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Abstract
Light  serves  not  only  as  essential  energy required for  plant  growth but  as  a  signal,  offering plants  vital  environmental  information.  Hormone

signaling  plays  a  pivotal  role  in  the  sophisticated  resource  allocation  system  which  allows  plants  to  adapt  to  ever-changing  surroundings.

Jasmonates  (JA)  and  Salicylic  acid  (SA)  are  known  as  key  defensive  phytohormones  in  plants.  Numerous  physiological  studies  indicate  light

treatment  impacts  plant  defense,  growth  and  development  via  pathways  involving  JA  and  SA.  Recent  molecular  evidence  suggests  that

photoreceptors and various transcription factors in phototransduction are implicated in the signaling of these defensive hormones.  Thus,  the

growth-defense trade-off, which is modulated by light, is partially mediated through JA and SA signaling pathways. In this review, we highlight

the  recent  advances  toward  understanding  the  interplay  between  light  signaling  and  the  JA/SA  pathways.  The  mechanisms  by  which  plants

respond  to  biotic  stress  and  abiotic  stress  in  various  species  such  as  Arabidopsis,  tomato,  soybean,  and  cucumber  are  reviewed  in  depth.

Furthermore,  we  discuss  the  potential  opportunities  to  utilize  these  basic  insights  in  practical  agriculture  applications,  such  as  the  strategic

manipulations  of  artificial  lights  for  flexible  and  environmentally  friendly  approaches  to  enhancing  crop  growth  and  managing  disease  in

greenhouses.
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Introduction

The increasing global  population,  climate change,  and envi-
ronmental  pollution pose significant  challenges to agricultural
production[1−3]. Concurrently, the public’s demand for safe and
high-quality  agricultural  products  continues  to  rise.  Therefore,
it is of great urgency to seek environmentally friendly methods
for crop pests and diseases control, while also increasing yields,
to  establish  a  sustainable  agricultural  production  system.  As
sessile organisms, plants have evolved sophisticated processes
that  provide  protection  against  herbivory  and  infection,  allow
access to limited resources, and promote growth and develop-
ment  in  rapidly  changing  environments.  JA  and  SA  are  two
well-known  defense-related  phytohormones[4−7].  Plant
pathogens  exist  as  either  biotrophs  or  necrotrophs,  where
biotrophs  feed  on  living  cells  and  necrotrophs  off  necrotic
cellular  debris[8].  JA  plays  a  critical  role  in  necrotrophic  infec-
tion as well as herbivory[9,10], while SA is required for resistance
to biotrophic pathogens, pattern-triggered immunity (PTI), and
systemic  acquired  resistance  (SAR)[8,11].  With  more  investiga-
tions work on the signaling pathways of these hormones, it has
become  clear  that  light  influence  defense  responses  such  as

systemic  acquired  resistance  (SAR).  For  instance,  research
demonstrates that SAR is completely lost in the dark, while SAR
occurs  under  both  moderate  and  intense  light  conditions  in
Arabidopsis[12].

Light  not  only  provides  the  energy  necessary  for  photosyn-
thesis  but  also  serves  as  a  signal,  transmitting  environmental
information  that  enables  plants  to  better  adapt  to  dynamic
surroundings[13].  Key  components  of  light  perception  are
phytochromes  which  are  photoreceptors  that  perceive  red  (R)
and far-red (FR) light. Inactive phytochromes are present in the
cytosol  (Pr  form)  but  move  into  the  nucleus  when  active  (Pfr
form)[14].  Light  perception can also mediate JA and SA biosyn-
thesis  and signal  transduction.  It  mediates the JA-SA pathway,
encompassing  both  its  biosynthesis  and  signal  transduction.
Mechanistic  studies  have  indicated  photoreceptors,  particu-
larly phytochrome B (phyB)[15,16], pivotal transcription hubs like
ELONGATED  HYPOCOTYL  5  (HY5)[17],  PHYTOCHROME  INTER-
ACTING  FACTORS  (PIFs)[18],  and  FHY3  (FAR-RED  ELONGATED
HYPOCOTYL3)/FAR1 (FAR-RED IMPAIRED RESPONSE 1)[19] and a
few  other  players  in  the  light  signal  networks[20−23] as  partici-
pants  in  the  modulation of  stress  responses,  growth,  develop-
ment,  and the regulation of JA and SA biosynthesis and signal
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transduction. Consequently, the manipulation of the light envi-
ronments in cultivated crops has the potential to optimize crop
production[24] and enhance stress resistance[25].

JA  and  SA  have  been  extensively  studied  for  their  pivotal
roles  in  plant  defense  and  response  to  abiotic  stress.  Recent
studies have revealed that various light signaling components,
including  photoreceptors  and  fundamental  transcriptional
hubs,  play  a  role  in  JA/SA-regulated  stress  responses.  Key
components  of  the  JA  pathway,  CORONATINE-INSENSITIVE
(COI),  JASMONATE  ZIM-DOMAIN  (JAZ)  proteins,  MYELOCY-
TOMATOSIS  2  (MYC2),  and  JASMONIC  ACID-INSENSITIVE1
(JAI1),  as  well  as  NPR1  (NONEXPRESSOR  OF  PATHOGENESIS-
RELATED  GENES  1),  SID2  (SA  INDUCTION-DEFICIENT2)/ICS1
(ISOCHORISMATE SYNTHASE 1) in the SA pathway, play roles in
light signaling pathways. Both JA and SA biosynthesis are initi-
ated  in  the  chloroplast,  an  organelle  whose  function  is  light-
dependent, thus alluding to a complex interplay between light
and JA/SA signaling during plant stress.

