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Abstract
Recent studies have focused on developing underwater wireless power transfer (UWPT) anti-misalignment methods to address the vulnerability

of  UWPT  systems  to  large  water  flow  fluctuations  and  unstable  power  transference.  Autonomous  underwater  vehicles  (AUVs)  use  irregular

coupling  mechanisms  to  ensure  stable  power  transmission  through  constant  mutual  inductance,  but  these  require  complex  structures  and

present docking difficulties. A prediction algorithm based on the mutual inductance surrogate model is proposed to achieve optimal prediction

for coupling mechanisms with constant power transmission at misaligned positions. The relative position and posture parameters of a coupling

mechanism simulation model were subjected to Latin hypercube sampling to construct a dataset. Subsequently, a back propagation (BP) neural

network was applied to develop an omnidirectional surrogate coupling mechanism model to predict the mutual inductance value. The surrogate

model and a genetic algorithm were used to optimize the coil posture for maintaining constant power transfer. Experimental validation reveals

that at a 0.6 aspect ratio, the system can ensure constant mutual inductance and power within a 25% omnidirectional misalignment range with

an average error in mutual inductance of only 0.43%. At a 10% acceptable mutual inductance drop threshold, the anti-misalignment ranges of

the system increase to 2.11 times the pre-optimization range.
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 Introduction

Wireless power transfer (WPT) technology has been success-
fully  applied  to  consumer  electronics,  mobile  devices,  electric
vehicles (EVs),  and many other equipment[1−5].  With the devel-
opment  of  marine  resources  and  the  marine  economy,  the
scope  of  autonomous  underwater  vehicle  (AUV)  applications
has become increasingly wide.  Currently,  many different types
of  AUVs  are  used  in  various  fields,  including  military  applica-
tions,  petroleum  exploration,  and  scientific  research.  The
battery  life  is  still  a  challenge,  which can be solved using WPT
technology.

Given  the  continuous  expansion  in  the  scope  of  AUV  tasks,
the use of conventional power supply methods has limited the
scope  of  work  and  continuous  working  duration  of  such  vehi-
cles,  making  power  supply  the  critical  factor  that  determines
AUV  performance[6−8].  Using  emerging,  underwater  wireless
power transfer  (UWPT)  technology shown in Fig.  1,  power can
be  transmitted  without  physical  contact,  enabling  galvanic
isolation  and  the  elimination  of  mechanical  wear  to  achieve
high reliability, convenience, and safety in an underwater envi-
ronment[9−11].  Underwater  wireless  power  transfer  technology
provides a safe and reliable transfer method for AUV underwa-
ter  power,  avoiding  the  safety  hazards  caused  by  underwater
wet  plugging-unplugging,  which  has  made  UWPT  a  focus  of
research in the field of wireless power transfer[12−16].

The underwater wireless power transfer environment is influ-
enced by factors that are not found in the atmospheric environ-
ment  in  terms of  medium density  and ocean currents.  In  such
an  environment,  misalignments  in  the  coupling  mechanism

can  be  more  severe  and  incur  greater  drops  in  mutual  induc-
tance[17].  The mutual inductance of the coupling mechanism is
closely  intertwined  with  the  output  power,  transfer  efficiency,
and other system indicators[18−24], making it necessary to intro-
duce  an  anti-misalignment  design  to  ensure  the  stable  opera-
tion  of  the  UWPT  system.  Currently,  anti-misalignment  prob-
lems  in  the  wireless  power  supplies  of  AUV  are  generally
resolved  using  irregular  coupling  mechanisms  such  as  cage,
curly  coil,  and  self-latching  coupling  mechanisms  to  attain
constant  mutual  inductance  in  the  coupling  mechanism  and
ensure  transfer  stability.  However,  such  solutions  continue  to
suffer from drawbacks. The output power of the cage coupling
mechanism[25,26] is  linked to  the  relative  angle  of  the  coupling
mechanism,  with  a  36.91%  difference  in  the  output  power
between  the  best  and  worst  cases.  The  curly  coil  coupling
mechanism[17,27] requires an additional  auxiliary mechanism to
fix  the  posture  during  the  charging  process,  and  self-latching
coupling mechanisms[28,29] require very high docking precision,
making  it  difficult  for  AUVs  to  achieve  autonomous  self-latch-
ing  action  underwater.  Overall,  the  existing  anti-misalignment
designs  used  in  UWPT  systems  sacrifice  system  flexibility  and
service life.  Simultaneously,  problems such as  docking difficul-
ties  and  structural  complexities  make  it  crucial  to  design  a
power stabilization method with a high degree of freedom.

A  free-positioning  omnidirectional  WPT  system  with  reticu-
lated  planar  transmitters  has  been  reported[30].  It  can  use  a
designed  excitation  current  to  generate  a  three-dimensional
(3D) rotating magnetic field to power a receiver at any position
and  direction.  However,  as  reticulated  planar  transmitters  are
large  and  have  low  transfer  efficiencies  (only  55.6%),  it  is

ARTICLE
 

© The Author(s)
www.maxapress.com/wpt

www.maxapress.com

mailto:syue@cqu.edu.cn
https://doi.org/10.48130/wpt-0024-0001


difficult  to  use  them  in  UWPT  systems.  New  hybrid  inductor-
capacitor-inductor and capacitor-inductor topologies have also
been proposed to resolve the power drop problems caused by
the misalignment of wireless charging system coupling mecha-
nisms in electric vehicles[31,32].  The approach utilizes the differ-
ing characteristics  of  the  respective  topologies  under  changes
in  mutual  inductance  to  achieve  constant  power  transfer  in  a
system  at  a  misaligned  position;  using  the  optimization  algo-
rithm  proposed  in  this  paper,  the  anti-misalignment  perfor-
mance  of  UWPT  systems  that  apply  such  topologies  can  be
further improved.

