundant in nutrients and bioactive compounds, contributing to their swiftly expanding share in the

global market. Over the past 20 years, worldwide production of yams has seen a twofold increase. Particularly in Africa, yams are a staple food for

millions,  significantly  contributing  to  food  security  and  sustenance.  The  development  of  omics  technologies  provides  an  effective  means  for

mining functional genes and exploring related molecular mechanisms in yams. This review summarizes the current research progress on the yam

genome, plastome, transcriptome, proteome, and metabolome, to facilitate further genetic research and molecular breeding in yams.
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 Introduction

Yams  (Dioscorea spp.),  an  important  class  of  horticulture
crops  are  monocotyledonous  plants  that  contain  more  than
600 species[1]. D. alata, D. cayenensis and D. rotundata are by far
the major cultivated species worldwide, with D. rotundata con-
tributing  the  most  to  production  and D.  alata being  the  most
widely grown[2]. Yam tubers are rich in carbohydrates, proteins,
vitamin  C,  and  are  storable  for  months  after  harvesting[3].  In
some  African  countries,  also  known  as  the  'Yam  belt',  such  as
Nigeria, Benin, Ghana, Togo, and Guinea, yams are a staple food
for  millions  of  people[3,4].  In  other  regions  of  Asia,  the  Pacific
and Latin America, yams are an important source of income for
around  300  million  people[5].  Despite  the  local  significance,
yams have long been regarded as orphan crops that have been
overlooked by researchers. However, global production of yam
has  doubled  in  the  past  two  decades,  driven  by  the  need  to
combat  climate  change  and  dietary  diversity[6].  The  rise  in
global  production  of  yam  is  not  as  a  result  of  increased  yield
per unit area such as such as rice and corn, but rather the result
from  the  expansion  of  the  overall  planting  area  (FAOSTAT
2020).  In recent years,  to maintain a sustained increase in yam
production,  the  genetic  and  molecular  breeding  research  in
yams are gradually strengthened globally. From the beginning
of  empirical  breeding to  other  molecular  markers  such as  QTL
that are now more promising[2].

Comprehensive  understanding  of  genetic  basics  and  con-
ducting  genetic  improvement  requires  the  interpretation  of
molecular  intricacy  and  variations  at  multiple  levels  such  as
genome, plastome, transcriptome, proteome, and metabolome.
With  the  advent  of  sequencing  technology,  biology  research
has  become  increasingly  dependent  on  datasets  generated  at
these  levels  for  model  organisms.  However,  as  orphan  crops,
yams  have  received  little  attention  in  omics  levels,  with
research mainly focusing on the components of the tubers, the
germplasm  resource  classification,  and  extraction  of  specific
components, and medicinal effects[7]. For example, pollution of

the  environment  during  the  extraction  of  Diosgenin
elements[8]. When systematically controlling diseases and pests
in yams, it  is  necessary to analyze their genetic diversity.  How-
ever, standard genetic analysis methods are not applicable due
to  the  limited  number  of  genetic  markers  available  and  the
high heterozygosity associated with their  obligate outcrossing
nature.  Therefore,  the  first  species  of  the  genus Dioscorea was
subjected  to  whole-genome  sequencing,  resulting  in  the
release  of  the  first  genome  of  a Dioscorea species,  which
ushered  in  the  era  of  functional  genomics  of Dioscorea[9].  In
recent  years,  significant  progress  has  been  made  in  the  geno-
mics of  the Dioscorea genus.  Scientists  have conducted exten-
sive  and  in-depth  studies  on Dioscorea species  from  various
perspectives,  including genomics,  transcriptomics,  proteomics,
and  metabolic  networks  (Fig.  1).  This  review  provides  the
current  state  of  genomic  research  on  the Dioscorea genus,
hoping to aid in furthering in-depth studies of the genus.