Recent  advances  have  shown  that  light  signaling  partici-
pates  in  JA and SA biosynthesis  and transduction pathways in
response to both biotic and abiotic stress. Additionally, studies
regarding light-modulation of JA/SA pathways in plant growth,
and  development  have  emphasized  the  delicate  balance
between  plant  growth,  resource  competition,  and  defense.  In
this  review,  we  highlight  recent  advances  in  the  multifaceted
light-mediated role of JA/SA pathways during plant adaptation.
Additionally,  we  discuss  the  opportunities  to  apply  these
fundamental  theoretical  insights  into  agriculture  production.
This includes the use of LED-based greenhouse light manipula-
tion[26,27],  intercropping[28,29],  rational  close  planting[30],  and

other agronomic techniques,  as  well  as  crop ideal  architecture
breeding[31] to optimize the growth and development of horti-
cultural crops thus improving plant productivity. 

Light-jasmonates interplay in pathogens or
chewing insects defense

JA  and  SA  are  critical  regulators  of  plant  immune
responses[32]. Significant research over the decades has worked
to elucidate the complex cross-talk that exists between JA and
SA in the context of defense. More recently, an additional focus
has  been  given  to  the  light’s  role  in  hormonal  regulation
(Figure 1).  Plants  have evolved a dynamic allocation known as
the  "growth-defense  trade-off"[10],  which  leads  to  the  careful
allocation of energy resources. Light provides the currency that
plants must meticulously divide between metabolically expen-
sive  defense  processes  and  growth[8−10,33−36].  A  deeper  under-
standing  of  how  light  regulates  the  JA/SA  pathways  during
plant defense is critical for modern agriculture, as it could allow
for precise manipulation of crop traits under the constraints of
environmental stress and challenges.

As  an  important  plant  hormone,  JA  has  been  widely  docu-
mented  for  its  role  during  biotic  stress.  Recently,  the  interac-
tion  between  light  and  JA  has  garnered  increased  interest  in
various  plants,  including  Arabidopsis,  soybean,  and  tomato
(Table  1).  In  Arabidopsis,  it  has  been  found  that  FR  light  can
suppress  genes  involved  in  fungal  defense,  such  as PLANT
DEFENSIN 1.2 (PDF1.2), which is a classical marker for JA produc-
tion. This light-mediated suppression is due to the inhibition of
the  JA-responsive  AP2/ERF  transcription  factor,  ETHYLENE
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Fig. 1    Crosstalk of light and JA/SA during plant defense and development. Key components in light signal transduction such as phyB, PIFs,
and HY5 play roles in JA/SA signaling through manipulating AOS/AOC/LOX, JAZ, MYCs (fundamental element in JA biosynthesis or signaling)
and ICS1, NPR1, WRKYs (key players in SA biosynthesis or signaling). Created with BioRender.com.
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RESPONSE  FACTOR  1  (ERF1)[37].  In  contrast,  FR  light  has  been
shown  to  activate  the  transcription  of  genes  related  to  insect
defense,  such  as VEGETATIVE  STORAGE  PROTEIN  1  (VSP1) and
VEGETATIVE  STORAGE  PROTEIN  2  (VSP2),  through the  activation
of  a  key  JA  transcription  factor,  MYC2[31,32].  In  addition  to  FR
light,  red  light  also  can  influence  the  defense  response  of
Arabidopsis against fungal infections. Studies have shown that
both red and white light can enhance the expression of various
genes  involved  in  JA  biosynthesis  through  the  photoreceptor
phyB,  resulting  in  an  increased  accumulation  of  the  metaboli-
cally active JA hormone, jasmonyl-isoleucine (JA-Ile). The accu-
mulation  of  JA-Ile  was  found  to  be  due  to  the  light-induced
degradation  of  the  JA-repressor,  JAZ9,  in  a  COI-dependent
manner[33].  This  suggests  that  phyB-mediated  light  signaling
may play a role in Arabidopsis’ defense against pathogens like
Botrytis  cinerea,  by  modulating  JA  biosynthesis  and
metabolism,  thereby  influencing  JA  levels  and  the  stability  of
JAZ proteins. Intriguingly, parallel findings from a recent study
on tomato indicate that phyB signaling enhances resistance to
Botrytis  cinerea,  through  the  JA-dependent  regulation  of  solu-
ble  sugars[34].  Additionally,  blue  light  enhances  soybean
defenses against the Soybean mosaic virus (SMV) by more effec-
tively  activating  JA  signaling  and  upregulating GmMYC2 and
GmERF genes compared to white light[37]. Conversely, under FR
light  treatment,  most  key  genes  within  the  JA  signaling  path-
way are downregulated in SMV-infested soybean plants.

Interactions  between  light  and  JA  are  not  confined  to
Arabidopsis, with extensive documentation in a variety of other
plants  as  well.  In  the  case  of  watermelon  plants  infected  with
the  root-knot  nematode, Meloidogyne  incognita  (RKN),  it  has
been  observed  that  treatment  with  red  light  can  reduce  the
number of galls in the roots and suppress nematode incidence.
Additionally, the foliar application of methyl jasmonate (MeJA)
has been shown to significantly decrease RKN infection. Further
research  has  revealed  that  under  red  light  treatment,  the
expression of  JA biosynthesis  genes,  specifically ALLENE  OXIDE
SYNTHASE (AOS) and LIPOXYGENASE (LOX), as well as JA content

in the leaves and roots are significantly increased compared to
those treated with white light[35]. This increase in JA accumula-
tion in both leaves and roots due to red light may be facilitated
by the translocation of JA from the leaves to roots through the
vascular tissues[36], thereby triggering the defense mechanisms
against nematodes.

Currently,  research  on  Arabidopsis  has  thoroughly  investi-
gated  the  intricate  signaling  pathways  through  which  light
signals  regulate  JA.  However,  for  other  plant  species,  studies
predominantly concentrate on the alterations in plant hormone
levels  following light  exposure.  Consequently,  for  horticultural
crops  like  tomato,  soybean,  and  watermelon,  there  remains
considerable  scope  for  exploring  the  specific  role  of  light  on
regulatory pathways involved in JA signaling. 