This  paper  proposes  an  optimal  misalignment  posture
prediction  algorithm  for  coupling  mechanisms  based  on  the
mutual  inductance  surrogate  model.  The  proposed  algorithm
can  attain  optimal  posture  prediction  with  constant  power  at
any position within the working range. The constant transfer of
power  in  the  misaligned  state  is  achieved  by  adjusting  the
operating posture of the coupling mechanism. To develop the
proposed  method,  we  first  established  a  system  circuit  theory
model  for  which  the  mutual  inductance  of  the  system  was
determined as the optimization target. A back propagation (BP)
neural  network  was  then  used  to  develop  the  mutual  induc-
tance surrogate model, and the optimal posture with constant
power  in  the  misaligned  state  was  finally  derived  by  combin-
ing  the  surrogate  model  with  a  genetic  algorithm.  The  contri-
butions of this paper are as follows:

1) An anti-misalignment method for UWPT systems based on
a  mutual  inductance  surrogate  model  and  an  optimization
algorithm is proposed. The mutual inductance surrogate model
developed  in  this  study  can  accurately  predict  the  mutual
inductance  at  any  position  and  posture  of  a  coupling  mecha-
nism within its operating range;

2) The surrogate model and genetic algorithm were used to
optimize  the  posture  of  the  coupling  mechanism  at  the
misaligned  position,  thereby  achieving  constant  power  trans-
fer in the system in 3D space.

 AUV wireless power transfer system model
and its magnetic field analysis

To  determine  the  inputs  and  outputs  of  the  mutual  induc-
tance  surrogate  model,  this  section  focuses  on  the  wireless
power  transfer  system of  an  AUV with  inductance  and double

capacitances-series  (LCC-S)  topology  and  establishes  a  spatial
coordinate  system  with  the  geometric  center  of  the  primary
coil as the origin to determine the relative position and posture
parameters of its coupler. Furthermore, an in-depth analysis of
the  relation  between  mutual  inductance  and  power  transfer
characteristics in the LCC-S topology are conducted. The coor-
dinates  (x, y, z)  of  the  geometric  center  of  the  secondary  coil
and the rotation angles (α, β, γ) of the secondary coil around the
X-, Y-, and Z-axes, respectively, are determined as the inputs of
the  surrogate  model,  with  mutual  inductance  output  deter-
mined as the output. The results provide a theoretical basis for
establishing  the  mutual  inductance  surrogate  model  in  the
next section.

 Relation between mutual inductance and system
transfer characteristics

The  LCC-S  topology  of  an  AUV  wireless  power  transfer
system is  modeled and analyzed here and used to develop an
equivalent  circuit  model.  The  expressions  of  mutual  induc-
tance  and  the  system  transfer  characteristics  are  derived  from
the impedance analysis.  The LCC-S circuit  diagram is  shown in
Fig. 2. The primary side of the system in the figure comprises a
DC  power  supply, Edc,  high-frequency  full  bridge  inverters
(S1–S4), and an LCC network; the secondary side of the system
comprises an S network, rectifier, filter capacitor, and load resis-
tor.

According  to  the  theory  of  fundamental  harmonic  approxi-
mation, a DC power supply outputs a square wave through an
inverter.  The  power  supply  and  equivalent  circuit  of  the
inverter is represented as an AC power supply, UI, in which Ro is
the  AC  equivalent  resistance.  An  equivalent  circuit  of  this
system  is  shown  in Fig.  3,  in  which uin and if represent  the
output voltage and output current, respectively, of the inverter
and ip indicates the current of  the primary coil.  The self-induc-
tances of the primary and secondary coils  of  the system are LP
and LS, respectively, and their internal resistances are RP and RS,
respectively. Lf represents the compensation inductance at the
transmitting  end  of  the  system, CP and CS represent  the
compensation  capacitors  in  series  with  the  primary  and
secondary  coils  of  the  system,  respectively, Cf indicates  the
compensation  capacitor  in  parallel  at  the  transmitting  end  of
the  system, M represents  the  mutual  inductance  between  the
primary  and  secondary  coils, uo and io represent  the  input  AC
voltage and current of the load, respectively.

The resonance relation of the system is as follows:

jωLS +
1

jωCS
= 0

jωL f +
1

jωC f
= 0

jω(LP−L f )+
1

jωCP
= 0

(1)

 
Fig. 1    Schematic of AUV wireless power transfer.

 
Fig. 2    The WPT system with LCC-S compensation network.
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The impedance ZS of the secondary side can be written as:
ZS = RS +RO (2)

The equivalent load RO is given by:

RO =
8
π2 RL (3)

The  impedance Zr reflected  from  the  secondary  side  to  the
primary side can be expressed as:

Zr =
(ωM)2

RS +RO
(4)

From this, the impedance Zp of the primary side is:

ZP=
ω2L2

f CP(RO+RS )

ωCP

[
ω2M2− jω(L f −LP)(RO+RS )+RP(RO+RS )

]
− jRO− jRS

(5)
From  Eqns  (1)  to  (5),  the  resonant  current If of  the  primary

side of the system, coil current Ip of the primary side, and reso-
nant current IO of the secondary side can be derived as follows:

İ f =
ωCP

[
ω2M2− jω(L f −LP+RP)(RO+RS )

]
− j(RO+RS )

ω2L2
f CP(RO+RS )

U̇I

İP =
1/ jωC f

jωLP+RP+ (ωM)2/(RS +RO)+1/ jωCP+1/ jωC f
İI

İO =
jωM

RS +RO
İP

(6)
From this, the input and output power of the system are:

PI = |İ f |2Zin =
U2

I (ω2M2+RS RO+RS RP)(RO+RP)

2ω2L2
f (RO+RS )2

PO = |İO|2RO =
ROU2

I M2

L2
f (RO+RS )2

(7)

The efficiency of the system can be simplified as:

η =
PO

PI
=

ω2M2RO

(ω2M2+RPRO+RS RP)(RO+RS )
×100% (8)

Table 1 lists the parameters of the LCC-S topology AUV wire-
less  power  transfer  system. Figure  4 shows  the  relation
between  the  power,  efficiency,  and  mutual  inductance  of  the
system.  From  the  figure,  the  output  power  increases  with  the
mutual  inductance  and  the  efficiency  of  the  system  increases
with the mutual  inductance when the inductance is  small  and
then  gradually  stabilizes.  Thus,  the  mutual  inductance  of  the
coupling  coil  should  be  increased  to  its  maximum  value  to
increase the output power.

