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Abstract
The everyday well-being of contemporary humanity is intimately linked to the utilization of different devices functioning using different sources of energy
conversion. The practice of these devices exhibits expected outcomes, which are often associated with unwanted side effects. The present contribution aims
to  analyze  the  significance  of  the  approaches  of  Reliable  Attitude,  corresponding  to  eco-design  and  optimization,  and  One  Health,  related  to  global
biodiversity, in the managing of the daily usage of electromagnetic energy wireless transfer devices. The pursued analyses in the paper are supported by a
literature review.
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Introduction

In an up-to-date society, different appliances are exploited for the
daily  well-being  of  humans  involving  health,  safety,  comfort,  etc.
These apparatuses function using diverse sources of energy conver-
sion. Such tools, along with offering their intentional conveniences,
yield unwanted side effects. A continuous aim has at all times, been
to  optimize  the  practice  of  these  means.  Thus  consolidating  the
projected  outcomes  and  minimizing  unsolicited  side  effects  that
might  disturb  not  only  individuals  but  also  other  connected  envi-
ronmental involvements. These hostile influences principally disturb
human health along with that of  animals,  plants,  and largely biodi-
versity.  Thus  appealing  to  the  One  Health  concept  that  comprises
human, animal, and plant health, all menaced by disruptions engen-
dered by human activity[1].

In  addition,  energy  and  environmental  sustainability  that  repre-
sents one of the common defies targeting to guarantee a supply of
clean  energy  for  the  well-being  of  humans.  The  managing  of  well-
being and troubles associated with the employment of a manmade
appliance are ruled by a concept of Reliable Attitude in the conver-
sion  and  utilization  of  such  clean  energy.  These  two  approaches
applying  One  Health  (OH)  and  Reliable  Attitude  (RA)  would  permit
optimized  consumption  of  energy  impending  human  well-being
with reduced unsafe side effects on humans, and biodiversity.

Among  the  devices  operating  with  clean  energies  linked  to
human well-being, wireless electromagnetic energy tools occupy an
important  place.  These  are  mainly  wireless  power  transfer  devices
and  daily  communication  tools.  These  appliances,  besides  their
actual  roles,  like  numerous  mechanisms,  have  their  specific  side
effects.  Thus,  they play like unexpected sources of  electromagnetic
fields (EMF) radiated fields. These are related to the wireless feature,
which  results  in  stray  and  leakage  fields.  Their  influence  is  focused
on the radiated object at a contiguous range, e.g. cell phone or wire-
less energy transfer device[2−5], and uniform in distant exposure, e.g.
cell phone tower antenna[6].

Considering  wireless  power  transfer  (WPT)  devices,  they  involve
mainly four categories related to the employed transfer technology
namely magnetic, electric, microwave, and laser[7]. The differences in
such technologies are mainly related, in addition to the used trans-
fer  technique,  to different factors.  These are the transferred energy

range, the transmission distance, as well as performance, sensitivity,
limitations,  and  complexity.  The  various  WPT  applications  are
directly correlated to these mentioned factors.

In  magnetic  (WPT)  also  called  inductive  power  transfer  (IPT)
devices, two notions rule their functioning, the Ampère's law (1820)
and  Faraday's  magnetic  induction  principle  (1831).  These  basics
posterior  assisted  Nikola  Tesla  (1856–1943)  to  present  WPT  in  the
1890s[8−10].  WPT devices were first founded to transmit energy over
long  distances  using  microwave  rays[11,12].  Similarly,  the  notion  of
WPT  projects  electric  power  production  in  space  of  solar  energy,
over  satellites  of  solar-power  and  microwave  power  diffusion  for
consumption  on  the  globe[13,14].  It  is  only  lately  that  close-range
near-field  inductive  WPT  (IPT)  equipment  has  been  extensively
utilized  for  battery  charging  of  various  daily  tools  such  as  cell
phones,  domestic  articles,  drones,  and electric  vehicles[15−26].  IPT or
WPT denotes the contactless transfer of energy from a power source
to a load from side to side of an air gap. An IPT scheme involves two
coils, a transmitter and a receiver.