 Genome

Although crop traits are regulated by genes, the sequencing
of all genes alone provides insufficient information on which to
base  crop  improvements  such  as  greater  yield  and  disease
resistance[10].  Understanding  the  precise  locations  of  all  genes
within a genome enhances the practicality of molecular marker
technology. This knowledge enables the pinpointing of specific
candidate  genes  responsible  for  particular  traits,  thereby
extending the technology's utility. In the model species, such as
rice and corn, it has witnessed the significant roles of genomics
sequencing  and  analysis  in  the  genetic  improvement  of
crops[11].  To  date,  the genomes of  five  yam species  have been
sequenced and the genome assemblies of four species reached
the  chromosome  level  (Table  1).  The  assembled  genome  size
ranged  from  440  to  629  Mb,  and  the  number  of  annotated
coding  genes  ranged  from  25,000  to  35,000.  From  these  two
sets of data, it  can be seen that there is great genetic diversity
among yam species. These genomics data and related analyses
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provide  references  for  yam  basic  biology  and  molecular  bree-
ding.

The  sex  determination  mechanism  is  crucial  in  crop  bree-
ding, while this problem in yam has not been solved for a long
time.  In  2017,  scientists  sequenced  and  assembled  the  first
genome  of  the  Guinea  yam  (D.  rotundata),  marking  a  signifi-
cant  milestone  in Dioscorea genomics[9].  Phylogenetic  analysis
of  conserved  genes  illuminated  the  distinct  nature  of  the
Dioscorea lineage within monocotyledons, setting it apart from
other  groups  such  as  Poales  (rice),  Arecales  (palm),  and  Zingi-
berales (banana). With the genome tool, an approach was deve-
loped  to  conduct  whole-genome  resequencing  of  grouped
segregants  using  F1  progeny  that  exhibited  segregation  of
male and female D. rotundata plants. By the genomics analysis,
a genomic region linked to female heterogametic sex determi-
nation (male = ZZ, female = ZW) was identified, and this disco-
very  was  further  refined  and  transformed  into  a  molecular
marker  for  sex  identification  of  Guinea  yam  plants  at  the
seedling  stage.  Similarly,  through  genomic  sequencing  and
analysis,  the  sex  determination  mechanism  of D.  tokoro was
located  in  the  middle  of  pseudochromosome  3,  with  a  male
heterogametic sex determination (XY) system[16].

The dissection of yam domestication history plays an impor-
tant  role  in  the  interpretation  of  the  genetic  mechanisms  of

important  agronomic  trait  formation.  An  improved  version  of
Guinea  yam  reference  genome,  together  with  more  than  330
accessions  and  its  wild  relatives  was  used  to  investigate  its
origin[12]. The analysis results revealed that diploid D. rotundata
was  likely  evolved  from  a  hybrid  of D.  abyssinica and D.
praehensilis.  The  assessment  of  the  genomic  contributions
uncovered a pronounced presence of the D. abyssinica genome
within  the  sex  chromosome of D.  rotundata and a  clear  signa-
ture  of  widespread  introgression  within  the SWEETIE gene
located on chromosome 17.  To  explore  the  chromosome evo-
lution  of D.  alata,  the  yam  research  community  generated  a
highly contiguous genome assembly and a dense genetic map
from African breeding populations[3,17,18]. The genomic analysis
results  suggest  that  there  was  an  ancient  allotetraploidization
in the Dioscorea lineage, subsequently with extensive genome-
wide  reorganization.  Moreover,  some  QTLs  (quantitative  trait
loci)  were  detected  for  resistance  to  anthracnose  and  tuber
quality traits using the genomic tools.

Although  sapogenin  saponins  were  isolated  from  the
rhizomes of D. tokoro in the 1930s[19],  its biosynthetic pathway
has  been  a  mystery.  The  comparative  genomic  analysis
suggests that tandem duplication coupled with whole-genome
duplication events provided key evolutionary resources for the
diosgenin  saponin  biosynthetic  pathway  in D.  zingiberensis[15].

 

Fig. 1    Omics technologies in yam research.

 

Table 1.    List of sequenced Dioscorea species genomes.