The  theoretical  analysis  above  indicates  that,  in  an  LCC-S
topology  adopted  by  an  AUV  underwater  wireless  charging
system, the mutual inductance is positively correlated with the
transfer  characteristics  of  the  system  under  a  constant-load
scenario. Changes in mutual inductance will cause fluctuations
in  the  transfer  characteristics  of  the  system  and  will  have  a
particularly significant impact on output power.

 Relation between the relative position and
posture of the coupling mechanism and the
mutual inductance

In the following analysis, the geometric center of the primary
coil  is  treated  as  the  origin  of  a  spatial  Cartesian  coordinate
system. In the next section, the relative position and posture of
the  coupling  mechanism  are  parameterized  to  facilitate  the
construction of a mutual inductance surrogate model.

Figure 5 shows the positional relations of the coupling mech-
anism of the AUV wireless power transfer system, with C1 indi-
cating the primary coil fixed at the charging base station and C2

the  secondary  coil,  which  is  installed  on  the  AUV  and  can  be
rotated around its geometric center. Using the Euler angles of a
rigid  body  rotating  around  a  fixed  point  in  a  mechanical
system[33] and  considering  all  six  degrees  of  freedom  describ-
ing  a  spatial  position,  a  3D  coordinate  system  can  be  con-
structed  with  the  geometric  center  of  the  primary  coil  as  the
origin.  In  the  figure,  (x, y, z)  represent  the  coordinates  of  the
geometric  center  of  the  secondary  coil  and  (α, β, γ)  represent
the angles through which the secondary coil rotates around the
X-, Y-, and Z-axes, respectively.

According  to  Neumann’s  law,  the  mutual  inductance
between  primary  and  secondary  coils  at  any  spatial  position
can be derived as

M =
N1N2uw

4π

z z dl⃗1 ·dl⃗2
r12

(9)

dl⃗1 dl⃗2

where M represents the mutual inductance between the primary
and secondary coils, N1 and N2 indicate the number of turns in the
primary  and  secondary  coils,  respectively, uw represents  the
average magnetic permeability in seawater,  and  represent

Table 1.    Coupler parameters.

Symbol Parameter Value

Uin Input voltage 200 V
f Frequency 150 kHz
Lf Primary compensation inductor 13 µH

Cf Primary compensation capacitor 86.6 nF

Cp Primary resonance capacitor 10.46 nF

Lp Primary side coil 120.6 µH

Ls Secondary side coil 121.2 µH

Cs Secondary resonance capacitor 9.29 nF

Rp Parasitic resistance of Lp 0.48 Ω
Rs Parasitic resistance of Ls 0.51 Ω
Ro Resistance 20 Ω

 
Fig. 3    The equivalent circuit of the system.

 
Fig. 4    Output power and efficiency.
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dl⃗1 dl⃗2
the  microelements  in  the  primary  and  secondary  coils,  respec-
tively, and r12 is the geometric distance between  and .

The  mutual  inductance  of  the  primary  and  secondary  coils,
which  have  relatively  complex  structures  with  multiple  turns,
can be established in terms of the parameters of the 3D spatial
coordinate  system  with  the  origin  at  the  geometric  center  of
the primary coil:

M = f (x,y,z,α,β,γ) (10)
The relations between independent changes in each param-

eter and the mutual inductance are shown in Fig.  6.  The initial
state of rotation is x = 10, y = 10, z = 50, α = 45°, β = 45°, γ = 45°.
This  analysis  reveals  that  the  mutual  inductance  of  an  AUV
wireless power transfer system is directly related to the relative
position  and  posture  of  the  coupling  mechanism,  with  a
change in any one of the selected parameters causing a change
in  the  mutual  inductance.  However,  the  manner  in  which  the
mutual  inductance  is  altered  differs  by  parameter.  In  practical
applications,  adjusting  a  single  parameter  is  insufficient  to
meet control requirements, and the system must be optimized
globally.  To  achieve  this,  we  establish  a  mutual  inductance
surrogate model in the following section.

 Mutual inductance surrogate model and
posture optimization of the coupling
mechanism

As the measurement of mutual inductance during a dynamic
process is very time-consuming, appropriate measuring equip-
ment must be used. The relation between the relative position
and posture of  the primary and secondary coils  and the trans-
fer  characteristics of  the system is  also extremely complicated,
and  the  mutual  inductance  and  transfer  characteristics  of  the
AUV  wireless  charging  system  LCC-S  topology  exhibits  a  posi-
tive  correlation.  To  achieve  global  optimization  of  the  mutual
inductance  parameters,  we  used  a  BP  neural  network  to
develop a mutual inductance surrogate model of the AUV wire-
less  power  transfer  system  that  can  predict  the  mutual  induc-
tance  at  any  relative  position  and  posture  of  the  coupling
mechanism.  The  Latin  hypercube  sampling  method  (LHS)  was
used  to  construct  sample  points  for  which  the  mutual  induc-
tance  values  were  numerically  simulated  using  the  COMSOL
software.  Ten-fold  cross-validation  was  used  to  avoid  overfit-
ting  the  surrogate  model.  The  surrogate  model  developed  in

this  section provides a model  foundation for  the posture opti-
mization  of  the  secondary  coil  under  constant  power  transfer,
as  described  in  the  next  section.  Other  parameters  of  the
coupling mechanism are listed in Table 2.