Wireless power transfer (WPT) technology is an important topic of
actual  investigation  in  electrical  engineering  sciences  in  general.
Potential  utilizations  enclose  a  wide  variety  of  areas,  including
mobility,  power  generation,  charging,  biomedical,  etc.[27−33].  The
justifications  for  such  a  varied  set  of  uses  are  also  numerous  and
different.  For  example  in  some  medical  implants,  sensing  devices,
and  pacemakers,  WPT  advances  secure  charging  deprived  of  any
physical contact or the need to work under surgery. Additionally, in
many  industrial  projects,  the  need  for  contactless  power  transmis-
sion for moving loads overcoming complications related to slippery
contacts  or  moving  power  cords  stimulated  the  development  of
contactless energy transfer (CET) links[34−36].

This contribution targets to analyze and illustrate the behaviors of
WPT devices in the background of the OH approach involving biodi-
versity  and  the  RA  concept  involving  optimized  management  of
clean  energy.  The  investigation  is  part  of  a  current  context  where
wireless  technology  is  increasingly  used  for  energy  transfer,  in
particular  through,  the use of  autonomous systems and the utiliza-
tion  of  carbon-free  energies.  A  typical  example  of  a  carbon-free
autonomous  application  is  related  to  the  replacement  of  combus-
tion  engine  vehicles  with  electric  vehicles  equipped  with  electrical
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energy  storage  batteries.  This  solution  was  programmed  within  an
ecological  framework  of  reducing  air  pollution  and  protecting  the
planet  biodiversity,  which  have  become  crucial  today.  These  vehi-
cles will eventually operate with wireless charging of their batteries
when  stationary  or  running.  By  replacing  means  of  transport  that
have  become  dangerous  for  biodiversity,  we  must  ensure  that  the
new  solution  will  protect  this  biodiversity.  Additionally,  the  manu-
facturing of wireless power transfer batteries chargers of these vehi-
cles  must  reflect  optimal  clean  energy-saving  ecology.  It  is  in  this
context  that  the  two  concepts  of  One  Heath  and  Responsible  Atti-
tude find their place in the design and control of WPT tools.

The  different  analyses  performed  in  the  paper  are  based  on
magnetic WPT (IPT) but the context is  still  valid for WPT in general;
the  term  WPT  will  denote  in  analyses  an  IPT.  In  the  following
sections,  the  management  of  WPT  with  optimized  consumption  of
energy and impending human well-being with reduced unsafe side
effects  for  humans,  and  biodiversity  will  be  first  presented.  Then
living  tissue  biological  effects  due  to  exposure  to  EMF  radiated  by
WPT devices will be analyzed. The governing phenomena and their
mathematical  representations  of  the  conduct  of  such  effects  will
then  be  reported.  Subsequently,  procedures  for  safeguarding
against the unsafe consequences of EMF exposure will be examined. 

Sustainable RA optimization of WPT

Such  optimization  involves  behaviors  related  to  the  input  (grid),
output (load),  and their  ratio (efficiency).  These affect the expected
outcome  (human  well-being),  the  EMF  stray  exposure  (human  and
biodiversity unsafety) the power factor, and the different losses (grid
and environmental sustainability). Figure 1 illustrates a summarized
schematic  illustration  of  a  WPT  coupler  composed  of  the  primary
(transmitter)  and  secondary  (receiver)  coils  (with  inductances  of  L1

and  L2)  separated  by  their  airgap  (reflecting  a  mutual  inductance
M12). Each of the two sides of the coupler is compensated (by capac-
ities C1 and C2). These two functions, energy transfer, and capacitive
compensation,  feature  the  operation  of  the  WPT  device.  Actually,
the first  function related to the inductive coupler transformer (ICT),
allows wireless transfer using the magnetic induction guaranteeing
a galvanic separation of  the source and the load.  The second func-
tion  related  to  the  capacitive  compensations  permits  the  power  of
electronics  linked  to  ICT  to  operate  at  a  resonance  that  optimizes
the  procedure.  These  power  electronics  are  involved  in  the  two
conversion  stages  connecting  the  ICT  to  the  source  and  the  load.
The airgap size of ICT is relatively important and so the coupling of
the two coils is weak. Thus, to reach the required transmitted power,
a significant reactive power should be absorbed, so the use of reso-
nant components (capacities)[22−25,37−44] in both sides of the ICT are
indispensable  for  compensation  to  guarantee  good  efficiency.
Several  compensation topologies of reactive power are established
on the necessity of the receiver load such as SS, SP, PS, PP, etc.[22,38].
The  SS  (Series-Series)  compensation  one  is  an  economical
option[22,44].  Maximizing  the  power  transfer  efficiency  is  generally
realized through magnetic ferrite sheets covering the two ICT coils.
The improvement of WPT is related to better coupling coefficient k
according to k = M12 × (L1 × L2)– 1/2. The two resonant circuits for SS
compensation of the transmitter and receiver are tuned at the reso-
nant frequency ωo = (L1 × C1)– 1/2 = (L2 × C2)– 1/2 .