Light-salicylic acid interplay in plant defense
against pathogens

Over  the  past  decades,  research  has  consistently  demon-
strated  the  crucial  role  that  SA  plays  in  plant  defense  against
pathogens  with  a  biotrophic  lifestyle[46].  The  mediation  of  the
SA pathway by light has been investigated in response to vari-
ous  pathogens  (Table  2),  including  fungi  (e.g.  powdery
mildew[47]),  bacteria  (e.g. Pseudomonas  syringae pv. tomato
DC3000  (Pst DC3000)[48]),  oomycetes  (e.g. Phytophthora
capsici[17]),  viruses  (e.g. SMV[40]),  and  nematodes  (e.g. RKN[45]).
The underlying mechanisms have been deeply explored in the
model  plant  Arabidopsis,  as  well  as  crops  such  as  tomato[48]

and  soybean[40].  Research  indicates  that  light  directly  influ-
ences  the  accumulation  of  SA,  likely  due  to  one  of  the  SA
biosynthesis pathways, known as the isochorismate (ICS) path-
way,  initiating  in  the  chloroplast[49].  Additionally,  there  is
evidence  that  continuous  light  exposure  can  elicit  resistance
against Pst DC3000,  an  effect  that  is  SA-dependent.  This
phenomenon  occurs  when  constant  light  stimulates  SA
production,  leading  to  increased  stomatal  opening  and  a
reduction  in  the  bacterial-induced  aqueous  microenviron-

 

Table 1.    Effect of light treatment on JA-modulated plant defense.

Species Pathogens/insects Mechanism Light treatment and
key light element

Arabidopsis Botrytis cinerea Red light can regulate JA biosynthesis and metabolism through
phyB signaling, affecting the stability of JAZ9 protein[38].

Red light treatment,
phyB signaling

Arabidopsis Diamondback moth
(Plutella xylostella)

UV-B decreases the attractiveness of Arabidopsis plants for the
diamondback moth in a JA signaling-dependent manner[39].

UV-B treatment

Soybean Soybean mosaic virus (SMV) Blue light treatment can induce JA signaling pathway and increase
the expression of GmMYC2 and GmERFs[40].

Blue light treatment

Soybean Fusarium verticillioides JA can promote resistance to infection by promoting the accumulation
of isoflavone in soybean pods; vegetative stage shading can promote
isoflavone accumulation and improve pod resistance to Fusarium
verticillioides[41].

Vegetative stage
shading treatment

Tomato Botrytis cinerea FR light inhibits phyB signaling, thus reducing JA response, and resulting
in elevated leaf glucose and fructose levels, and enhancing tomato
sensitivity to disease caused by Botrytis cinerea[42].

FR light treatment,
phyB signaling

Tomato Thrips (Frankliniella
occidentalis)

High photosynthetically active radiation (PAR) increased thrips resistance
against thrips in tomato by inducing the expression of JA-responsive
defense-related genes (such as PROTEINASE INHIBITOR-IIf (PI-IIf),
THREONINE DEAMINASE-2 (TD-2) and JASMONATE INDUCIBLE PROTEIN-
21J(JIP-21))[43].

Light intensity

Broccoli Pieris brassicae Supplementary levels of moderate UV-B on broccoli sprouts increased
the expression of JA signaling genes, while negatively affecting the
performance of Pieris brassicae caterpillars[44].

UV-B treatment

Watermelon Root knot nematode
(Meloidogyne incognita)

Red light can significantly increase the expression of JA biosynthesis
genes (AOS and LOX), and JA content in roots, triggering plant
defenses against nematodes[45].

Red light treatment

Light-mediated JA/SA regulation in plant
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ments  which  causes  water-soaked  lesions  during  infection[50].
In Arabidopsis, it has also been observed that the spontaneous
cell death phenotype observed in bak1 bkkk1 double mutants is
observed only in the light due to the overproduction of  SA[51].
The SA overaccumulation is also able to enhance resistance to
Pst DC3000 in a mechanism distinct from PTI.

Furthermore,  the  light  signaling  cascade  encompasses
photoreceptors,  transcription factors,  and various downstream
functional  elements.  Investigations  regarding  the  role  of
phytochromes  in  SA-mediated  plant  defense  have  revealed
that  mutations  in  phyA  and  phyB  heighten  the  sensitivity  of
Nicotiana  tabacum to Cucumber  mosaic  virus  (CMV) and Chili
veinal  mottle  virus  (ChiVMV) by  inhibiting  the  SA-mediated
defense  pathway  in  tobacco  plants[52,53].  Research  has  shown
that the deactivation of phyB results in a reduction in SA-medi-
ated  defense  mechanisms[54].In  Arabidopsis,  the  SA  signaling
transduction pathway is significantly compromised in phyA and
phyB mutants,  concurrent  with  a  marked  decrease  in  the
expression  of  the PATHOGENESIS-RELATED  1  (PR1) gene[55].
Extensive  research  has  shown  that  the  deactivation  of  phyB
results in a reduction in SA-mediated defense mechanisms[54].

In recent years, emerging research has indicated that various
transcription  factors  involved  in  light  signaling  participate  in
the  SA  pathways.  Two  pivotal  transcription  factors  in  light
signal  transduction,  PIFs  and  HY5,  have  garnered  particular
attention. In oriental melon, red light has been shown to facili-
tate  SA  biosynthesis  through  the  PIF8-WRKY42  regulatory
module,  thereby  bolstering  the  plant’s  resistance  to  powdery
mildew[47].  Phenotypic  evidence  suggests  that  following
immune activation, PIFs can enhance the resistance against Pst
DC3000  via  the  SA  pathway  as  well[50].  In  pepper,  red  light  is
known to trigger the accumulation of SA through HY5, which in
turn  strengthens  resistance  against Phytophthora  capsici[17].
This  enhancement  is  attributed  to  the  induction  of  CaHY5
expression by red light, leading to the activation of SA biosyn-
thesis  genes CaPHENYLALANINE  AMMONIA-LYASE  3  (CaPAL3)
and CaPAL7.  The  activation  of  these  genes  results  in  SA  accu-
mulation  and  the  upregulation  of  SA  response  genes CaPR1
and CaPR1L,  thereby  increasing  the  plant’s  resistance  to  the
pathogen[17].