 Numerical simulation and dataset creation
The LHS method was used to establish the sample space for

the  surrogate  model.  For  each  sampling  point,  the  relative
coordinates x, y, and z between the secondary and primary coils
and  the  angles α, β,  and γ of  the  secondary  coil  around  the
coordinate axis were selected as input variables and the mutual
inductance  of  the  coupling  mechanism  was  selected  as  the
output  variable.  LHS  is  an  approximate  random  sampling
method  based  on  a  multivariate  parameter  distribution  and
constitutes a stratified sampling technique with uniform strati-
fication.  LHS  is  able  to  construct  models  more  effectively  in
sample  spaces  with  high  latitudes  and  low  sample  numbers.
The  ranges  of  all  coupling  parameters  were  defined  based  on
the actual working area of the coupling coil, as shown in Table
3. A total of 10,000 sample points with different values of x, y, z,
α, β,  and γ were  identified,  7,000  of  which  were  used  as  the
training  set  to  determine  the  parameters  of  the  surrogate
model. The remaining 3,000 sample points were used as a test
set  to  evaluate  the  predictive  performance  of  the  surrogate
model. Using COMSOL software, a finite element model of each

Table  2.    Design  parameters  for  coupling  mechanisms  in  AUV  UWPT
systems.

Design
parameters

Outer
diameter

Inner
diameter

No. of
turns

No. of
layers

Wire
diameter

Primary coil 100 cm 60 cm 10 1 3.9 mm
Secondary coil 100 cm 60 cm 10 1 3.9 mm

 
Fig.  5    Positional  relation  of  AUV  WPT  system  coupling
mechanism.

a

b

 
Fig.  6    Mutual  inductance  M  vs  (a)  misalignment  distance,  (b)
rotational angle.
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sample  point  was  established  and  the  electromagnetic  field
characteristics of the model were calculated, thereby obtaining
the mutual inductance of the system.

 Construction of mutual inductance surrogate
model based on BP neural network

A  multi-layer  forward  neural  network  based  on  error  back-
propagation was used to construct the surrogate model. As the
activation function of a BP neural network is usually a sigmoid
function  that  is  continuously  differentiable,  any  non-linear
mapping between the input and output can be attained. There-
fore,  such  networks  are  most  extensively  applied  in  pattern
recognition,  risk  assessment,  and  adaptive  control.  The  BP
neural network design was initially researched and designed by
Rumelhart et al.[34].

al
j wl

i j

bl
j

σ

Figure 7 shows the architecture of a BP neural  network.  The
main  structure  comprises  an  input  layer,  one  or  more  hidden
layers,  and  an  output  layer.  Each  layer  comprises  several
neurons,  with  the  output  of  each  neuron  determined  by  its
input value,  effect  function,  and threshold value.  In  the figure,

 represents the output of the j-th neuron in the l-th layer, 
represents the synaptic weight of the i-th neuron in the (l-1)-th
layer to the j-th neuron in the l-th layer,  represents the devia-
tion  in  the j-th  neuron  in  the l-th  layer,  and  represents  the
activation  function.  The  output  of  the j-th  neuron  in  the l-th
layer can be given as:

al
j = σ(

∑
k

wl
jkal−1

k +bl
j) (11)

where L and α denote  the  loss  function  and  learning  rate,
respectively,  of  the  network.  According  to  the  gradient  descent
principle,  the  parameter  update  rule  of  the  mutual  inductance
surrogate model can be given as:

bl← bl−α ∂L
∂bl

wl← wl−α ∂L
∂wl

(12)

In building a BP neural network, all hyperparameters, includ-
ing  the  learning  rate,  batch  size,  number  of  neurons,  and
number of  hidden layers,  must  be fixed before model  training

begins.  The  performance  of  most  machine  learning  models  is
largely  determined  by  the  choice  of  hyperparameters,  with
common  hyperparameter  optimization  approaches  used  in
current  optimization  methods  including  grid  search,  random
search,  and  Bayesian  optimization.  As  the  principle  of  grid
search is  simple and suitable for  cases with few hyperparame-
ters,  grid search was used to optimize the hyperparameters of
the network.

Based  on  the  theoretical  analysis  above,  the  number  of
neurons in the input and output layers were set as six and one,
respectively,  with  the  hyperparameters  to  be  determined
including  the  learning  rate,  activation  function,  batch  size,
number  of  neurons,  and  number  of  hidden  layers.  The  Adam
adaptive  optimization  algorithm[35] can  be  used  to  automati-
cally adjust the learning rate. Although there is no approach in
the  existing  literature  providing  a  direct  formula  for  adjusting
the batch size,  it  has been proposed[36] that the optimal batch
size lies within a range of 2 to 32. There is also no current theory
for  determining  the  optimal  number  of  hidden  layers  and
neurons  required  by  a  neural  network  to  solve  certain  prob-
lems.  In  general,  a  neural  network  model  with  two  to  three
hidden  layers  will  have  a  sufficiently  robust  non-linear  fitting
ability to resolve most problems, and setting the same number
of  neurons  in  each  hidden  layer  enables  very  good  neural
network  model  performance.  Based  on  the  factors  described
above, the ranges of values of hyperparameters that needed to
be determined via the grid search method are listed in Table 4.