These  conversion  features  are  dependent  of  WPT  application,
fixed or portable, source and load natures, power range, etc. Figure 2

represents  a  summarized  schematic  illustration  of  an  example  of  a
static  WPT  for  charging  of  battery  load  from  the  grid.  The  ICT  is
inserted between,  the input grid through a converter-filter-inverter
(frequency-controlled),  and the load through a converter-filter.  The
input  conversion  stage,  involving  grid  frequency  converter,  filter,
and high-adjusted frequency inverter,  permits  the power adjusting
by monitoring the ICT input voltage and frequency.

The  RA  sustainable  optimization  of  the  WPT  could  be  achieved
through  the  design  of  the  ICT  structure  (coils  and  ferrites),  the
compensation  elements,  the  different  static  convertors  and  filters.
Such  optimization  involves  losses  reduction  (higher  efficiency),
better power factor, improved coupling and reduced stray field radi-
ation. The details of optimization of WPT, are not in the focus of the
present  contribution  and  could  be  found  for  enhanced  perfor-
mance in[37−45] and reduced unwanted EMF effects for humans and
biodiversity[46−48]. 

Living tissues biological effects due to WPT EMF
exposure

EMF  exposure  or  radiation  settles  an  interaction  of  EMF  with  an
exposed  substance  occasioning  a  dissipation  of  electromagnetic
energy  in  it.  Such  dissipation  yields  diverse  effects  in  the  material
connected generally to EMF frequency range.

EMF  waves  exhibit  widespread  frequency  range  covering  non-
ionizing  (103–1014 Hz)  and  ionizing  (1015–1022 Hz)  spans.  The  non-
ionizing ones are those consumed in quotidian human accomplish-
ments like WPT devices. The most popular effect of such exposure in
particular in the range (105–1014 Hz) that involve most WPT applica-
tions, is a temperature rise contingent to the characteristics of expo-
sure and the menaced substance. The radiation attributes comprise
the  field  strength,  frequency,  nature,  and  the  interval  of  exposure.
Those  of  substance  relate  to  its  physical  assets  comprising electric,
dielectric,  magnetic,  heat,  and  mechanic  incidents.  This  common
thermal effect generally occurs for reduced radiation (due to shield-
ing), reasonable exposure time (relatively short),  and distance (rela-
tively far) from the source. It should be noted that disproportionate
field  potencies,  frequencies  or  duration  could  trigger  irreversible
molecular  disturbance  that  can  stimulate  nerves,  muscles,  and
excitable structures.

In  the  case  of  living  tissues,  the  biological  effects  (BE)  of  EMF
emitted by WPT devices are commonly,  as mentioned before,  ther-
mal  effects  after  to  energy  dissipation  in  tissues.  These  affect  the
tissues of humans, fauna, and flora. In these cases, an instantaneous
BE  due  to  high-frequency  field  exposure  would  increase  internal
tissue temperature. The natural resistance to heating of these living
tissues is mainly adapted to superficial heating of the material such
as  exposure  to  the  sun.  In  this  case,  heat  is  gradually  diffused  by
conduction  and  convection  inside  the  tissues  usually  irrigated  by
fluids allowing them to function correctly. Conversely, concentrated
heating inside the tissues,  particularly  in  tissues  poorly  perfused or
unwell  irrigated  by  blood  or  sap,  under  EMF  radiation,  could  be
dangerous  depending  on  the  characteristics  of  the  exposure  and
the  tissues;  see  e.g.[47,48].  Different  harmful  effects  of  WPT  radiated
EMFs could be verified by assessment relative to thresholds fixed by
standards considering the nature of tissues, the exposure functional
and  conditions;  see  for  human  and  fauna[49−51] and  for  plants[52,53].
Concerning  the  frequency  effect,  it  should  be  noted  that  low
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Fig. 1    Schematics of a compensated ICT in a WPT device.
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Fig. 2    Example of a static WPT for charging a battery from an AC grid.
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frequencies  are  used  for  near-field  applications  like  IPT  for  electric
vehicles and high frequencies for far-field applications like WPT MW
devices to transmit power through free space in the form of waves.
Both  involve  EMF  radiation  but  with  different  biological  effects.  In
fact,  the  higher  the  field  strength  and  frequency,  the  more  severe
the  effect  will  be  due  to  the  deeper  effects  on  internal  tissues  as
mentioned  earlier.  Of  course,  adjusting  the  frequency  can  reduce
the effects of radiation, but will degrade the tool's performance. 

