
 

Open Access https://doi.org/10.48130/wpt-0024-0012

Wireless Power Transfer 2024, 11: e012

Optimized coil design and advanced neural network control for enhanced
wireless power transfer in electric vehicles using Taylor-based Firefly and
Dove Swarm Optimization
Kripalakshmi Thiagarajan1, Thangavelusamy Deepa1* and Mohanlal Kolhe2

1 School of Electrical and Electronics Engineering, Vellore Institute of Technology Chennai, Chennai, 600127, India
2 Faculty of Engineering and Science, University of Agder, 422, 4604 Kristiansand, Norway
* Corresponding author, E-mail: deepa.t@vit.ac.in

Abstract
This  paper  introduces  a  new approach to  boost  the efficiency of  wireless  power  transfer  (WPT)  for  electric  vehicles  (EVs),  through advanced coil  design

optimization  and  control  techniques.  Current  EV  charging  methods  struggle  with  slow  charging  times  and  limited  adaptability.  The  present  approach

tackles these issues by optimizing electromagnetic coupling and resonance conditions, leading to improvements in both efficiency and system reliability.

The proposed method includes a novel optimization algorithm, the Taylor-based Firefly and Dove Swarm Optimization (F-DSO), to fine-tune coil parameters,

alongside a Bessel Filter-enhanced Fuzzy Recurrent Neural Network (FRNN) controller. The F-DSO algorithm adjusts dynamically to enhance coupling and

mutual  inductance,  over  an  air  gap  of  135  mm.  The  FRNN  controller  maintains  stable,  accurate  battery  charging  with  minimal  signal  interference.

Experimental  validation shows the system achieves  a  peak efficiency of  95%,  a  state-of-charge (SOC)  of  45%,  and a  steady battery  voltage of  25  V.  This

approach  surpasses  previous  configurations,  such  as  the  H-Shape  DST,  QDQ,  and  square  coil  setups.  Additionally,  the  integrated  LCC  and  series-series

compensation circuits ensure reliable voltage control and stability under varying loads. These findings set a new standard for WPT, showcasing the potential

of the F-DSO algorithm for broader use in the EV sector, offering more efficient, adaptable, and user-friendly charging solutions.
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Introduction

The  growing  demand  for  fossil  fuels  and  the  environmental
impact  of  traditional  cars  emphasize  the  necessity  for  alternative
solutions. Electric Vehicles (EVs) provide benefits such as lower oper-
ational  costs,  reduced  maintenance,  zero  emissions,  and  quieter
operation[1,2].  However,  standard  EV  charging  methods  are  often
slow,  vulnerable  to  environmental  factors,  and  limited  to  charging
one  vehicle  at  a  time  per  station.  Wireless  power  transfer  (WPT)
technology helps resolve these limitations by removing the risks of
electric shock and offering faster, more flexible charging. As a result,
the  adoption  of  wireless  EV  charging  is  on  the  rise[3,4].  The  most
recent  innovation,  magnetic  resonance  WPT,  efficiently  transfers
energy  between  coils  under  resonant  conditions,  making  it  highly
suitable  for  EV  charging[5,6].  Wireless  charging  can  be  deployed  in
either static or dynamic modes, providing a safer and maintenance-
free  alternative  to  traditional  conductive  charging[7].  Yet,  there  are
some  challenges,  such  as  the  large  distance  between  transmitting
and receiving coils,  which can reduce coupling efficiency and pose
safety concerns due to magnetic field exposure. Coil design plays a
crucial  role  in  developing  efficient  wireless  charging  systems[8,9].  In
stationary  charging systems,  pad-shaped coils  are  commonly  used.
Various coil configurations, such as circular and rectangular shapes,
are frequently utilized in EV chargers for their simplicity, while other
shapes  like  bipolar  and  tripolar  pads,  DD,  DD-Q,  and  flux  pipe
couplers  are  also  discussed  in  the  literature[10].  Ensuring  high
coupling efficiency,  misalignment tolerance,  and adequate air  gaps
are  essential  design  considerations.  Additionally,  materials  like
aluminum  and  ferrite  are  often  used  to  minimize  leakage  flux  and
channel  it  effectively.  Traditional  wireless  EV  charging  setups  typi-
cally  consist  of  a  transmitter  coil  placed  on  the  station  floor  and  a

receiver coil within the vehicle's chassis. The receiving coil connects
to  the  vehicle's  battery,  while  the  transmitting  coil  links  to  the
power  source.  A  key  factor  influencing  Power  Transfer  Efficiency
(PTE)  is  the  misalignment  between  the  coils[11].  As  the  distance
between  the  transmitter  and  receiver  coils  increases,  the  coupling
coefficient rises, impacting energy and voltage transfer in the EV. To
maximize system performance, optimizing the design of the energy
transfer and receiving coils is essential, focusing on parameters that
affect coil coupling and overall efficiency.

Wireless power transfer on its own is insufficient for transporting
high  power  efficiently  as  in  a  typical  transformer.  To  achieve  high
power transfer, a compensating circuit that handles high input and
output voltages is necessary. Inductive Power Transfer (IPT) systems
are  classified  into  various  types,  depending  on  how  the  coil  and
capacitor  interact  within  the  compensating  circuit[12].  The  coil  and
compensating  capacitor  can  be  connected  either  in  series  or  pa-
rallel,  resulting  in  four  primary  configurations:  Parallel-Series  (PS),
Parallel-Parallel (PP), Series-Series (SS), and Series-Parallel (SP). Addi-
tionally,  LCC  and  LCL  compensation  topologies  have  also  been
introduced.  However,  none  of  these  configurations  is  capable  of
withstanding  all  stress  conditions,  as  efficiency  can  be  affected  by
load  variations.  Maintaining  a  stable  power  level  requires  precise
alignment  between  the  coil  and  capacitor.  To  address  this,  alter-
native  methods  such  as  the  double-sided  LCC  compensating
approach  have  been  developed[13].  This  method  involves  connect-
ing one inductor and two capacitors to both sides of the circuit.