The  mean  squared  error  (MSE),  mean  absolute  error  (MAE),
and coefficient of determination (R2) were used to evaluate the
training  performance  and  generalizability  of  the  surrogate
model using the following evaluation metrics:

MAE =
1
N

N∑
i=1

∣∣∣yi− y′i
∣∣∣ (13)

MS E =
1
N

N∑
i=1

(yi− y′i)
2 (14)

R2 = 1−
N∑

i=1

(yi− y′i)
2
/ N∑

i=1

(yi− ȳ)2 (15)

Table  5 lists  the  relative  error  of  the  neural  network  model
that  corresponds  to  each  set  of  hyperparameters  in  the  grid
search  after  the  same  number  of  iterations,  where  HLN  repre-
sents the number of  hidden layers,  NN represents the number
of  neurons  in  the  hidden  layer,  BS  represents  the  batch  size,
and R2 represents the coefficient of determination between the
predicted value of the model and the actual value. From Table
5, a network with two hidden layers, 32 neurons in each hidden
layer,  and  a  batch  size  of  five  achieves  the  best  performance,
with an R2 of 0.9693.

 Training of mutual inductance surrogate model
Using the dataset created previously, and the mutual induc-

tance  surrogate  model  established  by  the  BP  neural  network
algorithm, the relative position parameters (x, y, z) and posture

Table  3.    Range  of  variation  in  coupling  parameters  of  AUV  UWPT
systems.

Coupling
parameters

x (cm) y (cm) z (cm) α (°) β (°) γ (°)

Data range [−50.00,
50.00]

[−50.00,
50.00]

[50.00,
100.00]

[−90°,
90°]

[−90°,
90°]

[−90°,
90°]

 
Fig. 7    Neural network architecture.

Table 4.    Search ranges of hyperparameters.

Hyperparameter Search range

Number of hidden layers 2, 3, 4
Number of neurons in the hidden layer 16, 32, 64, 128
Batch size 4, 8, 16, 32
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parameters (α, β, γ)  were set as input variables and the mutual
inductance  M  was  set  as  the  output  variable.  The  dataset  of
10,000  sample  points  was  divided  into  two  subsets:  one  with
7,000 sample points  to train and validate the surrogate model
and  another  with  3,000  sample  points  to  test  the  model.  To
obtain  as  much  effective  information  as  possible  from  the
limited data  and prevent  overfitting of  the surrogate model,  a
10-fold  cross-validation  method  was  used  to  construct  the
surrogate model via the following steps:

1)  Divide  the  subset  of  7,000  sample  points  into  10  groups,
with each group including the same number of  sample points
randomly selected from the subset;

2) Construct 10 models. In the training and validation of each
model, one group is selected as the validation dataset and the
remaining  nine  are  used  as  the  training  dataset.  The  model  is
trained using the training datasets and its R2 value is calculated
using the validation dataset;

3)  The output  of  the 10 training models  is  averaged to  give
the output of the surrogate model.

The R2 values of the 10 models in the validation dataset were
0.9045,  0.9619,  0.9620,  0.9610,  0.9551  0.9531,  0.9636,  0.9247,
0.9642,  and  0.9591,  respectively.  The  generalizability  of  the
surrogate model  was tested using the 3,000-sample-point  test
dataset.  A  comparison  between  the  mutual  inductance  pre-
dicted  by  the  surrogate  model  and  that  determined  by  the
numerical simulation of the test dataset is shown in Fig. 8, with
the  convergence  process  of  the  surrogate  model  shown  in
Fig. 9. The R2 value of the surrogate model was 0.9328, indicat-
ing that the model had robust generalizability. Using the surro-
gate model with the position parameters of the secondary coil
relative to the primary coil in 3D space and posture parameters
of  the  secondary  coil  as  inputs,  the  mutual  inductance  of
the  coupling  mechanism  can  be  determined  quickly  and
effectively.

It was important to further verify the selected neural network
regression  algorithm,  in  particular  in  terms  of  its  effectiveness
and accuracy,  to  ensure  that  the constructed surrogate  model
provided  the  best  performance  in  terms  of  model  accuracy.
After  determining  the  hyperparameters  of  the  neural  network
model,  its  accuracy was compared against those of commonly
used  regression  algorithms  for  the  construction  of  UWPT
mutual  inductance  surrogate  models,  as  shown  in Table  6.  It

can  be  observed  from  the  table  that  the  R2 value  correspond-
ing  to  the  proposed  neural  network  algorithm  is  the  largest,
indicating that its  accuracy in constructing system energy effi-
ciency  models  is  significantly  better  than  that  of  other  regres-
sion algorithms.

 Genetic algorithm for the posture optimization of
coupling mechanisms with constant power
transfer at misaligned positions

The surrogate model  developed in the previous section can
be  used  to  quickly  predict  the  mutual  inductance  of  an  AUV
wireless  power  transfer  system  under  different  relative  posi-
tions and postures. Here, we describe how a genetic algorithm,
working  with  the  surrogate  model  in  an  iterative  process,  can
be  applied  in  conditions  in  which  the  misaligned  position  is
known  to  optimize  the  optimal  posture  of  the  secondary  coil
for constant power transfer at the misaligned position.

The  genetic  algorithm,  an  evolutionary  computing  tech-
nique  proposed  by  John  Holland  and  based  on  the  law  of
evolution of organisms in nature, is a method for searching for
an  optimal  solution  by  simulating  natural  evolutionary

Table 5.    R2 values of surrogate models of different hyperparameter groups.