In addition to capturing light for photosynthesis, the quality,
intensity,  period,  and  duration  of  light  are  critical  factors  that

influence plant responses to stress and environmental changes.
Historically,  research  on  light  quality  has  predominantly
concentrated on the effects of red, far-red, blue, and ultraviolet
(UV)  light,  with  relatively  less  attention  given  to  green  light.
However, a study has demonstrated that a variety of light treat-
ments,  including  purple,  blue,  green,  yellow,  and  red  light,  all
effectively suppress the growth of the pathogen Pst DC3000 on
tomato  leaves  when  compared  to  a  dark  control[48].  More
recent  investigations  into  the  light-mediated  SA  pathway  in
plant defense have particularly highlighted the benefits  of  red
light  treatment[17,47] or  low  red  to  far-red  (R:  FR)  light  ratio
conditions[56]. Red light has been identified as a positive regula-
tor of the SA pathway in various plants,  including Arabidopsis,
tomato[48],  pepper[17],  oriental  melon[47],  and  soybean[40],
enhancing  their  defenses  against  a  range  of  biotic  stresses.
While  the  specific  mechanisms  differ  among  plant  and
pathogen  species,  the  consensus  among  numerous  studies  is
that  red  light  markedly  stimulates  SA  biosynthesis  and  signal-
ing  transduction  during  the  defense  processes.  The  impact  of
red  light  treatment  during  fungal  infections,  such  as  powdery
mildew,  has  been  particularly  examined  in  cucumber[57] and
oriental  melon  plants[47],  with  findings  suggesting  that  SA  is  a
key  component  in  the  defense  mechanism  modulated  by  red
light.  Under  red  light,  the  expression  levels  of  SA-associated
genes such as PR1, WRKY30, and WRKY6 are significantly higher
compared  to  those  treated  with  white  light[57].  Moreover,  Red
light  treatment  has  also  been  found  to  enhance  plant  resis-
tance to bacterial invasion. For example, RNA sequencing data
following  a  12-hour  red  light  treatment,  especially  during  the
night,  has  been  shown  to  bolster  tomato  plants’ resistance.
RNA  sequencing  data  revealed  the  involvement  of  SA  in  red
light-induced  resistance  in  tomatoes  challenged  with Pst
DC3000.  The  transcription  levels  of  several  defense-related
transcription factors,  including WRKY18, WRKY53, WRKY60,  and
WRKY70,  are  notably  increased  by  red  light  exposure.  Further-
more,  silencing  the  SA  receptor  NPR1  partially  diminishes  the
red  light-induced  resistance  in  tomato  plants[45,48].  In  the  case
of  watermelon,  red  light  has  been  shown  to  enhance  resis-
tance  to  RKN,  at  least  partially  through  the  promotion  of  SA-
dependent  pathways[45].  These  findings  suggest  that  red  light
stimulates  downstream  SA  transduction  cassette,  thus  chang-
ing  SA  biosynthesis  genes  at  the  transcriptional  level,  activat-

 

Table 2.    Effect of light treatments on SA-mediated plant defense.

Species Pathogens Mechanism Light treatment and
key light element

Cucumber Powdery mildew
Powdery mildew

Compared with white light, Red light increases the expression of SA
signaling marker genes (PR1, WRKY30, and WRKY6) and improves
disease resistance[57].

Red light treatment

Oriental melon Red light promotes SA biosynthesis and resistance against powdery
mildew through the PIF8-WRKY42-ICS module. PIF8 serves as a
negative regulator of WRKY42, thereby inhibiting transcriptional
activation of downstream ICS[47].

Red light treatment

Arabidopsis Pseudomonas syringae pv.
tomato DC3000
Pseudomonas syringae pv.
tomato DC3000

Constant light induces the production of SA, which counters effector-
induced stomatal closure by Pst DC3000, thus allowing for
transpiration and inducing SA-related disease resistance[50].

Constant light treatment

Tomato A 12-hour red light exposure at night enhanced tomato resistance,
significantly upregulating transcription factors including WRKY18,
WRKY53, WRKY60, and WRKY70, while NPR1 silencing partly reduced
Pst DC3000 resistance induced by red light[48].

Red light treatment
during the night

Pepper Phytophthora capsici Red light induces SA accumulation through HY5 to enhance resistance
against Phytophthora capsici[17].

Red light treatment; HY5

Soybean Soybean mosaic virus Blue light triggers soybean resistance to SMV by orchestrating SA and
JA defense pathways[40].

Blue light treatment
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ing  certain  kinases,  and  ultimately  leading  to  increased  SA
accumulation,  thereby  fortifying  the  plant’s  defense  capabili-
ties of the treated plants.

Under  high plant  density,  the composition of  light  reaching
the  vegetation  canopy  changes,  leading  to  a  set  of  develop-
mental  responses  known  as  the  shade-avoidance  syndrome
(SAS). Traditionally, SAS is associated with a low R: FR light ratio,
while  a  high  R:  FR  ratio  indicates  the  opposite  condition.
Research suggests  that  the quality  of  light  can influence plant
defense  mechanisms  by  modulating  the  SA  pathway[15].  In
Arabidopsis,  it  has been observed that a low R: FR ratio dimin-
ishes  pathogen  resistance,  with  some  underlying  mechanisms
already identified.  At the transcriptional level,  a low R:  FR ratio
results in decreased SA-related gene expression, and repressed
SA-activated  kinases[15].  Additionally,  the  phosphorylation  of
NPR1  protein  is  reduced  in  the  nucleus,  thus  weakening  the
pathogen defenses that depend on SA[15].  In soybean,  FR light
has  also  been  shown  to  inhibit  SA-dependent  genes  in  plants
infected with SMV[40].