Electric  vehicles  (EVs)  face  various  battery-related  challenges,
including issues with weight, cost, charging time, and driving range.
A  dynamic  charging  strategy  helps  address  the  problem  of  large
batteries.  Rechargeable  batteries  allow  for  numerous  charge  and
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discharge cycles. Among available technologies, lithium-ion (Li-ion)
batteries are the most widely used due to their high energy density,
efficiency,  and  ability  to  endure  multiple  charging  cycles[14].  Stan-
dard open-loop charging methods, such as pulse charging, constant
current-constant voltage (CC-CV),  and multi-stage charging, rely on
fixed  battery  characteristics  to  control  the  charging  current.  How-
ever,  these  approaches  often  overlook  the  impact  of  temperature
fluctuations  during  charging.  Maintaining  a  specific  temperature
range is essential  for extending battery life.  In closed-loop systems,
like  constant  temperature  constant  voltage  (CT-CV)  charging,  tem-
perature  feedback  plays  a  role  in  regulating  the  charging  current,
thereby  reducing  overall  charging  time[15].  Existing  research  tends
to  limit  the  air  gap  between  coils  to  maximize  power  transfer  effi-
ciency. Furthermore, EV battery systems often lack a flexible energy
management  approach  for  optimized  charging  and  discharging.
Therefore, there is a need for a tailored model that enhances power
transfer  efficiency  by  increasing  the  coil  spacing  and  optimizing
parameters such as the coupling coefficient, impedance, and mutual
inductance.

Further development is required for effective methods to increase
battery charging capacity.

The main contributions are:
• A Taylor-based Firefly and Dove Swarm Optimization Algorithm

optimizes coil parameters for better coupling and inductance.
• A Bessel Filter-based Fuzzy Recurrent Neural Network Controller

overcomes PI  controller  saturation issues,  improving battery charg-
ing control with reduced group delay. 

Elucidating WPT: a formal descriptive analysis

A  breakthrough  dynamic  wireless  charging  system[16] with  the
transmitting  coil  switched  ON/OFF  for  charging  while  they  were  in
motion.  The  transmitting  and  receiving  coil  spiral  coupling  struc-
tures.  A  novel  combination  of  both  inductive  and  capacitive  wire-
less  power  transfer  models[17] to  boost  magnetic  coupling  perfor-
mance, the inductive component was composed of a circular spiral
coil coupled with a helical coil and supported by cross-shaped ferrite
bars.  The coupling coefficient impacts the main and secondary coil
shapes, as well as the air gap and misalignment between the trans-
mitter coils.  Various coil  configurations,  such as square coil,  circular
coil,  rectangular  coil,  and DD coil[18],  were  modelled  and simulated
by FEM (Finite Element Analysis) using the program COMSOL under
various air gap and misalignment situations.

The combination of circular spiral coil forms on both the gearbox
and receiver enhances power transfer efficiency and improves toler-
ance  to  misalignment[19].  Additionally,  the  integrated  LCC  and
series-series  compensation  circuits  help  maintain  a  stable  voltage
on the secondary coil, ensuring consistent power transmission even
when  the  load  fluctuates[20,21].  However,  there  is  a  lack  of  experi-
mentation  with  three-coil  structures,  and  variations  in  key  para-
meters have raised concerns regarding human safety in wireless EV
charging applications[22,23]. Studies also lack detailed analysis on the
effects  of  dielectric  material  implantation  among  the  plates,  along
with  losses  associated  with  external  inductors  and  capacitors[24].
Furthermore, research has not yet fully addressed performance effi-
ciency under conditions of uneven receiver (Rx) and transmitter (Tx)
alignment[25].  While  the  charging  performance  of  current  battery
packs shows promise,  further improvements are necessary[26].  Real-
world  testing  and  validation  are  critical,  especially  in  high-density
urban  areas,  where  deploying  in-motion  wireless  charging  infras-
tructure  is  challenging  and  costly[27,28].  Therefore,  innovative  solu-
tions  are  essential  for  the  reliable  operation  of  wireless  charging
systems in dynamic EV environments[29].

In this article, the distance or air gap between the transmitter and
receiver coils are analyzed with the influence of voltage and power
transmission. Currently, increasing the distance affects the coupling
coefficient  and  mutual  inductance.  Even  when  the  distance  in-
creases, the coupling coefficient, and mutual inductance are success-
fully  obtained  by  optimizing  coil  parameters  such  as  the  number
of  turns,  coil  width,  inner  diameter,  and outer  diameter  of  the  coil.
To  optimize  the  coil  parameter  a  novel  Taylor-based  Firefly  and
Dove  Swarm  Optimization  Algorithm  is  introduced  to  eventually
find the global best solution for effective power transmission in EVs.