Species Assembly size (Mb) Assembly level N50 (Mb) Gene number Ref.

D. rotundata 594 Chromosome 2.12 26,198 [9]
D. rotundata* 584 Chromosome 23.4 34,550 [12]
D. dumetorum 485 Contig 3.2 35,269 [13]
D. alata 479 Chromosome 24 25,189 [3]
D. zingiberensis# 480 Chromosome 44.5 26,022 [14]
D. zingiberensis# 629 Chromosome 55.8 30,322 [15]
D. tokoro 443 Chromosome 24 29,084 [16]

* The improved genome assembly for D. rotundata; # The two assemblies from different D. zingiberensis strains.
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Combined  with  transcriptome  and  metabolite  analysis  among
13  yam  species,  some  gene  expression  patterns  in  specific
metabolic  pathways  were  found  to  be  associated  with  the
evolution  of  the  diosgenin  saponin  biosynthetic  pathway.
These genes mainly involve in CYP450 family,  such as CYP90B,
CYP72A  and  CYP94.  Further  investigations  revealed  that  the
increased  concentration  of  diosgenin  in  the  yam  lineage  is
governed by CpG islands. These islands have evolved to modu-
late  gene  expression  within  the  diosgenin  pathway,  playing  a
crucial  role  in  balancing  the  carbon  flux  between  the  biosyn-
thesis of diosgenin and starch[14].

 Plastome

Compared  to  the  nuclear  genome,  plastome,  especially
chloroplast genome sequences of the Dioscorea spp.  are more
easily  sequenced  and  frequently  used  for  the  identification  of
kinship. The first chloroplast genome of yam is from D. elephan-
tipes.  As  an  important  representative  branch,  it  was  employed
to estimate phylogenetic relationships among angiosperms[20].
The  chloroplast  genome  is  only  152,609  base  pairs  in  size,
including  129  genes,  4  rRNAs,  38  tRNAs,  as  well  as  16.72%
inverted repeat (IR), 54.24% large single copy (SSC) and 12.32%
small single copy (SSC) (Fig. 2a). Although chloroplast genomes
are  small  and  simple,  it  is  still  challenging  to  obtain  complete
chloroplast  genomes  for  large-scale  population  genetics  or
phylogeographic studies. Therefore, in 2014, Mariac et al. deve-
loped an in-solution enrichment hybridization capture scheme
suitable for deep multiplexing of chloroplast genomes, greatly
aiding  in  the  large-scale  acquisition  of  complete  chloroplast
genome  series  for  species[21].  Numerous Dioscorea species
chloroplast  genomes  are  stored  in  GenomeTrakrCP,  greatly
aiding subsequent research.

To ascertain the phylogenetics relationship among Dioscorea
spp.,  more  and  more  complete  chloroplast  genomes  of  yams
were generated. In 2016, after sequencing the complete chloro-
plast  genomes  of Discorea  species,  a  phylogenetic  tree  was
constructed  with  other  species  and D.  elephantipes and D.