Governing phenomena and equations related to
WPT exposure

The implicated phenomena in  unsolicited thermal  BE  due to  the
interaction of EMF emitted by WPT with matters are the electromag-
netic  (EM)  coupled  with  heat  transfer  (HT)  phenomena.  The
coupling of these phenomena will be through the power dissipated
in the matters. In the case of living tissues, the interaction with EMF
will comprise an increased heat transfer occurrence that is a bioheat
(BH) phenomenon. The temperature rise in the tissue will  be deter-
mined by the BH phenomenon initiated by a source consistent with
the EM dissipated power in the tissue, which can be determined by
the EM phenomenon due to exposure. Thus, the EMF and BH equa-
tions govern thermal unwanted BEs due to EMF exposure. 

EMF equations

∇×E = −∂tB ∇×H = σE+∂tD
∇ ·D = ρe ∇ ·B = 0

The  general  EMF  four  equations,  in  their  differential  form,  based
on  Maxwell's  microscopic  local  equations[54] are  given  by

 (Maxwell – Faraday),  (Maxwell –
Ampère),  (Maxwell – Gauss),  and  (Maxwell –
Thomson).

In the case of harmonic fields, the EMF equations can be given by:

∇×H = J (1)

J = Je + σE + jωD (2)

E = −∇V− jωA (3)

B = ∇×A (4)

∇

In  the  above  EMF  equations, H and E are  the  vectors  of  the
magnetic and electric fields in A/m and V/m, B and D are the vectors
of the magnetic and electric  inductions in T and C/m2, A and V are
the magnetic vector and electric scalar potentials in W/m and volt. J
and Je are  the  vectors  of  the  total  and  source  current  densities  in
A/m2, σ is the electric conductivity in S/m, ρe is the volume density of
electric  charges  in  C/m3,  and ω is  the  angular  frequency  =  2πf,  f  is
the frequency in Hz of the exciting EMF. The symbol  is a vector of
the partial derivative operators. The symbol ∂t is the operator of the
partial time derivative. The magnetic and electric comportment laws
respectively  between B/H and D/E are  represented  by  the  perme-
ability μ and the permittivity ε in H/m and F/m.

The source term in the EMF Eqns (1) – (4) is the excitation current
density Je = σEe = jωDe = jωεEe. The  volume  density  of  the  dissi-
pated  power  Pd in  dielectric  materials  (biological  tissues)  and  the
corresponding specific absorption rate (SAR) are given by:

Pd = ω ·ε′′ ·E2/2 (5)

SAR = Pd/ρ = ω ·ε′′ ·E2/(2ρ) (6)

In  Eqns  (5)  and  (6),  parameter: ε″ is  the  imaginary  part  of  the
complex permittivity of the absorbing material and ρ is the material
density  in  kg/m3.  E  is  the  absolute  peak  value  of  the  electric  field
strength in V/m and SAR is in W/kg. The power dissipation in W/m3

given  by  Eqn  (5)  relates  to  the  foremost  dielectric  heating  of  EMF
energy  loss.  Notice  that  the  imaginary  part ε″ of  the  (frequency -
dependent)  permittivity ε is  a  measure for  the ability of  a dielectric

material  to  convert  EMF  energy  into  heat.  The  volume  density  of
power dissipations given by Eqn (5) will  be used in the coupling of
EMF and BH equations. 

BH equation
The HT equation in its differential form is given by:

c ρ∂T/∂t = ∇ · (k∇T) (7)
In Eqn (7),  c  is  the specific  heat of  the substance in J/(kg °C), ρ is

the density in kg/m3, k is thermal conductivity in W/ (m∙°C), and T is
the substance temperature in °C.