In  this  proposed  EV  the  air  gap  is  increased  to  135  mm  and  the
circular spiral coil is used in the transmitter and receiver coil. Taylor-
based  Firefly  and  Dove  Swarm  Optimization  Algorithm  is  used  to
optimize the coil parameter. The LCC and a series-series compensa-
tion circuit are combined in the present research. The LCC compen-
sating network supplies a constant current to the primary side coil.
Bessel  Filter-based  Fuzzy  Recurrent  Neural  Network  Controller  is
introduced  for  charging  control,  which  assists  the  PI  (Proportional
Integral)  in  maintaining the reference current  even after  saturation
and aids in the effective regulation of battery charge and unchang-
ing, and the Bessel filter reduces essential constant group delay. 

Taylor-based Firefly and Dove Swarm
Optimization Algorithm

A distance of 350 mm between the transmitter and receiver coils
has  an  impact  on  the  coupling  coefficient  and  mutual  inductance,
both  of  which  are  required  for  effective  power  transmission.  To
ensure  optimal  power  transfer,  coil  parameters  such as  turn  count,
coil  width,  inner  diameter,  and  outer  diameter  need  to  be  opti-
mized.  The  Dove  Swarm  algorithm  demonstrates  superior  perfor-
mance and computational efficiency compared to existing methods,
making it versatile and robust for various optimization problems.

The  DSO  algorithm's  innovative  approach  and  proven  effective-
ness makes it  a valuable addition to the optimization landscape[30].
The  insights  from  'Optimal  Power  Flow  Using  Hybrid  Firefly  and
Particle  Swarm  Optimization  Algorithm'  motivate  and  validate  the
use  of  hybrid  optimization  techniques  in  complex  problems  like
your  proposed  hybrid  Taylor-based  Firefly  and  Dove  Swarm  Opti-
mization  (F-DSO)  algorithm.  The  HFPSO  algorithm  demonstrates
how combining algorithms enhances global optimization by balanc-
ing exploration and exploitation, avoiding local optima, and improv-
ing convergence speed and solution quality. These advantages align
with  your  goal  of  optimizing  coil  parameters  for  efficient  wireless
power  transfer  (WPT)  in  EVs,  ensuring  robust  and  reliable  perfor-
mance  under  various  conditions.  By  leveraging  these  principles,
your  proposed  F-DSO  algorithm  can  achieve  superior  optimization
of  coil  parameters,  enhance  the  coupling  coefficient,  and  improve
mutual inductance, ultimately leading to more efficient power trans-
fer.  The  success  of  HFPSO  in  managing  multiple  objectives  and
improving  power  system  performance  underlines  the  potential
effectiveness and reliability of your hybrid approach in tackling the
challenges of WPT systems for EV[31].

Hence  a  Taylor-based  Firefly  and  Dove  Swarm  Optimization
Algorithm is introduced to optimize the coil characteristics, which is
the  integration  of  the  Taylor  Series  with  the  Firefly  algorithm  (FA)
and  the  Dove  Swam  optimization  (DSO)  algorithm.  The  optimiza-
tion algorithm used in this study is based on the Taylor-based Fire-
fly and Dove Swarm Optimization (F-DSO) algorithm. This algorithm
leverages  the  strengths  of  both  the  Firefly  Algorithm  (FA)  and  the
Dove  Swarm  Optimization  (DSO)  algorithm  to  balance  exploration
and  exploitation  effectively,  avoiding  local  optima  and  improving
convergence  speed.  The  description  of  the  algorithm  is  provided
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briefly  as  there  are  no  significant  novelties  beyond  existing
methods.  The  F-DSO  algorithm  optimizes  coil  parameters  such  as
the number of turns, coil width, inner diameter, and outer diameter
to  enhance  the  coupling  coefficient  and  mutual  inductance,  en-
suring  efficient  power  transfer  over  increased  air  gaps.  The  algo-
rithm in the optimization process dynamically adjusts based on real-
time  electrical  design  parameters.  The  process  is  explained  with
steps and equations. 

Initialization
The algorithm starts  by initializing the data points  and coil  para-

meters,  which  are  coupled  to  the  input  data.  The  initialization  is
demonstrated by Eqns (1), (2), and (3). The optimization parameters
of the coil design are the number of turns (N), coil width (W), width
of the coil wire, inner diameter (Di), and outer diameter (Do).

Fm = {F1,F2,F3, . . . .,FM} (1)
where, Fm denotes the number of data points. The coil parameters are
coupled to the input data. It is calculated using the following Eqn (2).

Dm ⊂ Fm =GqE (τ)+Gi

w
E (τ)dτ+Gq

dE
dτ

(2)

The coil parameters are optimized in relation to the input data Fm.
The  optimized  coil  parameters  are  considered  as  the  number  of
doves in this case. The doves are randomly initialized in the solution
space on a rectangle patch as expressed in the following Eqn (3).

Dm = {D1,D2,D3, . . . ,DM} (3)

wς
Dn

δςDn.

where, Dm represents the number of doves. The location vector is then
initialized as ,  and the epochs ς = 0 and degree of  satiety for  the
dove  are  also  represented  as following  the  establishment  of  the
limit,  the  objective  function  is  carried  out  at  the  epoch  as  a  total
number of crumbs in the location of the Dm dove. 

Fitness function
The objective function for the optimization is based on maximiz-

ing  the  mutual  inductance  and  coupling  coefficient.  The  fitness
function at epoch ς = 0 is given by the following Eqn (4).

fDm = argmax
{
ρ
(
Dς

i

)}
(4)

fDm

δςDi

where,  denotes the output of the locating dove. After identifying
the  dove  closest  to  the  crumb,  the  completion  degree  of  each  dove

 is updated using the following Eqn (5).