rotundata,  showing  closer  phylogenetic  relationships  among
the three D. species[22,23]. In 2018, high throughput technology
was  used  to  sequence  the  complete  chloroplast  genomes  of
D.  aspersa, D.  alata, D.  bulbifera, D.  futschauensis,  and D.
polystachya[24] and  compared  them  with  four  previously
studied species, finding that the chloroplast gene features and
structures of these nine Dioscorea species are similar, with only
slight  differences  in  sequence  length.  Based  on  the  species'
chloroplast  whole  genomes,  a  phylogenetic  tree  was
constructed,  revealing  the  kinship  relationships  among  the
Dioscorea species.  In  the  evolution tree,  the  nine species  were
divided into two branches. In the one branch, D. polystachya, D.
alata, D.  aspersa,  and D.  rotundata have  a  closer  evolutionary
relationship, while D. bulbifera and D. elephantipes are in a sepa-
rate  kinship  relationship  compared  to  the  four  species.  In  the
other branch, D. villosa, D. futschauensis, and D. zingiberensis are
closely  related.  In  2019,  Magwé-Tindo  et  al.  reconstructed
complete chloroplast genomes for 14 African yam species and
built a phylogenetic tree with D. rotundata as reference and D.
elephantipes as  outgroup  species,  enriching  the  evolutionary
relationships among Dioscorea species[25].  In the following two
years,  different  scientists  continued  refining  the  chloroplast
genomes  of  different  species.  They  performed  phylogenetic
analysis  with Dioscorea species,  determining  the  phylogenetic
position. Cao et al. sequenced the whole chloroplast genome of
D. persimilis and determined that D. persimilis is  closely related
to D.  alata and D.  polystachya but  distantly  related  to D.
rotundata[26],  validating  previous  findings.  Chen  et  al.
sequenced  the  chloroplast  genome  of D.  esculenta and
constructed  a  phylogenetic  tree,  showing  that  the  species  is
closer  to D.  sansibarensis[27].  Hu  et  al.  sequenced  the  chloro-
plast genome of D. polystachya,  compared it with 15 Dioscorea
species,  and  found  that D.  polystachya is  closely  related  to D.
alata and D.  aspersa[28].  Wonok  et  al.  conducted  structural,
comparative,  and  evolutionary  analysis  of  the  chloroplast
genomes  of  four  native  Thai Dioscorea species,  providing  the
chloroplast  genome  structure  and  complete  chloroplast  gene

 

a b

Fig.  2    (a)  Content  of  the D.  elephantipes chloroplast  genome[20].  (b)  Phylogenetic  tree  of  48 Dioscorea species  based on the concatenated
matrix of matK, rbcL, tmL-F, psbA-tmH, rpl36-rps8, nad1, rps3 and 7 DNA[55].
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sequences  of D.  depauperata, D.  glabra, D.  pyrifolia,  and D.
brevipetiolata. Phylogenetic analysis revealed that D. brevipetio-
lata, D.  depauperata,  and D.  glabra are  closely  related  to D.
alata,  while D.  pyrifolia is  more  evolutionarily  similar  to D.
aspersa[29].

In addition to the complete chloroplast genome, chloroplast
DNA  markers  can  also  be  used  for  phylogenetic  analysis.  A
largest phylogenetic tree that consisted of 48 Dioscorea species
was  constructed  based  on  the  concatenated  matrix  of  seven
markers  including  matK,  rbcL,  tmL-F,  psbA-tmH,  rpl36-rps8,
nad1,  rps3  and  7  DNA  (Fig.  2b)[3].  This  evolutionary  tree
provided  molecular  evidence  for  morphological  classification,
and  for  the  first  time,  explored  the  evolution  of  four
forms—bulbils, inflorescence openness, flower color, and inflo-
rescence structure—based on the phylogenetic tree. This study
provides  evidence  to  support  classification  based  on  morpho-
logical  traits  and confirms that  late differentiation of  bulbils  in
Dioscorea species  can  improve  reproductive  efficiency  and
enhance adaptability.

 Transcriptome

Transcriptomics  is  the  study  of  gene  regulation  and  its
expression  at  the  RNA  level[30],  which  developed  from
expressed  sequence  tag  (EST)  sequencing  to  the  now  widely
used RNA sequencing (RNA-Seq). RNA-Seq is a method for tran-
script  quantification  that  allows  the  more  precise  measure-
ment of transcript levels and their isoforms compared to other
approaches. Because of the high sensitivity in the detection of
gene expression,  RNA-Seq is  often used to  provide expression
evidence for gene annotation in genome sequencing projects.
For  the  species  without  reference  genome,  RNA-seq  can  be

independently employed to construct reference transcriptome
and investigate gene regulatory functions in various biological
processes.