HLN NN BS R2 HLN NN BS R2 HLN NN BS R2

2 16 4 0.9552 3 16 4 0.9396 4 16 4 0.9665
2 16 8 0.8887 3 16 8 0.9584 4 16 8 0.9191
2 16 16 0.9519 3 16 16 0.9484 4 16 16 0.9247
2 16 32 0.9354 3 16 32 0.9492 4 16 32 0.9471
2 32 4 0.9693 3 32 4 0.9450 4 32 4 0.9395
2 32 8 0.9429 3 32 8 0.9621 4 32 8 0.9227
2 32 16 0.9256 3 32 16 0.8998 4 32 16 0.7922
2 32 32 0.9606 3 32 32 0.9060 4 32 32 0.8342
2 64 4 0.9372 3 64 4 0.9580 4 64 4 0.9365
2 64 8 0.9373 3 64 8 0.9645 4 64 8 0.9394
2 64 16 0.8674 3 64 16 0.8492 4 64 16 0.8663
2 64 32 0.9180 3 64 32 0.7726 4 64 32 0.7899
2 128 4 0.9581 3 128 4 0.9444 4 128 4 0.8855
2 128 8 0.8882 3 128 8 0.9446 4 128 8 0.9105
2 128 16 0.8045 3 128 16 0.9018 4 128 16 0.9630
2 128 32 0.8411 3 128 32 0.9550 4 128 32 0.9328

 
Fig.  8    Comparison  between  predicted  and  real  mutual
inductance values in the testing dataset.
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processes.  The  algorithm  mathematically  converts  the  prob-
lem-solving process into a process similar  to the crossing over
and mutation of  chromosome genes in  biological  evolution.  It
is  able to obtain better  optimization results  than conventional
optimization  algorithms  in  solving  more  complex  combinato-
rial  optimization  problems.  Owing  to  the  complex  relation
between the optimized parameters of the relative position and
posture  and  the  objective  function  (coupled  mutual  induc-
tance), the surrogate model constructed in the previous section
allows  for  optimization  with  greater  efficiency.  The  optimiza-
tion process is shown in Fig. 10.

1)  Randomly initialize  the population:  The individual  coding
is  real-coded,  with  each  individual  constituting  a  real  string
composed  of  posture  parameters  (P,  Q,  R)  of  the  coupling
mechanism;

2) Determine the fitness function: To keep the mutual induc-
tance in  the misaligned state  stable,  the  output  of  the  mutual
inductance  surrogate  model  constructed,  MN,  and  the  target
mutual  inductance value,  M0,  are  used to  define the following
fitness function:

F = e−|M0−MN | (16)
3)  Select  operation:  Select  a  number of  individuals  from the

population  as  parents  for  breeding  offspring  and  use  the
roulette wheel selection method to select operations. Individu-
als  with  high  fitness  have  higher  probabilities  of  passing  their
parameters to the next generation; the converse is true for indi-
viduals with low fitness. The probability pd of individual d being
selected is:

pd =
Fd

h∑
d=1

Fd

(17)

where h is  the  number  of  individuals  in  the  population  and Fd
indicates the fitness value of individual d;

4)  Crossover  operation:  Two  paired  individuals  exchange
some of their genes with the crossover probability p, thus form-
ing  two  new  individuals.  Using  the  real-valued  crossover
method, the crossover method of the t-th gene of individuals s1
and s2 can be represented as:{

gs1t = gs1tr+gs2t(1− r)
gs2t = gs2tr+gs1t(1− r)

(18)

gs1t gs2twhere  and  represent  the  genes  of  the s1-th  and s2-th
individuals  at  the t-th  position,  respectively,  and r is  a  random
number between 0 and 1;

5) Mutation operation: To increase the diversity of the popu-
lation,  select  the j-th gene gij of  the i-th individual  with a  rela-
tively  small  mutation  probability ps to  mutate.  The  mutation
operation method is as follows:

Through the optimization algorithm proposed in this section,
the  posture  parameters  of  the  coupling  mechanism  for  cons-
tant  power  transfer  in  the  misaligned  position  can  be  accu-
rately obtained.

gij =

{
gijr2+ (gij−gmax)r1(1− s/smax), r2 ⩾ 0.5
gijr2+ (gmin−gij)r1(1− s/smax), r2 < 0.5

(19)

where gmax and gmin are the upper and lower bounds of gene gij,
respectively, r1 is  a  random  number, s is  the  current  iteration

 
Fig. 9    Convergence process of the surrogate model.

Table 6.    Comparison of accuracies of common regression algorithms for
model building.

Regression algorithms R2

Polynomial regression 0.76
Support vector machine regression 0.65
K nearest neighbor regression 0.58
Random forest 0.74
BP neural network 0.93

 
Fig. 10    Genetic algorithm optimization flow chart.
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number, smax is  the  maximum  number  of  evolutions,  and r2 is  a
random number between 0 and 1;

6)  Check  if  the  fitness  function  value  fulfills  the  end  condi-
tion:  If  the  condition  is  met,  output  the  optimization  result;
otherwise proceed with the next iteration.

Through the optimization algorithm proposed in this section,
the  posture  parameters  of  the  coupling  mechanism  for
constant power transfer in the misaligned position can be accu-
rately obtained.

 Verification of electromagnetic field
simulation

To  verify  the  accuracy  of  the  algorithmic  design  and  opti-
mization  process  described  in  the  previous  section,  in  this
chapter the optimization outcome of applying the algorithm to
the  lateral  misalignment  of  the  system  when  the  distance-to-
diameter ratio of the coupling mechanism is 0.6 is simulated. As
the  relative  position  parameters  (x, y, z)  of  the  primary  and
secondary  coils  during  AUV  wireless  power  transfer  can  be
directly obtained from a sensor, the posture parameters (α, β, γ)
of  the  secondary  coil  were  optimized  to  maintain  a  constant
mutual  inductance  at  the  misaligned  position  of  the  system.
The reference point of the mutual inductance value when both
coils are facing each other, M0 = 9.8265 µH, was set as the algo-
rithm’s  optimization  target.  Test  points  were  taken  along  the
misaligned path from one misaligned point  (−50,  0,  60)  to  the
other  misaligned  point  (50,  0,  60)  with  a  step  length  of  5  cm,
resulting  in  a  total  of  21  test  points  to  form  the  experimental
set.  The  constant  mutual  inductance  algorithm was  optimized
for  the experimental  set  and the electromagnetic  field simula-
tion  model  was  developed  using  the  COMSOL  finite  element
analysis  software  for  simulation  verification.  The  results  of  the
optimization  are  shown  in Fig.  11 below;  the  optimization
results  and  raw  error  for  each  test  point  are  listed  in Table  7.