Considering the case of living tissues, we have to consider in Eqn
(7)  a  self-tissue  heat  source  Pt and  the  involved  convective  heat
transfer via irrigating fluid of tissue. On the other hand, we have to
consider in Eqn (7) the external heat source related to the EMF expo-
sure,  Pd is  given by Eqn (5).  Under these conditions,  Eqn (7)  will  be
extended  to  a  tissue  BH  equation,  which  can  be  presented  as
follows:

c ρ∂T/∂t = ∇ · (k∇T)+Pd+Pt+ cfρfpf(Tf −T) (8)
In Eqn (8), Pt and Pd are heat sources in W/m3, Tf and T are respec-

tively the fluid temperature and the local temperature of tissue in °C,
and cf, ρf, pf are respectively fluid, specific heat in J/(kg °C), density in
kg/m3, perfusion rate in 1/s.

Equation (8) relates to bio-heat tissues considering the EMF expo-
sure.  This  equation  has  a  similar  form  as  Penne's  bio-heat
equation[55−58] associated  with  human  living  tissues  involving
convective heat transfer in blood fluid. Plant sap fluid plays the role
of blood in animals.  Moreover, phloems and xylems containing sap
play  the  role  of  arteries  and  veins  inclosing  blood.  Note  that  in
Penne's bio-heat equation the term Pt in Eqn (8)  is  related to living
tissues'  metabolic  heat  and  corresponds  to  plant  tissues'  internal
heat.  As well,  the last  term in Eqn (8)  representing convection fluid
heat transfer corresponds to animal blood or plant sap. 

Coupled solution of EMF and BH equations
Equations  (1)−(4)  and  (8)  can  be  solved  in  a  coupled  manner.

Because of  the geometric  complexity and inhomogeneity of  tissue,
the solution should be local in the tissue using discretized 3D tech-
niques as finite elements[59−67] in the tissue. The coupling of the EMF
and  BH  equations  is  weak  due  to  the  distant  values  of  their  time
constants[55−57].  Thus,  performing  an  iterative  solution  offers  in  the
tissue the local distributions of the induced values of the fields Ei, Bi,
and Ji,  and  hence  Pdi,  SARi,  and ΔTi.  The  involved  parameters  are
those related to the assets of tissues, ε,  Pt,  cf, ρf,  pf,  etc. These could
be found in literature or measured[68−71]. 

OH protection of WPT field radiation

As mentioned previously, the optimization of a WPT system aims
to consolidate the projected energy transfer and reduce unsolicited
EMF  radiation  that  could  disrupt  not  only  individuals  but  also  any
other  connected environmental  biodiversity.  Such objectives  could
be achieved through optimization of the design and monitoring of
the WPT. Concerning the protection against far radiation (target not
close to  the ICT),  different  shields  can be used.  Reducing near  EMF
(target close to ICT)  disturbances is  a  tedious task,  especially  in the
case of sources related to wireless devices.  In fact,  for conventional
sources emitting electromagnetic fields,  target protection could be
achieved via shielding  the  source,  the  target,  or  both.  Note  that
source shielding is generally not suitable for wireless sources as WPT
because the operating principle  of  a  wireless  device  is  linked to  its
emitted field. This effect is stronger for larger or twisted coil airgaps.

Considering  the  above  and  in  the  context  of  the  OH  concept
which  encompasses  human,  animal,  and  plant  health,  all  threat-
ened  by  disturbances  caused  by  human  activity,  only  mitigation
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protection  strategies  could  be  used.  Thus,  the  use  of  WPT  devices
reflecting  near-target  EMF  exposure  could  be  associated  with
restricted time intervals or areas of use[72−74].

This  protection  option  focuses  principally  on  anthropogenic
developments and their associates with the environment and biodi-
versity,  thus  revealing  the  OH  approach[1].  Note  that  there  is  a  less
effective  technique  than  shielding  for  reducing  EMF  radiation  for
large  fields,  but  they  could  still  be  used  advantageously  for  small
sources  with  moderate  fields,  which  could  be  the  use  of  field
absorbers[75,76] or the use of certain types of ornamental plants such
as the snake plant[77,78]. 