δςDi
= ℏδς−1

Di
+ςρ(Di) (5)

ℏ

δς−1
Di

where, the constant is indicated by  and the preceding epoch of the

i-th dove is denoted by . Following that, the most contented dove
is chosen based on the highest degree of satiety, which is stated in the
following Eqn (6).

Dς
sat = arg max

1⩽i⩽M

{
δςDi

}
(6)

Dς
satwhere,  is  the dove in the above equation that has the high-

est exploring performance; also, it  is rejected by other doves in the
flock as shown in Eqn (7).

ως+1
Di
= ωςDi

+ρ
(
Dς

i

)
βς

(
ωDsat

ς −ωςi
)

(7)
 

Exploitation and exploration
The  algorithm  uses  the  exploitation  phase  of  the  FA  and  the

exploration phase of the DSO to update the location of each dimen-
sion for  the doves.  The Taylor  series  expansion given in  Eqn (10)  is
used to ensure accurate convergence to the optimal solution.

ως+1
Di

where, βς the exploitation is  phase of FA and  is  the exploitation
phase  of  DSO.  The  exploitation  phase  of  FA  is  utilized  within  the
exploitation phase of the DSO of Eqn (7). The exploitation phase (βς) of
FA is expressed in the following Eqn (8).

βς = β0e−γr2
(8)

where, the firefly attraction β0 is the value at r = 0 and γ is its refraction
of  light  efficiency.  This  implies  that  the  exploration  and  exploitation
stages  are  merged  in  a  way  that  makes  use  of  both  algorithms'
capabilities. Which is expressed in the following Eqn (9).

ως+1
Di
= ωςDi

+ρ
(
Dς

i

)
β0e−γr2 (

ωDsat
ς −ωςi

)
(9)

ως+1
Di

ωςDi
where,  and represent  the  location  of  the i-th  and j-th
dimension at ς +1 and ς. This overcomes the disadvantage of classical
GA  by  assuring  the  end-effectiveness  of  a  problem-solving  approach
and addressing the computational difficulties issue. The algorithm for
the firefly and dove swarm optimization algorithm is given below. The
algorithm code is given as a flowchart in Fig. 1.

The  Taylor  series  used  in  the  algorithm  allows  the  integration  of
power  series  to  be  performed  for  every  individual  term,  making  it
particularly  simple.  The  use  of  the  Taylor  series  allows  for  accurate
convergence to the optimal solution due to its great precision. The
Taylor  series  states  that  the  update  equation  is  as  follows  in  Eqns
(10) and (11).

ως+1
Di
= 0.5ωςDi

+1.3591ως−1
Di
−1.359ως−2

Di
+0.6795ως−3

Di
−0.2259ως−4

Di
+

0.0555ως−5
Di
−0.0104ως−6

Di
+1.38e−3ως−7

Di
−9.92e−5ως−8

Di
(10)

ωςDi
=

1
0.5

[
ως+1

Di
+1.3591ως−1

Di
−1.359ως−2

Di
+0.6795ως−3

Di
−0.2259ως−4

Di
+

0.0555ως−5
Di
−0.0104ως−6

Di
+1.38e−3ως−7

Di
−9.92e−5ως−8

Di

]
(11)

Substituting Eqn (11) in Eqn (9), which is expressed in Eqn (12).

ως+1
Di
=

1
3

[
2.7182ως−1

Di
−2.718ως−2

Di
+1.359ως−3

Di
−0.4518ως−4

Di
+

0.111ως−5
Di
−0.0208ως−6

Di
+0.00276ως−7

Di
−0.0001984ως−8

Di

]
+

ρ
(
Dς

i

)
β0e−γr2 (

ωDsat
ς −ωςi

) (12)

ρ
(
Dς

i

)
where,  is expressed in the following Eqn (13).

ρ
(
Dς

i

)
=

f (Di)∑M
i=1 f (Di)

(13)

The birds travel towards the center, where they compete with one
another; avian attention is modeled as follows in Eqn (14).

ως+1
Di
= ωςDi

+B1

(
µ j−ωςDi

)
× rand (0,1)+B2

(
u j−ωςDi

)
× rand (−1,1) (14)

B1 =W1× exp
(
−R(u)i∑

R+ψ
×V

)
(15)

B2 =W2× exp

 R(u)i−R(u)T∣∣∣R(u)T −R(u)i

∣∣∣+ψ
V×R(u)T∑

R+ψ

 (16)

W1 W2 ∑
R

where,  B - Number  of  birds;  and  - Positive  constants  in  the
range [0,2]; R(u)i - Optimal  fitness  value of i-th bird;  - Sum of  the
swarm's  best  fitness  values; ψ - Constant  that  prevents  optimization
from getting prey to zero-division mistakes; T - Positive integer

This is a bird's progress behavior, in which the bird flies to another
location  in  the  event  of  any  adverse  events  or  foraging  processes.
When the birds arrive at a new location, they look for food. Some of
the birds in the flock are producers, while others are scroungers. The
behavior is modeled as in the following Eqn (17).

ως+1
Di
= ωςDi

+ (ωςDsat
− ωςDi

) × β0 × Rand (0,1) (17)

where,  Rand  (0,1) - evenly  distributed  random  number  with  a  zero
mean and standard deviation.