Compared to red light, the impact of blue light signaling on
the SA pathway has not been as thoroughly explored. However,
it  is  intriguing  to  note  that  blue  light  has  been  shown  to
enhance  soybean  resistance  to  the  SMV  by  coordinating  both
SA and JA defense pathways. In addition to blue light, ultravio-
let  light  also  exerts  a  significant  influence  on  SA  signaling.  UV
light  has  been  observed  to  elevate  SA  content,  leading  to  an
upregulation in the expression of SA-associated genes in toma-
toes and tobacco leaves[27,58].

In addition to various light-quality treatments, research indi-
cates  that  photoperiod  also  plays  a  role  in  regulating  SA
production  and  defense  against  pathogenic  attacks[59].  The
central  circadian  clock  oscillator,  CCA1  HIKING  EXPEDITION
(CHE),  is  essential  for  the  synthesis  of  SA  in  response  to
pathogens[60].  Moreover,  the  SA-related  immune  regulator
NPR1  regulating  both  the  morning-phased  CIRCADIAN  CLOCK
ASSOCIATED  1  (CCA1)/LATE  ELONGATED  HYPOCOTYL  (LHY)

and  the  evening-phased  TIMING  OF  CAB2  EXPRESSION  1
(TOC1),  enables  plants  to  regulate  their  immune  responses  in
the morning and minimize  growth costs  at  night[59].  However,
numerous facets of the control that photoperiod and circadian
rhythm contribute to plant growth and stress responses remain
unclear.

Light  quality  may  also  influence  the  crosstalk  between  JA
and  SA.  Some  indirect  evidence  suggests  that  red  and  blue
light can induce resistance to SMV in soybean by coordinating
the defense pathway of SA and JA, but this hypothesis requires
further  testing[40].  UV  radiation  has  been  observed  to  strongly
activate  SA-related  defense  responses  in  JA-deficient  geno-
types  after  thrips  infection.  Further  research  indicates  that  UV
radiation may enhance tomato resistance to Pst DC3000 in JA-
deficient  genotypes  through  the  activation  of  SA  defense[61].
However, this evidence is indirect and circumstantial. 

Light-jasmonates interplay during abiotic
stress.

The interaction between light and JA has a significant impact
on  abiotic  stress  responses  (Table  3).  Research  by  Wang  et  al.
indicated that FR light and a low R/FR light positively influence
the cold tolerance of tomato plants.  Under FR light,  phyA acti-
vates  abscisic  acid  (ABA)  signaling,  which  in  turn  induces  the
expression of downstream JA signaling components, leading to
increased  expression  of C-REPEATBINDINGFACTOR1  (CBF1) and
enhances  cold  tolerance  in  tomatoes[19].  In  contrast,  red  light
was  found  to  have  a  negative  effect  on  the  cold  tolerance  of
these  plants.  The  involvement  of  phytochromes,  specifically
phyA and phyB, in SAS is also well-established. PhyB suppresses
SAS under high R: FR conditions, while phyA does so under low
R: FR conditions.  Studies have revealed that COI1,  a key player
in  JA  signaling,  is  crucial  for  phyA-mediated  inhibition  of  SAS.
Under low R: FR conditions, phyA regulates SAS by engaging JA
signaling  and  promoting  the  degradation  of  JAZ1,  which  is

 

Table 3.    Effect of light treatments on JA/SA-mediated abiotic stress.

Phytohormone
type Species Abiotic stress Mechanism Light treatment and

key light element

JA Tomato Cold stress PhyA induces the expression of JA signaling components,
increases the expression of CBF1, thus enhances cold
tolerance in tomatoes[23].

Low R/FR light treatment

Arabidopsis Heat and
high light stress

Combined high light and heat stress will increase the
levels of JA and JA-Ile, as well as the expression of
transcripts related to JA biosynthesis[67]. Additionally, a JA-
deficient mutant (aos) is more sensitive to heat stress[67].

High light treatment

Arabidopsis High light/UV-B stress TCP4 interacts with UVR8, activating the transcription of
the JA synthesis gene LOX2, which subsequently improves
UV tolerance[20].

High light treatment

SA Barley Cold acclimation SA levels were lowered under WFR and WFRB light
conditions compared to W light[62].

Blue and FR light
supplementation to white
light (WFRB), white light
enriched with FR (WFR)

Barley Cold acclimation FR light represses SA levels at low temperatures in Barley
leaves. This phenomenon may exhibit similarities to the
SAS[68].

Far-red light
supplementation

Tomato Chilling stress The SA biosynthesis gene SlPAL5 alleviates photosystem II
damage under chilling stress[63].

/

Arabidopsis High light stress High light conditions have been found to increase SA
content[64]. Exogenous SA application can alleviate
photoinhibition and improve photoprotection from high
light in Arabidopsis[66].

High light treatment

Rice High light stress High light significantly increases SA levels[64]. Endogenous
SA protects rice from oxidative damage caused by high
light[65].

High light treatment

Light-mediated JA/SA regulation in plant
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downstream  of  COI1[31].  Further  work  has  shown  that  in  this
pathway, transcription factors such as MYC2, MYC3, and MYC4
are degraded by JAZ1[64]. JA and phyA signaling stabilizes these
transcription  factors,  thereby  altering  plant  SAS.  JA  signaling
also  participates  in  phosphate  responses  under  shade  condi-
tions.  JAZ  directly  interacts  with  PHOSPHATE  STARVATION
RESPONSE1  (PHR1)  to  repress  the  transcriptional  activity  of
phosphate  starvation-induced  genes.  Moreover,  FHY3  and
FAR1  directly  bind  to  the  promoters  of NITRATE-INDUCIBLE,
GARP-TYPE  TRANSCRIPTIONAL  REPRESSOR1.1  (NIGT1.1) and
NITRATE-INDUCIBLE,  GARP-TYPE  TRANSCRIPTIONAL
REPRESSOR1.2  (NIGT1.2) to  activate their  expression while  JAZs
suppress  these process[65],  enriching our  understanding of  the
relationship between light and nutrient intake regulated by JA.