The  growth  and  development  of  yam  are  complex,  from
sprouting, stem, and leaf growth, to the final  expansion of the
tuber,  flowering,  and  fruiting.  The  genes  involved  in  their
formation  and  their  functions  are  still  unknown.  RNA-Seq  was
used  to  study  the  changes  in  the  transcriptome  during  the
formation of D. opposita microtubers and it was found that the
development of microtubers is closely related to primary meta-
bolisms,  such  as  starch  and  sucrose  metabolism[31],  which  has
important implications for  the study of  germination.  Although
transcriptomic  data  during  stem  and  leaf  growth  have  been
less  studied,  they  will  be  sequenced  collaboratively  in  the
construction  of  the  reference  transcriptome  of  yam,  thereby
improving  its  accuracy[32].  The  majority  of  yams  do  not  flower
or flower for a very short period, and transcriptome changes in
flowers  during  early  developmental  stages  were  identified
when analyzing transcriptome data from male, female, and dioe-
cious individuals of D. rotundata[33].  Male plants were found to
flower  more  intensely,  similar  to  flowering-determining  genes
in other species, with a conserved flowering mechanism. Based
on transcriptome analysis  of  microtubers,  regulatory genes for
phytohormones  were  also  identified  and  ABA  was  found  to
positively  regulate  tuberous  growth.  On  this  foundation,  it
revealed that the metabolic pathways of tuber chemicals such
as flavonoids are closely related to tuber development by tran-
scriptome analysis[7]. Tuber size is strongly associated with yam
yield,  and  the  identification  of  gene  functions  related  to  the
tuber  expansion  process  can  help  improve.  It  turns  out  that
SuSy and AGPase genes  regulate  the conversion of  sucrose to
starch in storage roots, which in turn positively regulates tuber

 

a b c

Fig. 3    (a) Modeling the conversion between sucrose and starch during tuber amplification[34]. (b) Simplified diagram depicting the flavonoid
biosynthesis  pathway  in  yam  tubers.  Red  arrows  indicate  genes  that  were  significantly  up-regulated  in  the  purple-fleshed  yam  tuber.  Gray
indicates no change in gene expression between two tuber types[38]. (c) Putative mechanism of the PHH in D. dumetorum, blue represents GO
annotation[41].
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enlargement  (Fig.  3a)[34].  Similar  to  the  mechanism  of  tuber
influence,  transcriptional  analysis  of  the developmental  stages
of  yam  bulbs  in  conjunction  with  morphological  analysis
revealed  growth  hormone,  CK,  and  sucrose  as  bulb  initiation
signals[35].

The main constituent of yam tubers is starch, which is also an
excellent  source  of  flavonoids,  diosgenin  elements,  and  other
medicinal constituents, but their biosynthetic pathways are not
yet  known.  Sequencing  of  transcriptome  libraries  of D.
polystachya leaf  and  rhizome  tissues  enriched  the  transcrip-
tome  data  of  the  species  while  revealing  differences  in  the
expression  of  relevant  genes  involved  in  terpene  synthesis,
which in turn probed the molecular mechanisms of the biosyn-
thetic pathway[36]. After reporting the whole genome sequence
of D. zingiberensis, the transcriptome data of this species, which
is rich in saponins,  were analyzed in comparison with those of
13  saponin-containing  species  of the  Dioscorea  spp.  Specific
gene expression patterns of  biosynthetic  pathway genes were
found to promote differential evolution of the saponin biosyn-
thesis  pathway  in D.  zingiberensis[15].  The  yam  domestication
process has resulted in an increasing percentage of starch, and
significant  differences  in  the  expression  levels  of  related
synthetic  genes  between  the  two  substances  were  also  found
during the study. Starch is a key component affecting the yield
and nutrition of yam tubers. Zhang et al.'s transcriptome analy-
sis  of D.  polystachya species  at  various  stages  after  sowing
concluded  that  135  d  after  sowing  was  the  critical  period  for
starch  accumulation,  and  also  verified  the  conclusion  of  the
previous  study  on  tuber  dilation[37].  Flavonoids  mainly  affect
color  change  in  yam  tubers,  but  the  mechanism  of  color
change  is  not  fully  understood  so  far.  Comparative  transcrip-
tome  analysis  of  white-meat  and  purple-meat  varieties  of D.
alata species revealed significant differences in the expression
of  a  large number of  genes[38].  By identifying functional  genes
in  the  flavonoid  biosynthesis  pathway  (FBP)  of  this  species,  it
was  found  that  genes  encoding  enzymes  related  to  this  path-
way  were  significantly  up-regulated  in  purple  flesh  varieties
(Fig. 3b). D. cirrhosa, which is used as a natural dye and medici-
nal  plant  because  of  its  reddish-brown  tubers,  was  analyzed
and  67  candidate  genes  related  to  the  flavonoid  biosynthesis
pathway were identified[39].