The optimal solution is chosen depending on the error function. If
the newly computed solution is better than the previous one, then it
is updated by the new solution. The proposed Taylor-F-DSO is now
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capable of finding the global optimum solution for successful power
transfer  in  EVs.  The  proposed  optimization  techniques  and  mathe-
matical  modeling  optimize  coil  configurations  and  enhance  power
transfer efficiency, potentially benefiting EV adoption.

This  coil  design improves  power  transfer  performance and toler-
ance  for  misalignment  between  the  transmitter  and  receiver  coils,
which  is  a  typical  issue  in  WPT  systems.  To  keep  the  power  level
stable, the coil and capacitor must be aligned. The design and instal-
lation of circular spiral coils on both the gearbox transmitter (Tx) and
receiver  (Rx)  sides  begin  the  process.  These  coils  are  particularly
engineered to improve power transmission performance even when
the  Tx and  Rx are  not  completely  aligned.  The  potential  of  circular
spiral coils to enhance misalignment tolerance is the reason they are
frequently  used.  An  LCC  compensation  network  is  attached  to  the
primary  side  coil.  LCC  is  an  abbreviation  for  LCL  Resonant  Com-
pensation  Circuit.  This  network  is  intended  to  supply  a  constant
current  to  the  main  coil.  The  LCC  compensation  network  guaran-
tees that  a  constant  current  flows through the primary coil  regard-
less  of  the  load.  This  steady  current  is  critical  for  keeping  the
secondary coil's voltage stable.

Figure  2 shows  the  LCC  and  series-series  compensation  of  the
proposed model. The proposed model for EV WPT has the potential
to  be  considerably  improved  in  terms  of  efficiency,  power  transfer
capability,  and  overall  stability  by  adding  LCC  and  series-series
compensation techniques, resulting in more dependable and effec-
tive wireless charging solutions for electric cars.

LP and LS are  the  primary  and  secondary  coil  inductances,
respectively.

M denotes mutual inductance.

La, Ca and CP are  the  compensatory  inductance  and  capacitance
on their primary side.

Cs1 and Cs2 are the secondary side compensatory capacitance.
LCC/S-S switching WPT system is broken when switches S1 and S3

are  closed  and S2 is  broken.  The  switching  angle  frequency  is
expressed in the following Eqn (18).

ω = 2π f (18)
The LCC compensation topology is made up of three branches: La,

Ca and CP, which is expressed in the following Eqns (19) and (20).

α =
ωLa

A
(19)

β =
ωLP−1/ωCp

A
(20)

where, A = 1/ωCa; LS - secondary-side coil; Cs1 and Cs2 - compensation
capacitors.

The  secondary's  loading  impact  on  the  main  circuit  is  repre-
sented as Zg, which is defined in the following Eqn (21).

Zg =
ω2M2

Rac
(21)

Zin is  the  input  impedance  perceived  from  the  input  side.  The
input impedance is expressed in the following Eqn (22).

Zin =
(β+γ−βγ)Y2+ j (β−1)YZg

Zg+ j (γ−1)Y
(22)

The primary coil current (i1) is expressed in the following Eqn (23).

i1 =
VAB

− (β−1)Zg+ j (β+γ−βγ)Y
(23)
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Fig. 1    Flowchart of the optimization algorithm.
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When β = 1 and γ, La and Ca are fully tuned, and Ca is fully tuned
with  the  equivalent  inductance  of LP and CP.  In  this  situation,  the
input  impedance Zin = Y2/Zg is  resistive,  indicating  that  the  LCC-
Series series compensation architecture achieves unit power factor.
For  now,  the  current  of  the  primary  coil i1 is  independent  of  the
load  when β =  1.  Because  the  current  in  the  primary  coil  is  inde-
pendent  of  the  load,  the  output  voltage  is  calculated  as  in  the
following Eqn (24).

Vo =
ViYm

Y
S in

ϕ

2
(24)

where, Ym = ωM.
The constant voltage is induced on the secondary coil as a result

of  the  LCC  adjustment.  This  implies  that  changes  in  the  load
attached  to  the  receiver  side  do  not  affect  the  output  voltage.  In
other  words,  even  if  the  load  changes,  the  voltage  delivered  stays
constant.  A  series  resonant  correction  circuit  is  used  to  guarantee
that  the  constant  voltage  characteristics  are  maintained  while  the
induced  voltage  on  the  secondary  coil  remains  constant.  This
correction  circuit  assists  in  keeping  the  voltage  at  the  proper  level
while  also  providing  voltage  source  characteristics  for  the  WPT
system.  It  ensures  that  the  voltage  remains  constant  and  does  not
decrease  or  vary  in  response  to  variations  in  load.  The  LCC-SS
compensation circuit is a mix of LCC and series-series compensation.
This  circuit  is  intended  to  enhance  bifurcation  (splitting)  and  soft
switching examination, which aids in optimizing the power transfer
process  and  lowering  energy  losses.  It  also  streamlines  the
synchronous  switching  control  structure,  making  the  system  more
efficient and dependable. 