Mutual inductance values before and after optimization of each
test point in the experimental set are shown in Fig. 11.

From  the  figure,  it  is  seen  that  the  optimization  algorithm
can  effectively  achieve  a  constant  mutual  inductance  value
within  the  working  range  of  the  coupling  mechanism  with  a
misalignment  distance  of  up  to  25%.  For  the  11  sampling
points,  the  average  absolute  and  maximum  absolute  errors
were 0.0426 and 0.0862 µH, respectively,  and the average and
maximum relative errors were 0.43% and 0.88%, respectively.

Figure  12 shows  convergence  diagrams  of  the  optimization
algorithm for each test point within the working range. At each
test  point,  convergence  was  achieved  within  20  iterations,
demonstrating that  the proposed algorithm can achieve good
convergence to the optimal value over a small number of itera-
tions, indicating that it is practical and can be applied in UWPT
systems.

 
Fig.  11    Comparison  of  the  mutual  inductance  of  the  system
before and after optimization.

Table 7.    Optimization results for each test point and error from the original data.

Misalignment
distance (cm)

Rotation angle p
(around x-axis)

Rotation angle q
(around y-axis)

Rotation angle r
(around z-axis)

Mutual inductance
without

optimization
algorithm (µH)

Mutual
inductance with

optimization
algorithm (µH)

Optimized target
of mutual

inductance (µH)
Error (µH)

–50 86.44 –84.27 –85.64 4.6686 7.5662 9.8265 2.2603
–45 –89.42 49.9 89.83 5.4052 8.1761 9.8265 1.6504
–40 60.22 –59.56 –56.96 6.1473 8.6204 9.8265 1.2061
–35 73.18 45.05 –89.47 6.8746 9.2045 9.8265 0.622
–30 60.15 –35.85 –85.09 7.5657 9.5580 9.8265 0.2685
–25 33.10 –52.27 –51.11 8.1992 9.8658 9.8265 –0.0393
–20 –39.71 –36.58 16.72 8.7536 9.8517 9.8265 –0.0252
–15 –27.41 –31.49 –5.61 9.2086 9.8773 9.8265 –0.0508
–10 –33.45 –11.05 –6.70 9.5472 9.8895 9.8265 –0.063
–5 24.69 30.02 –1.25 9.7558 9.8636 9.8265 –0.0371
0 0 0 0 9.8265 9.8265 9.8265 0
5 17.83 –42.31 49.78 9.7559 9.8213 9.8265 0.0052

10 47.24 –10.61 20.01 9.5472 9.7403 9.8265 0.0862
15 –8.23 59.41 –49.73 9.2086 9.8909 9.8265 –0.0644
20 0.65 50.41 –34.48 8.7534 9.8502 9.8265 –0.0237
25 –3.67 60.82 –31.31 8.1994 9.7524 9.8265 0.0741
30 –58.25 35.81 –87.47 7.5658 9.4767 9.8265 0.3498
35 77.82 29.26 84.01 6.8745 9.2901 9.8265 0.5364
40 85.82 48.16 88.63 6.147 8.6633 9.8265 1.1632
45 89.99 41.02 89.99 5.4055 8.1647 9.8265 1.6618
50 89.99 48.85 89.99 4.6687 7.5706 9.8265 2.2559

 
Power-optimized mutual inductance surrogate model

Page 8 of 13   Feng et al. Wireless Power Transfer 2024, 11: e001



The  posture  and  distribution  of  the  magnetic  field  of  the
coupling mechanism at each misaligned point within the work-
ing  range  are  shown  in Fig.  13.  When  the  misalignment
distance  exceeded  25%,  the  mutual  inductance  could  not  be
stabilized by adjusting the posture of the secondary coil,  caus-
ing an inevitable drop in the mutual inductance. However, even
in this  extreme case the proposed optimization algorithm was
still  effective in significantly improving the mutual inductance,
as shown in Fig. 14. When the mutual inductance dropped, the
average mutual inductance of the system increased by 40.33%,
with a maximum increase of 62.16%.

In  practical  applications,  fluctuations  in  mutual  inductance
within  a  range  of  10%  can  be  resolved via control  methods.
Under  such  conditions,  as  shown  in Fig.  11,  the  anti-misalign-
ment  performance of  the  system increased by  a  factor  of  2.11

relative  to  a  case  in  which the secondary  coil  posture  was  not
changed  during  misalignment,  thereby  effectively  alleviating
the  impact  of  the  drop  in  mutual  inductance  on  the  system’s
power transfer characteristics in the misaligned state.

 Development and verification of the
experimental platform

 Development of the experimental platform
To  further  verify  the  practicality  and  accuracy  of  the  algo-

rithm  design  and  optimization  results,  this  section  describes
the  experimental  verification  of  the  constant  mutual  induc-
tance region of the mutual inductance curve of the experimen-
tal setup at a misalignment of between −25% and 25%. A 1 kW

 
Fig. 12    Test set global optimization convergence process.