The  storage  of  yam  tubers  is  crucial,  but  relatively  few
studies of this kind have been conducted, and current research
is  directed  towards  the  preservation  of  microtubers  before
sowing  and  severe  post-harvest  hardening  (PHH). D.  bulbifera
field plantings usually use microtubers as propagation material,
but  they  are  highly  susceptible  to  harboring  pathogens  that
cause  softening  and  rotting.  Placement  at  low  temperatures
prolongs preservation,  so  transcriptome data  of D.  bulbifera at
4  °C  were  explored[39].  Look  for  preservation  mechanisms  and
mining of related genes yielded a large amount of information
related  to  microtubers  preserved in  vitro at  low
temperatures[40]. In response to the issue of hardening, which is
defined  as  beginning  within  24  h  of  harvest  and  becoming
progressively  unfit  for  human  consumption, D.  dumetorum is
particularly  pronounced[41].  In  the  first  transcriptomic  study  of
D.  dumetorum transcriptomic  data  from  three  sclerotized  and
one  non-sclerotized  germplasm  were  analyzed  to  identify
genes involved in the PHH phenomenon[41].  The study discov-
ered  that  PHH  involve  the  combined  action  of  several  genes,
encoding  cell  wall  polysaccharide  components  were  signifi-
cantly up-regulated, suggesting that they directly contribute to

tuber hardening (Fig. 3c).
Yam is an important cash crop in China, but it  is susceptible

to diseases caused by fungal infections, leading to a decline in
quality and output of yam, so it is necessary to characterize its
disease resistance. Gray mold is a common disease of yam that
is  sensitive  to  defensive  hormones  such  as  ethylene  (ET),  and
yam-related  transcription  factors  (TF)  are  involved  in  their
synthesis  and  breakdown[42].  To  explore  the  differences  in
hormone accumulation and gene expression patterns between
resistant  and  susceptible  yam  varieties,  Minghuai  3  (MH3),  a
highly  susceptible  variety  to Bortrytis  cinerea,  and  Minghuai  1
(MH1),  a  highly  resistant  variety,  was  selected  to  perform  a
comparative transcriptome analysis, which provided a basis for
unraveling the regulatory mechanisms of the different varieties
to the pathogen. Comparison of gene expression after inocula-
tion of both varieties revealed that genes involved in ET signa-
ling  plays  a  key  role  in  the  antimicrobial  mechanism.  Further
validation  for  this  result  was  done  by  analyzing  the  gene
expression of MH1 and MH3 after vinblastine treatment, and it
was  found  that  vinblastine  treatment  significantly  increased
the resistance of highly susceptible varieties to the pathogen.

 Proteome

Many types of information cannot be gleaned from the study
of genes alone; the end products of genes are inherently more
complex  and  closer  to  function  than  the  genes  themselves.
Therefore,  only  through  the  study  of  proteins  can  we  deter-
mine the functions of proteins that are profoundly affected by
post-translational  modifications[43].  The  study  of  proteomics  is
also  becoming  more  and  more  important,  using  techniques
that  are  becoming  more  and  more  accurate  in  analyzing
proteins  as  technology  develops.  There  are  fewer  proteomic
studies on yam, and the main research methods are gel-based
mass  spectrometry  and  mass  spectrometry-based  isotope
tagging  for  relative  and  absolute  quantification  (iTRAQ).  The
main focus is on tuber research, such as the growth and deve-
lopment of tubers, and their chemical composition analysis.