Similarly,  the  interaction  between  JA  and  light  can  affect
heat  stress  responses.  Combined  high  light  and  heat  stress
were found to increase the levels of JA and JA-Ile, as well as the
expression of  over  2200 transcripts,  including those  related to
JA  biosynthesis[63].  Additionally,  a  JA-deficient  mutant  (aos)
exhibited  increased  sensitivity  to  combined  light  and  heat
stress treatments, highlighting the positive regulatory role of JA
in plant  responses to such stress  conditions[63].  In  nature,  high
light  is  often  accompanied  by  high  UV-B.  In  Arabidopsis,  the
interplay  between  JA  and  UV-B  signaling  is  modulated  when
TCP  FAMILY  TRANSCRIPTION  FACTOR  4  (TCP4)  interacts  with
UV RESISTANCE LOCUS 8 (UVR8), activating the transcription of
the  JA  synthesis  gene LOX2,  which  subsequently  improves  UV
tolerance[16]. 

Light-salicylic acid interplay during abiotic
stress.

Light conditions can influence SA production and alter resis-
tance to abiotic stress (Table 3).  During cold stress,  white light
enriched  with  FR  (WFR)  and  blue  light  (WFRB)  has  been
observed to  inhibit  SA levels,  a  response akin  to  SAS in  barley
leaves[62].  There is  evidence that  SA also contributes to photo-
protection in rice and Arabidopsis. Recent research has concen-
trated on both the impact of exogenous SA application and the
activation  of  endogenous  SA  pathways.  In  tomatoes,  the  SA
biosynthesis gene SlPAL5 mediates two SA response pathways
that  are  involved  in  the  protection  of  photosystem  II  under
chilling stress[63]. High light conditions have also been found to
elevate  SA content  in  Arabidopsis  and rice[64].  Endogenous  SA
can  mitigate  photoinhibition,  indicating  that  SA  may  have
played  a  role  in  the  adaptation  to  increased  light  exposure
following the terrestrialization of plants[64]. Furthermore, SA has
been  shown  to  protect  rice  plants  from  oxidative  damage
induced  by  intense  sunlight[65].  Both  phenotypic  and  protein-
level evidence supports the idea that the application of exoge-
nous  SA  can  reduce  photoinhibition  and  safeguard  photosys-
tem II from high light intensity in Arabidopsis[66]. 

Light-JA/SA interplay in plant development.

Recent  studies  indicate  that  JA  can  influence  various  devel-
opmental  processes  in  a  light-dependent  manner,  including
the  secretion  of  extrafloral  nectar[69],  the  elongation  of
hypocotyls[70,71],  the  accumulation  of  anthocyanin  and  chloro-
phyll,  and  so  on.  In  lima  beans,  it  has  been  observed  that  JA
stimulates  the  secretion  of  extrafloral  nectar  (EFN)  in  a  light-

dependent  fashion[69].  JA  decreases  EFN  secretion  in  the  dark
but  induces  it  under  light  conditions.  This  regulatory  effect  is
also  modulated  by  R:  FR  light  ratio,  where  the  light  environ-
ment  can  control  the  biosynthesis  of  JA-Ile,  thereby  affecting
subsequent EFN secretion.

In  Arabidopsis,  the  interplay  between  light  and  JA  has  a
multifaceted  impact  on  photomorphogenesis.  Research  has
uncovered that phytochrome A (phyA) negatively regulates the
expression  of  JA-responsive  genes  in  a  FIN219/JAR1-depen-
dent  process.  Significantly,  FAR-RED  INSENSITIVE  219
(FIN219)/JASMONATE  RESISTANT1  (JAR1)  can  bind  directly  to
phyA,  reducing  its  levels  and  activity.  Additional  studies  have
demonstrated that FR light and MeJA can increase the binding
of  FIN219/JAR1  to  the  active  Pfr  form  of  phyA,  which  inhibits
hypocotyl  elongation  and  promotes  the  accumulation  of
anthocyanin  and  chlorophyll[70].  Moreover,  FIN219/JAR1  facili-
tates the nuclear accumulation of HY5 by modulating CONSTI-
TUTIVELY PHOTOMORPHOGENIC 1 (COP1) exclusion, leading to
hypocotyl  elongation[71−73].  Additionally,  it  is  found  that  the
long  hypocotyl  phenotype  of  the  Arabidopsis phyB mutant  is
partially suppressed by the overexpression of MYC2. The study
further  points  out  that  MYCs  directly  bind  to  the  promoter  of
HY5 and regulate its  expression[74].  However,  under  blue light,
MYC2  physically  interacts  with  HY5,  and  at  the  transcriptional
level,  MYC2  negatively  regulates  the  expression  of HY5,  while
HY5 also suppresses the expression of MYC2[74,75]. Evidence has
also  emerged  that  JAZ3  interacts  with  the  light-responsive
transcription  factor  PIF4,  enhancing  the  liquid-liquid  phase
separation (LLPS) of PIF4 during Arabidopsis photomorphogen-
esis[18].  Currently,  research  into  how  JA  regulates  plant  photo-
morphogenesis  is  limited,  primarily  focusing  on  hypocotyl
elongation in Arabidopsis and rice. Beyond model plants, inves-
tigating how light  and JA interact  to  modulate photomorpho-
genesis in horticultural crops is an area of interest. For instance,
it  is  worth  exploring  whether  light  can  modify  plant  architec-
ture  through  hormone-related  pathways,  thereby  facilitating
dense planting and improving space utilization. Beyond photo-
morphogenesis,  there  are  also  several  related  studies  on  the
role  of  light-regulated  JA  signals  in  controlling  traits  such  as
fruit  quality.  For  instance,  in  eggplant,  SmJAZ5/10  interacts
with  SmMYB5  synergistically  activating  the  expression  of
SmF3H  (FLAVANONE  3-HYDROXYLASE) and SmANS  (ANTHO-
CYANIDIN  SYNTHASE),  thereby  promoting  anthocyanin  synthe-
sis in eggplant fruit peel[76]. Other secondary metabolites, such
as  artemisinin,  are  also  regulated  by  JA-light  interactions,
where  AaMYB108  interact  with  AaCOP1  and  AaJAZ8  respec-
tively,  upregulating  artemisinin  biosynthesis  in Artemisia
annua[21].