 
Fig. 13    Electromagnetic field simulation for each test point within the working range.
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AUV  wireless  charging  experimental  prototype  with  LCC-S
topology  was  established,  as  shown  in Fig.  15.  The  full  bridge
inverter  comprised  four  MOSFETs  (NCEPOWER,  NCE65T180F)

driven  by  two  half-bridge  drivers  (ST,  L6387ED).  The  rectifier
comprised four diodes (ONSEMI, MBR201000CT),  and the main
control  chip  adopted  a  complex  programmable  logic  device
(CPLD)  (ALTERA,  EPM240T100C5,  with  a  crystal  oscillator  at  50
MHz). The system frequency, dead time, and system load were
set to 152 kHz, 150 ns, and 20 Ω, respectively.

 Verification of mutual inductance stability
From  the  theoretical  analysis  above,  it  was  evident  that

mutual  inductance  would  be  a  key  factor  in  determining  the
power  stability  of  the  experimental  system.  Therefore,  the
stability  of  the  mutual  inductance  was  experimentally  verified
first.  It  was ensured that the primary and secondary coils were
completely  opposite,  i.e.,  that  the  secondary  coil  had  no
misalignment  or  rotation  and  could  serve  as  the  reference
point of the experiment. The secondary coil was also set as the
optimization target  of  the experiment,  with the mutual  induc-
tance  value  of  the  reference  point  measured  as  10.7 µH.
Furthermore,  the  simulation  verification  test  points  were  used
as  the  test  points  for  the  experimental  verification  and  the
misalignment  pathway  between  the  two  misaligned  points
[(−50,0,60) and (50,0,60), respectively] was sampled with a step
size  of  5  cm.  The  measured  mutual  inductance  values  of  each
test  point  before  and  after  optimization  by  the  algorithm  are
shown in Fig. 16.

Evidently,  using the algorithm, the mutual  inductance value
of the coupling mechanism could be stabilized by adjusting the
posture of the secondary coil within the working range (−25%,
25%) with an average error of  4.2%. The mutual  inductance of
the  system  also  significantly  improved  beyond  the  working
range,  with  a  maximum  increase  of  63.9%,  a  result  consistent
with the simulation results.

 Verification of power stability
To further verify the practicality of the proposed algorithm, a

power experiment was performed on the experimental system
at test points within the working range, with the different cases
of resulting power transfer shown in Fig. 17. When the coupling
mechanism was aligned, the power transfer of the system was
1,155.2  W  with  an  efficiency  of  91.2%.  When  the  system  was
misaligned  by  25%,  the  optimizing  algorithm  maintained  the
mutual  inductance at  around 10.6 µH with a  system efficiency
of 90.8%. Using the method proposed in this paper, the wave-
forms of the current and voltage of the system in misalignment
situations were fundamentally unchanged, thereby confirming
power  stability.  Furthermore,  soft  switching  was  attained  over

 
Fig. 14    Improvement of mutual inductance outside of the stable
range by the optimization algorithm.

a b c

 
Fig. 15    Experimental prototype. (a) Coil alignment. (b) 30% misalignment. (c) 50% misalignment.

 
Fig. 16    Comparison curve for mutual inductance M.
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the full  range of  misalignment to ensure the safe and efficient
operation  of  the  system,  maintaining  the  system  efficiency  at
approximately 90%.

Based  on  the  power  curve  in Fig.  18,  it  is  evident  that  the
optimized  system  can  perform  a  constant  power  transfer  of
1.15  kW  in  the  misaligned  state.  The  overall  efficiency  of  the
system  reached  91%  and  the  average  power  transfer  of  the
system  increased  by  18.91%,  with  a  maximum  increase  of
48.16%.  There  was  some  deviation  between  the  experimental
and  simulation  reference  points,  primarily  the  result  of  devia-
tions  in  the  measurement  of  the  experimental  environment
and  system  parameters.  However,  as  the  relative  errors  of  the
experiment  were  very  small,  the  optimization  algorithm
proposed in this paper was shown to be accurate and effective.

 Conclusions

This  paper  proposed  an  optimal  misalignment  posture
prediction  algorithm  for  coupling  mechanisms  based  on  the
mutual inductance surrogate model. The algorithm predicts the
optimal  posture  for  constant  power  transfer  in  the  misaligned
state  of  a  coupling  mechanism  within  its  working  range  by
adjusting  the  posture  of  the  secondary  coupling  mechanism.
The simulation and experimental results reported in this paper
indicate  that  the  proposed  algorithm  can  achieve  constant
mutual  inductance,  thereby  ensuring  constant  power  transfer.
Unlike  existing  anti-misalignment  solutions  used  by  the  wire-
less  power  transfer  systems  of  AUV,  the  proposed  algorithm

avoids issues with docking and reduces the structural complex-
ities  of  the  wireless  charging  coupling  mechanism,  enabling
dynamic  wireless  charging  underwater  and  significantly
enhancing flexibility and practicality.

The  strengths  and  significance  of  the  research  reported  in
this  paper  can  be  enumerated  as  follows:  (1)  The  constructed
surrogate  model  can  accurately  derive  the  mutual  inductance
value of a coupling mechanism at any position and posture. (2)
The  optimization  algorithm  proposed  in  this  paper  can  effec-
tively achieve a constant mutual inductance value in a coupling
mechanism in the misaligned state in 3D space, thereby achiev-
ing  stable  power  transfer.  (3)  The  method  proposed  in  this
paper can be adapted to other fields and is  not limited by the
elements  constituting  the  coupling  mechanism  in  terms  of
shape, material, or the presence or absence of a magnetic core.
The experimental  prototype was built  to  verify  the practicality
of the proposed method revealed that the system can guaran-
tee  a  constant  mutual  inductance  within  a  25%  misalignment
range and an aspect  ratio  of  0.6  with  an average error  of  only
4.2%.  When  the  mutual  inductance  falls  within  10%,  the  anti-
misalignment  range  of  the  system  is  increased  to  2.11  times
that before optimization.
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