Bessel Filter-based Fuzzy Recurrent Neural
Network Controller

Bessel  Filter-based  Fuzzy  Recurrent  Neural  Network  Controller  is
introduced  to  handle  the  saturation  issue  and  improve  battery
charging and discharging control. As a new feature for Li-ion batter-
ies,  this  proposed model  employs both open-loop and closed-loop
circuits and the PI controller is used to compute the error signal by
drawing power from the battery. Based on the discrepancy between
the reference current and the actual battery power, the PI controller
generates  an  error  signal.  The  feedback  generated  by  the  error  is
used to determine the output of a PI controller, which is equivalent
to  the  control  input  to  the  battery.  Which  is  defined  as  follows  in
Eqn (25).

u (t) = Kqe (t)+Ki

w
e (t)dt+Kq

de
dt

(25)

The  variable  (e)  reflects  the  estimation  error,  which  is  the  diffe-
rence between the desired (r) and actual (y) output. This error signal

(e) is sent into the PI controller, which computes the derivative and
integral  of  the  error  signal  concerning  time.  The  proportional  gain
(Kq) times the magnitude of the error plus the integral gain (Ki) times
the  integral  of  the  error  plus  the  derivative  gain  (Kd)  times  the
derivative  of  the  error  equals  the  control  signal  (u)  to  the  battery.
The  battery  receives  this  control  signal  and  produces  the  new
output  (y).  The  new  output  is  then  fed  back  and  compared  to  the
reference  signal  to  determine  the  new  error  signal Gs(s).  The
controller uses this new error signal to update the control input. The
error signal is expressed in the following Eqn (26).

Gs (s) = Kq

(
1+

1
Ti (s)

)
(26)

where,  constant  of  integral  time Ti = Kq/Ki.  This  error  signal  is  used to
adjust  the  control  input  to  the  battery,  aiming  to  minimize  any
deviations  from  the  desired  current.  If  the  voltage  continues  to  fall
while  the  converter  is  operating  at  full  power,  the  saturation  limit  of
the  current  reference  is  decreased.  The  current  limit  saturation Ir(sat)
function is defined as follows in Eqn (27).

Ir (sat) =
Irmax

V2−V1
(Vi−V1) (27)

where, Irmax is  the  maximum  current  that  gets  passed  on  to  the  EV
battery, V1 is  the  lowest  acceptable  DC  voltage  before  a  defect  or
overload is recognized; V2 is the DC link voltage setpoint at which the
power converter achieves its maximum power limit; and Vi is the input
voltage. When the PI controller hits saturation, it indicates that it's able
to  no  longer  manage  the  battery  current  effectively.  This  might
happen when the battery reaches its limitations and the PI controller's
output cannot be changed any longer to fulfill  the control objectives.
To address the PI controller's limitations after saturation, the innovative
Bessel  Filter-based  Fuzzy  Recurrent  Neural  Network  Controller  is
introduced. The Bessel filter is part of the control system in this case. It
is used to smooth and filter input signals and can reduce the essential
constant group delay, which is crucial for maintaining system stability
and  control  performance. G(f)  is  the  Bessel  filter  transfer  function,
which is written as in Eqn (28).

G ( f ) =
θn (0)

θn

(
f
ω0

) = b (1) f n+b (2) f n−1+ · · ·+b(n+1)
f n+a (2) f n−1+ · · ·+a(n+1)

(28)

where, θn(f)  are  the  reverse  Bessel  polynomials,  is  the  cutoff  fre-
quency,  and a(n)  and b(n)  are  Bessel  polynomial  coefficients.  The
Bessel filter is a linear filter that can fully preserve a filtered waveform
while  maintaining  a  steady  group  delay.  This  device  is  regulated  by
the peak current controller once the battery output reference current
has been set.

Figure  3 shows  the  Bessel  Filter-based  Fuzzy  Recurrent  Neural
Network Controller. Bessel filters are recognized for their capacity to
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provide a relatively flat amplitude response in the pass band and a
sharp roll-off in the stop band, hence reducing delay. Fuzzy logic is a
type  of  logic  that  allows  for  approximation  reasoning  inside  a
system while accounting for imprecise, uncertain, or subjective data.
The controller can handle imprecise input and make choices based
on approximate knowledge by using fuzzy logic. Then the proposed
Fuzzy  logic  is  utilized  to  improve  the  controller's  decision-making
capabilities.  The  proposed  design  concept  is  to  change  the  charg-
ing and discharging battery current to steady the DC link voltage.

∆

∆ ∆ ∆

0,1]

The charging controller's input factors include the SOC of each EV
and  the  voltage  state  at  the  node  to  which  the  charging  station  is
linked. If the SOC is low and the node voltage is high, the EV battery
will charge, but if the SOC is high and the node voltage is low, the EV
battery will  drain.  The intention is  to use fuzzy rules and reasoning
to generate PI controller gains. In the fuzzification stage, the precise
values of the controller inputs are turned into fuzzy sets. As a result,
the translated data may be utilized to change the control rules using
the  inference  process.  It  is  assumed  that e and e are  both  within
the  parameters  [ emin, emax]  and  [emin, emax].  The  values  (e, e)
should be normalized within [  using the following Eqn (29).

[
en (i)
∆en (i)

]
=


e (i)− emin

emin− emax

∆e (i)−∆emin

∆emin−∆emax

 (29)

∆

∆ ∆ ∆

∆

The periods of each linguistic value of (en, en) are chosen to form
a fuzzy partition of seven parts, with the linguistic values NB: nega-
tive  large,  NM:  negative  medium,  NS:  negative  small,  ZE:  zero,  PS:
positive small,  PM:  positive medium,  and PB:  positive big assigned.
The linguistic values are assigned the membership function with the
triangle waveform.  Let  ( Kq and Kd )  have bounds [0,  1].  Let  ( Kq
and Kd) denote the changes in proportional and derivative profits.
These were given the task of adjusting the proportional and deriva-
tive parameters.