Compared to the well-studied interactions between light and
JA during plant development,  the interplay between light and
SA remains relatively unexplored. Recent findings have primar-
ily  concentrated  on  how  light  influences  stomatal  develop-
ment[77], senescence[19], and the effects of vegetable quality[78].
SA  is  integral  to  the  plant  hormone  signaling  network  during
senescence,  and  maintaining  the  SA  pathway  can  help  inhibit
plant aging under stress[79,80]. Several studies have implied that
light  can  modulate  the  SA  pathway  during  senescence.  Direct
evidence in Arabidopsis has shown that light impacts SA-medi-
ated  senescence,  with  high  R:  FR  light  partially  repressing  leaf
senescence  through  the  FHY3-WRKY28  transcriptional
module[19].  ICS1  is  a  direct  target  of  WRKY28;  FHY3  negatively
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regulates SA signaling by binding to the promoter and repress-
ing WRKY28, thus  inhibiting  ICS1-mediated  SA  biosynthesis.
Light also influences SA-related stomatal regulation, with stud-
ies suggesting that SA biosynthesis  is  involved in the recovery
of  stomatal  conductance  after  periods  of  darkness[77].  In
contrast,  SA  is  thought  not  to  be  implicated  in  darkness-
induced stomatal closure since SA synthesis is light-dependent.

Research  has  also  indicated  that  certain  light  qualities  can
modulate  gene  expression  and  promote  the  accumulation  of
bioactive compounds. In Broccoli (Brassica oleracea var. italica),
it was found, compared with white light, blue light significantly
inhibits the expression of SA synthesis gene BoPAL and BoBEN-
ZOIC  ACID  2-HYDROXYLASE (BA2H)[81].  Since  SA  inhibits  the
production  of  the  glucosinolate-based  secondary  metabolite,
sulforaphane (SFN), blue light was able to reduce SA accumula-
tion and promote SFN production.

Polyamines  are  low  molecular  weight  organic  compounds
that regulate plant growth, development,  and stress response.
Studies have also shown that the application of exogenous SA
results  in  polyamine metabolism that  is  dependent on light  in
tomatoes[78].  There  may  be  practical  value  in  combining  light
treatment with exogenous SA applications to maximize devel-
opment and growth alteration on commercial crops. 

Light-mediated trade-off between growth,
competitive ability, and defense

Plants have evolved a sophisticated energy allocation system
to  balance  defense  against  pathogens  and  herbivores  while
competing  for  sunlight  in  resource-limited  environments[56,82].
Within  this  system,  the  interplay  between  light,  JA,  and  SA  is
crucial for striking a balance between growth, competitive abil-
ity,  and  defense  mechanisms.  Over  time,  significant  progress
has been made in understanding the crosstalk between JA and
SA  with  key  components  of  light  signaling,  especially  in  the
context of shade avoidance and defense responses[83].

Light  plays  a  significant  role  in  the  equilibrium  between
plant  growth  and  defense.  In  Arabidopsis,  MYC2-mediated  SA
biosynthesis  and  signaling,  which  is  essential  for  resistance
against  bacterial  pathogens,  are partially  regulated by light[84].
Evidence suggests that under low R: FR light conditions, plants
may prioritize light foraging for rapid growth over defense[85,86].
Furthermore,  low  R:  FR  light  ratio  can  inhibit  both  SA-depen-
dent and JA-dependent resistance to diseases[86].  For example,
under such conditions, phyB is predominantly in the inactive Pr
form,  allowing  PIF4  to  activate  the  transcription  of  the  sulfo-
transferase gene STa  (SULFOTRANSFERASE  a).  STa catalyzes the
sulfation  of  OH-JA,  reducing  its  availability  for  the  JA-Ile  path-
way  in  Arabidopsis[87].  Concurrently,  the  phosphorylation  of
NPR1  is  significantly  reduced,  impairing  SA-mediated  resis-
tance.  An  intriguing  discovery  is  that  under  suboptimal  light,
MYC2  is  necessary  for  the  microbiota-root-shoot  circuit  in
Arabidopsis to combat Pst DC3000 and Botrytis  cinerea[88].  Low
R:  FR  ratios  inactivate  the  photoreceptor  phyB,  rapidly  reduc-
ing DELLA protein abundance and the inhibitory effect of FR on
jasmonate signaling is impairing in gai-1 mutants, thus promot-
ing JAZ10 stability, urging the plants for rapid growth[89]. Inter-
estingly,  a  study  shows  in  rice  and  Arabidopsis,  JAZ9  could
interrupt  RGA  (a  DELLA  protein)-PIF3  interaction[90].  During
SAS,  plants  may  aggressively  compete  with  their  neighbors,
potentially sacrificing JA/SA-dependent defense abilities. While

these mechanisms have been primarily discovered in Arabidop-
sis,  some research has  also  been conducted on crops,  particu-
larly tomatoes[61].