Studies on the growth and development of yam tubers at the
gene  level  have  been  described  in  detail,  but  studies  on  the
protein level have been less involved. In 2021, Sharma & Deswal
reported  a  comprehensive  tuber  protein  dataset  for D.  alata
and  analyzed  the  differences  in  protein  levels  at  different
growth  stages[44].  Stage-specific  gel-free  proteomic  analyses
were performed for  four  different  morphological  stages:  tuber
sprouting  (S1),  degraded  tuber  (S2),  new  tuber  formation  (S3)
and  tuber  maturation  (S4).  This  research  provided  growth-
specific markers for S1 and S3,  revealing differences in protein
expression at  each developmental  stage (Fig.  4).  When people
handle  yam  tubers,  the  sap  always  causes  itching  leading  to
allergy when it comes in contact with the skin unavoidably, so
the study of the chemical composition of yam needs to be paid
attention  to.  Mass  spectrometry  (MS)  and  protein  qualitative
histology analysis of yam proteins and each fraction of proteins
after  isolation[45].  Yam proteins  were isolated and purified and
found  to  have  itchogenic  properties  in  some  fractions,  which
were  further  analyzed,  and  CCP2  was  preliminarily  hypothe-
sized to be the itchogenic active ingredient. Fresh-cut yam is a
good  solution  for  juice  allergy  problems,  but  it  tends  to  turn
yellow  during  processing  and  storage,  which  affects  product
quality[46].  Combined with  transcriptomics  studies,  the  mecha-
nism  of  yellowing  in  fresh-cut  yam  was  elucidated  and  the
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cause of yellowing was explained.

 Metabolome

Metabolomics  is  characterized  by  end  effect  and  amplifica-
tion  compared  to  upstream  proteomics  and  genomics,  and
metabolomics  can  provide  a  direct  mapping  of  target
metabolites[47].  Therefore,  to further explore the abundance of
nutritional  and  functional  components,  it  is  necessary  to
discover  the  metabolic  profile  of  yam  tubers  from  different
species.  As  yet,  the  corresponding  metabolite  profiles  or
databases  of  six  species  have  been  constructed,  which  are  of
great significance to the breeding aspect of yams[47,48] (Table 2).
The  metabolomic  data  of  yam  leaves  were  provided  in  the
construction  of  the  crop  metabolic  database,  which  further
improved  the  metabolic  database  of  yam[49,50].  Furthermore,
many traits of interest such as tuber growth and development
maybe  directly  related  to  metabolite  composition,  and  there-
fore  genomics  and  metabolomics  have  been  studied  more  in
combination.

Transcriptomic data suggest that yam microtuber formation
is  adjusted  by  a  variety  of  hormones[31].  Endogenous  levels  of
ABA  was  measured  at  different  stages  and  found  that  it  has  a

positive  role  in  regulating  microtuber  formation.  Metabolite
assays  targeting the  tuber  development  process  revealed that
400  metabolites  accumulated  during  development[7].  Bulbs
have  the  ability  to  reproduce  as  well  as  tubers,  and  according
to  ancient  medical  records,  the  clinical  health  effects  of  bulbs
are  superior  to  those  of  yam  tubers[51]. D.  polystachya species
was used as a material, and its tubers and bulbs were subjected
to  boiling  treatment  and  air-drying  control,  respectively,  to
compare  and  analyze  the  difference  in  metabolites  between
them, and it was found that yam bulbs had more nutrients than
tubers. As a result, the mechanism of growth and development
of  yam  bulbs  is  also  very  important.  The  metabolites  of  bulb
during growth and development were analyzed, the regulation
of  growth  hormones,  CKs,  ABA,  and  sucrose  were  detected  to
lead to bulb initiation and growth, with localized production of
growth  hormones  being  necessary  to  trigger  the  transient  of
formation.