 Kq

Kd

Ki

 =


Kqq∆Kq

Kdd∆Kd(
Kq

)2

αKd


(30)

where,  (Kqq, Kdd)  are  constant  factors  for  the  proportional  and  the
derivative gains. The gain of the PI controller's integration component
can be determined using Eqn (30).  Membership functions are used in
fuzzy  logic  to  quantify  the  degree  to  which  an  input  belongs  to  a
certain fuzzy set. These functions convert input values into degrees of
membership in fuzzy sets, resulting in a more nuanced representation
of  the  input  data.  In  the  final  stage,  the  fuzzy  output  is  defuzzified,
which converts it back into a crisp, non-fuzzy value. The fuzzy output is
aggregated  in  this  stage  to  provide  a  single,  clear  output  value  that
may  be  utilized  for  decision-making  or  control  operations.  To

accommodate  inaccurate  or  uncertain  inputs,  fuzzy  logic  is  used,
allowing  the  system  to  make  conclusions  based  on  approximate
reasoning rather than precise data.

The controller also includes a Recurrent Neural Network, a sort of
artificial  neural  network.  RNNs  are  ideal  for  tasks  requiring
sequences and time-varying data. In this situation, the RNN compo-
nent aids in modeling and adapting to the battery system's dynamic
behavior.  It  has  the  potential  to  capture  data's  long-term  depen-
dence.  RNN  receives  the  hidden  layer  information  of  the  previous
time  step  and  the  prior  information  gets  transmitted  to  the  next
time  step,  making  RNN  memory  capable,  and  making  RNN  espe-
cially  ideal  for  dealing  with  time  series  problems.  The  hidden  layer
computation formula is expressed in the following Eqn (31).Rt =

 f (WRRt−1 otherwise

0 t = 0

 (31)

where,  the  nonlinear  activation  is  function f(·)  and s(·)  is  the  output
activation  function.WR is  the  preceding  hidden  layer's  weight  matrix,
Rt−1 is the output of the hidden layer state at time step t−1,  and W1 is
the weight matrix of input data. Xt represents the input data at time t.
Each element in a sequence undergoes an operation, and the result is
determined  by  the  current  input  and  prior  operations.  The  gate  and
output activation function is expressed in the following Eqns (32) and
(33).

s (x) =
1

1+ exp(−x)
(32)

tanh (x) =
exp (x)− exp(−x)
exp (x)+ exp(−x)

(33)

The  RNN  model  is  used  to  estimate  the  SOC  of  a  Li-ion  battery,
with  voltage  (V),  current  (I),  and  temperature  (T)  as  input  variables
and  the  battery's  SOC  as  output.  SOC  of  the  battery  of  the  output
layer is expressed in Eqn (34).

S OCt =Wht +b (34)
where, W and b are the weight matrices and biases of complete linked
layers, respectively and ht is the initial state cell. As the behavior of the
battery  changes,  the  RNN  will  change  its  control  signals  to  maintain
optimal functioning. For example, if the status of the battery changes,
the RNN can alter its charging or discharging method to extend battery
life or optimize performance. The battery's current battery capacity (Qp)
is  often  estimated  by  adding  the  total  discharge  current  (Id)  of  the
battery  cell  during  the  reference  discharge  cycle,  as  shown  in  the
following Eqn (35).

Qp (t) =
w t

0
Id (t)dt (35)

To  imitate  the  dynamic  behavior  of  the  battery  over  time,  learn-
ing from past experiences and modifying control techniques to opti-
mize both performance and lifetime, the Recurrent Neural Network
is  a  crucial  component  of  the  controller  for  a  battery  system.  As  a
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result,  it  is  an  excellent  solution  for  functions  requiring  sequences
and  time-dependent  data,  which  are  prevalent  in  battery  systems.
Overall,  a  new  revolutionary  hybridized  approach  is  employed  for
the optimal tuning of coil parameters, with the novelty of raising the
air  gap  or  distance,  resulting  in  improved  coefficient  coupling  and
mutual  impedance  for  effective  power  transmission.  A  new
controller  is  also designed to provide effective control  over battery
charging in EVs. 

Results and discussion

The  performance  metrics  of  the  proposed  Hybridized  Coil  Para-
meter  Optimization  for  Efficient  Power  Transfer  in  Wireless  Charg-
ing of  Electric  Vehicles  and the achieved outcome are  explained in
detail in this section.

Figure  4 depicts  the  SOC  performance  of  the  proposed  model.
When  time  increases  SOC  percentage  decreases.  The  proposed
model achieves a high SOC value of  45% and a minimum of 39.8%
when  the  time  is  0  and  5  s  respectively.  Li-ion  battery  SOC  is
constantly  checked  and  adjusted  to  optimize  performance,  extend
life  expectancy,  and  ensure  safe  and  efficient  operation.  These
control techniques seek to keep the SOC within predefined operat-
ing parameters to avoid overcharging or deep discharging.

Figure 5 displays the performance of the voltage of the proposed
model.  The  closed-loop  control  system,  which  first  employs  the  PI
controller,  improves  battery  voltage  management.  It  is  possible  to
maintain  the  battery  voltage  close  to  the  specified  set  point,  even
under  changing  loads.  When  the  battery  hits  saturation,  the  PI
controller struggles to keep the voltage precisely within boundaries,
resulting in response variations.