These findings align with the observation that high planting
densities  in  agriculture  often  correspond  with  increased  pests
and diseases indices. This underscores the urgency of breeding
crops with ideal architectures for high-density planting, as well
as  exploring  supplementary  lighting  and  rational  close  plant-
ing strategies. The influence of plant light sensing on microbial
root commensals may necessitate a reevaluation of soil  micro-
biome  management  strategies.  However,  the  dependency  of
these phenomena on light intensity or disease indices requires
further  investigation.  Future  research  could  delve  into  how
light mediates JA and SA pathways to drive a trade-off between
growth,  competition,  and  stress  resistance  or  tolerance  in
vegetable  plants  such  as  tomatoes.  Additionally,  whether  this
trade-off[56,61] varies  among  species  demands  more  detailed
research.  Understanding  how  plants  adapt  to  various  light
conditions  could  inform  strategies  for  optimizing  agricultural
resource  configuration  through  practices  like  intercropping,
relay  cropping,  and  light  supplementation.  The  interaction  of
well-known  hormone  pathways,  including  gibberellins  (GA),
abscisic acid (ABA), strigolactones (SL), and RALF (RAPID ALKA-
LINIZATION FACTOR) under diverse light conditions remains an
enigma.  In  the  natural  environment,  where  resources  are
limited, the growth-defense trade-off means that plants cannot
simultaneously  exhibit  high  resistance  and  robust  growth
phenotypes.  Nevertheless,  there  may  be  workarounds  that
allow for a reevaluation of strategies in agricultural production.
Further  elucidation  of  these  trade-offs  and  potential  bypasses
could  aid  in  the  development  of  disease-resistant  plants  with-
out compromising growth abilities[91]. 

Conclusions and the value in agricultural
production

Delving  into  the  light-mediation  of  the  JA-SA  pathways  is
crucial  for  enhancing  our  comprehension  of  how  plants
balance  defense  and  growth  in  response  to  fluctuating  envi-
ronments.  This  understanding  provides  a  theoretical  founda-
tion  for  utilizing  light  to  regulate  crop  development,  reduce
reliance  on  biocides,  improve  the  quality  of  crops,  and  ensure
food  safety.  Light  and  JA/SA  interactions  modulate  a  delicate
equilibrium for growth and defense. Additionally, these interac-
tions  highlight  that  light  signaling  is  tightly  regulated  by
numerous  transcription  factors,  reflecting  the  evolutionary
development of diverse regulatory pathways that enable plants
to adapt to complex and dynamic environments.

Further  investigation  into  the  components  of  light  signal
transduction,  including  photoreceptors  such  as  phytochromes
phyB  and  phyA,  cryptochromes  (CRYs),  genes  involved  in  UV
resistance  such  as  UVR8,  and  light-responsive  transcription
factors  (e.g.  PIFs,  HY5,  FHY3/FAR1,  BBXs,  MYBs,  and  COP1),
could  help  identify  key  regulators  in  light-mediated  survival
and  reproduction  of  plants  within  the  JA/SA  pathway.  Under-
standing the involvement of JA and SA biosynthesis genes and
pivotal  players  in  signal  transduction  (JAZs,  MYC2,  and  COI  in
the  JA  pathway  as  well  as  NPR1,  ICS1,  and  WRKYs  in  the  SA
pathway) in light-mediated plant growth and defense is essen-
tial  for  a  comprehensive  grasp  of  how  crops  perceive  and
respond  to  environmental  cues.  Moreover,  exploring  the
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potential  interactions  between  light/JA/SA  with  REACTIVE
OXYGEN  SPECIES  (ROS),  calcium  signaling,  and  proteins  that
interact  with  light  signaling  components,  such  as  the  RECEP-
TOR-LIKE  KINASE  FERONIA  (FER)[92] and  CALCIUM-DEPENDENT
PROTEIN KINASE (CPK)[93], warrants further research.

Integrating bioinformatic approaches to employ multi-omics
data[94] such  as  such  as  transcriptomics,  proteomics,
metabolomics, and utilizing CRISPR/cas9 genome editing tech-
nology[95,96],  will  offer  significant  opportunities  for  bridging
basic  research  with  agricultural  applications.  Light  quality,
photoperiod,  intensity,  and  duration  modulate  the  defense-
related  hormones  JA  and  SA  through  both  biosynthesis  and
signaling,  thus  highlighting  the  importance  of  light  condition
alterations.  Interestingly,  under  low R:  FR  conditions,  evidence
suggests that plants may forgo resistance to compete for light,
indicating the operation of a sophisticated and precise energy
allocation  system.  This  natural  phenomenon  is  in  contrast  to
modern  intensive  cropping  practices,  making  it  essential  to
advance crop architecture breeding[31], light manipulation, and
appropriate agronomic measures to reduce disease occurrence
in intensive agricultural settings.

LEDs  have  emerged  as  an  innovative  and  efficient  light
source.  For  example,  employing  LED-derived  red  light  during
the night[48] and managing greenhouse light environments can
enhance  resistance  against  biotrophic  microbial  pathogens  in
horticultural  crops[74,97].  Future  research  focusing  on  the  inte-
gration  of  light  treatments  combined  with  exogenous  JA/SA
applications may present new opportunities for the crop indus-
try.  Furthermore,  investigating  key  genes  in  the  light  signal-
mediated  JA-SA  pathway  that  enhance  plant  stress  resistance
could  provide  insights  for  breeding  crops  with  superior  stress
resistance  and  growth  qualities.  Utilizing  techniques  such  as
the  exogenous  application  of  plant  physiological  active
substances,  plant  growth  regulators  such  as  MeJA[70],  SA[98],
and light condition regulation are considered environmentally
friendly  and  effective  methods  for  improving  the  adaptability
of vegetable crops to various adversities and for enhancing the
quality  of  vegetable  products.  Such  advancements  are  essen-
tial  in  meeting  the  current  and  future  demand  for  sustainable
and healthy horticultural strategies. 
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