Interconnection of RA and OH approaches

The present manuscript  concentrated on the approach of  RA via
the optimized design and use of clean energy WPT and the concept
of  OH  by  considering  the  whole  biodiversity  involving  humans,
animals,  and  plants  in  the  management  of  adverse  EMF  exposure
effects  including  evaluation  and  protection  related  to  such  effects.
Indeed, the different analyses of  WPT means reported in the differ-
ent  sections  of  the  paper  could  be  divided  in  two  interconnected
activities.  The  optimization  of  artificial  WPT  devices  using  electro-
magnetic  clean  energy  dedicated  to  enhanced  performance  and
minimized  BE  for  biodiversity  security;  thus,  such  eco–design,  and
protection  belong  to  RA  concept.  In  the  second  activity,  the  biodi-
versity  safety  evaluation  and  protection  included  living  tissues  of
humans and this environmental ecosystem belongs to the OH approach.
Figure  3 shows  a  summarized  schematic  illustration  of  the  interac-
tion of these two activities in the management of a WPT device. 

Discussion and conclusions

In  the  sections  above,  the  following  analyses  were  devoted  to
magnetic  WPT,  which  are  IPT  devices  as  indicated  in  the  introduc-
tion.  In  the  context  of  RA  and  OH,  such  analyses  apply  to  WPT  in
general,  as  mentioned  previously.  WPT  mainly  involves  four  cate-
gories  related  to  the  transfer  technology  used  namely  magnetic,
electric, microwave and laser.

In  this  section,  the  main  characteristics  of  principal  categories  of
WPT  devices  will  be  summarized  and  ending  with  a  summary  and
recommendations for this contribution. 

Conferring basic categories of WPT 

Magnetic
WPT,  which  is  an  IPT,  uses  static  energy  converters  to  transfer

energy through loosely coupled coils operating in resonance mode.
Such  a  simple  structure  can  transmit  high  powers  with  high  effi-
ciency.  Due  to  its  simple  configuration  and  high  security,  IPT  is
involved  in  various  applications,  e.g.  wearable  devices,  underwater
robotics, and transportation. It suffers from a narrow transfer range,
sensitivity  to  coils  relative  placement,  and  likely  risk  of  interaction
with other objects, including living tissue[79−81]. 

Electric
WPT  reflects  economical  design,  low  weight,  and  slimness.  It

transfers  energy via high- frequency  electric  fields  to  reduce  the
effects  of  metal  barriers.  It  is  used  in  small  transfer  range  applica-
tions lik medical tools and daily electronics. However, the low dielec-
tric constant of air limits its power, requiring advancements in wide
bandgap devices[80,82,83]. 

Microwave (MW)
WPT  devices  transmit  energy  through  free  space  in  the  form  of

waves,  which  suffer  losses  mainly  due  to  atmospheric  circum-
stances,  obstacles,  dust,  etc.  It  reflects  precise control  of  MW beam
strength and orientation, enabling applications in space solar power
plants,  and  high-altitude  craft,  which  correspond  to  long-distance
transmission with low losses. However, cost and complexity limit its
common use[84−86]. 

Laser
WPT  uses  laser  energy  transmission,  which  allows  high-energy

orientation  and  concentration,  making  it  suitable  for  unmanned
aerial vehicles, solar power plants, and underwater devices. It suffers
from dependence on environmental conditions and possible health
risks of lasers[87−89]. 

Contribution condensation and recommendations
This  contribution  demonstrated  that  the  optimized  construction

and  use  of  WPT  using  clean  electromagnetic  energy  (obtained  by
conversion  of  a  clean  form  of  energy)  allows  the  expected  perfor-
mance of devices and takes into account the involved biodiversity in
the  management  of  harmful  biological  effects.  In  this  framework,
the estimation of harmful biological effects, due to exposure to WPT
electromagnetic fields, in living tissues of biodiversity as well as their
reduction via a protection routine have been reported and analyzed.
This showed that the concepts of Reliable Attitude and One Health
reveal  interconnected  activities  in  this  usage.  The  analyses  carried
out  on  the  basis  of  the  magnetic  WPT  (IPT),  clearly  justifies  such
concepts considering the mentioned context of the example of the
replacement  of  combustion  engine  vehicles  by  electric  vehicles
equipped  with  electric  energy  storage  batteries.  Indeed,  the  opti-
mization of  the IPT  and the control  of  its  effects  on the field  expo-
sure,  guarantee  eco-design  and  overall  protection  of  biodiversity.
Such protection could be enhanced using target shields for far-field
exposures and restricted usage time intervals or/and restricted radi-
ation-free zones for near-field exposures. 
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