Genomic  analysis  revealed  that  the  genome  of Dioscorea
spp.  contains  many  genes  encoding  secondary  metabolites.
Thus has the potential  to synthesize many secondary metabo-
lites,  including  important  compounds  such  as  diosgenin
elements  and  flavonoid  phytohormones.  Identification  of
changes in the saponin content of saponin-rich D. zingiberensis
validates  the  hypothesis  of  a  saponin  biosynthesis  pathway
obtained  by  transcriptomics[15].  Combination  with  transcrip-
tome  analysis  also  revealed  that  proanthocyanidins  (PAs),  a
downstream metabolite of the flavonoid biosynthesis pathway
maybe a key metabolite in tuber color formation, and a mecha-
nism by which flavonoids affect tuber color was discovered[39].
All  metabolites  in D.  dumetorum contain  saponins,  alkaloids,
and flavonoids and the high content of saponins serves as its chemi-
cal  taxonomic  marker[52].  To  study  the  difference  of  phenolic
and antioxidant potential among six species of Indian yam, the

 

Fig. 4    Differences in the regulation of glycolysis during (S1) tuber sprouting, (S2) degraded tuber, (S3) new tuber formation and (S4) tuber
maturation[44].

 

Table 2.    List of mapped Dioscorea species metabolites.

Species Metabolites number Germplasm number

D. rotundata 99−116 10
D. cayennensis 96−103 4
D. dumetorum 111−130 25
D. alata 104−114 5
D. bulbifera 107−117 5
D. polystachya 431 8
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contents of flavonoids and other substances were identified[53].
Targeting  saponins  and  catechins  in D.  alata metabolites  that
affect  tuber  quality  provide  a  basis  for  breeding  hybrids  with
low saponin and catechin content[54].

 Future directions

Combining  current  research  hotspots  of  scholars  both
domestically  and  internationally  and  addressing  the  gaps  in
Dioscorea genomics  studies,  future  work  in  the  field  needs  to
be envisioned as follows:

 Enhance whole-genome sequencing and
evolutionary research

Expanding  whole-genome  sequencing  to  other Dioscorea
species is an important direction for future genomic research in
the genus. Utilizing comparative genomics to integrate interac-
tions  between  individuals  and  populations  within  the  genus
can  help  identify  key  genes  and  genetic  pathways  in  these
interactions,  elucidating  the  adaptive  evolutionary  mecha-
nisms  and  genetic  mechanisms.  Additionally,  research  in
Dioscorea genomics  should  also  focus  on  genetic  diversity,
taxonomic  identification,  and  stress  responses  such  as  DNA
methylation.

 Improve transcriptome data and broaden studies
on other tissues

More  high-quality  transcriptome  will  be  constructed  with
reference  to  other  tissues,  in  addition  to  the  common  yam,
inter-tissue  transcriptome  differences  in  other Dioscorea
species have yet to be carried out. At the same time, RNAs with
mechanisms  that  regulate  growth  and  development,  tissue
specificity and flowering need to be studied more extensively.

 Enhance the development and application of
proteomics

The development of Dioscorea proteomics has been limited,
with fewer techniques used, targeting fewer species and scien-
tific  issues.  Therefore,  the  application  of  the  latest  proteomic
technologies  in Dioscorea research  need  to  be  expanded  to
more species and scientific questions.

 Strengthen research on growth, development,
and tissue metabolic mechanisms

Multiple Dioscorea species  contain  a  variety  of  important
secondary metabolites. Currently, constructing metabolite maps
or establishing metabolite databases focus on a limited number
of  species,  so  exploring  the  differences  in  metabolites  among
different  species  is  crucial.  Additionally,  scientific  issues
explored  at  the  metabolic  level  should  be  broader,  moving
beyond just tuber tissues to consider others.

 Expand the scope of problem solving by multi-
omics technology

The  research  aspect  is  not  only  limited  to  the  study  of  yam
itself, but with the updating of sequencing technology and the
accumulation of histological data, it is possible to overcome the
difficulties  encountered  in  other  research,  such  as  the  extrac-
tion of special components of yam.
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