As  the  air  gap  between  the  coils  widens,  the  coupling  between
the coils decreases, as seen in Fig. 6. This indicates that when the air
gap  broadens,  the  coupling  capacitance  between  the  coils  lowers.
As  a  result,  power  transmission  efficiency  is  susceptible  as  there  is
less effective energy transfer between the coils. When the air gap is
150 mm, the proposed design achieves a high coupling capacitance
of 3.9 pF and a low coupling capacitance of 1.7 pF when the air gap
is 350 mm.

When the air gap value is 50 mm, the proposed design achieves a
maximum mutual inductance value of 550 nH and a minimum value
of 0 when the air gap value is greater than 200 mm as seen in Fig. 7.
As  the  air  gap  between  the  transmitter  and  receiver  coils  rises  to
350  mm  in  the  design  that  had  been  proposed  the  response  of
mutual  inductance  frequently  decreases.  When  the  time  value
ranges from 0 to 0.5 s, the battery voltage remains constant at 25 V
in  this  proposed  model.  The  suggested  approach  appears  to  be
intended  to  maintain  steady  and  precise  regulation  of  the  battery
voltage,  particularly  under  difficult  conditions  or  when  the  PI
controller saturates. The Fuzzy Recurrent Neural Network Controller
based on the Bessel  Filter  is  designed to  maintain  a  steady battery
voltage response under a variety of operating situations.

An  increase  in  inductance  tends  to  give  rise  to  an  increase  in
impedance,  which  impacts  power  transmission  efficiency.  This
section  also  highlights  the  proposed  method's  performance  by
comparing  it  to  the  outcomes  of  existing  approaches  such  as
H-Shape  DST[32],  QDQ  coil[32],  square  coil[32],  Genetic  Algorithm
(GA)[32],  Firefly  Algorithm  (FA)[33],  and  Dove  Swarm  Optimization
(DSO)[33],  and various batteries such as Ni-Cd[34],  Ni-MH[34],  Zebra[34],
and Li-Polymer[34] and various compensation methods such as SS[35],
LCC  fixed  parameter[36],  and  LCC  adjustable  parameter[36] shows
their  results  based  on  various  metrics. Figure  8 depicts  the  com-
parison  of  the  coupling  capacitor  of  the  proposed  model  with  the
existing models.

When the value of the air gap increases, the coupling capacitance
value  decreases.  When  the  value  of  the  air  gap  is  150  mm,  the
proposed model  achieves a  high coupling capacitance value of  3.8
pF, whereas the existing models such as GA, FA, and DSO achieve a
maximum  coupling  capacitance  value  of  2.8,  3,  and  2.15  pF  res-
pectively.  Also,  the  proposed model  achieves  a  minimum coupling
capacitance of 2.7 pF whereas the existing models GA, FA, and DSO
achieve  a  coupling  capacitance  value  of  0.8,  1,  and  0.4  pF  res-
pectively,  when  the  value  of  the  air  gap  is  350  mm.  As  the  air  gap
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widens,  mutual  inductance  diminishes,  reducing  the  energy  trans-
ferred  between  coils  as  seen  in Fig.  9.  The  algorithm  data  for  opti-
mization of coils have empirical values of coil parameters and for the
understanding  of  the  performance  of  the  proposed  with  the  opti-
mization  variables  a  combined  detail  data  table  from  the  MATLAB
Code Complier data is displayed in Tables 1−3.

The  comparison  of  the  efficiency  of  the  proposed  model  with
existing  models.  The  existing  models  such  as  H-Shape  DST,  QDQ
coil,  and  square  coil  achieve  an  efficiency  value  of  89%,  90%,  and
90%  respectively.  The  proposed  model  achieves  a  maximum  effi-
ciency  value  of  95%.  The  comparison  of  operating  efficiency  with
various compensation with proposed LCC-SS compensation is visu-
alized in Fig. 10. Existing compensation approaches include SS, LCC
fixed parameters  and LCC adjustable  parameters.  When the load is
85 Ω,  the  proposed LCC-SS compensation achieves  a  high- operat-
ing efficiency value of 94%, whereas existing compensation such as
SS, LCC fixed parameter, and LCC adjustable parameter obtain oper-
ating  efficiency  values  of  86%,  88%,  and  89%,  respectively.  In
comparison to existing compensation models, the proposed LCC-SS
compensation is more efficient.

Overall, the proposed design shows that the efficiency and air gap
of the proposed system is high when compared to previous models
such as the H-Shape DST,  QDQ coil,  and square coil.  In comparison
to  previous  models,  the  suggested  model  has  a  high  air  gap  of
135  mm,  a  high  efficiency  of  95%,  and  a  coupling  capacitance  of
3.8 pF. The proposed design has a constant battery voltage of 25 V,
a  low  coupling  capacitance  of  1.7  pF,  and  a  high  SOC  of  45%.  The
proposed  Li-ion  batteries  offer  a  92%  energy  efficiency  value.  This
proves that the proposed system performed well when compared to
other  existing  techniques.  In  this  research,  a  detailed  simulation  of
the  WPT  system  was  conducted  to  analyze  the  impact  of  various
parameters  on  the  efficiency  and  effectiveness  of  power  transfer.
The  key  parameters  considered  in  the  simulation  include  output

battery voltage, input voltage, operating frequency, coil dimensions,
coupling coefficient,  and mutual inductance.  The summarization of
the parameters and their values used in the simulation are listed in
Table 4. 

Conclusions

A  novel  Hybridized  Coil  Parameter  Optimization  for  Efficient
Power  Transfer  in  Wireless  Charging  of  Electric  Vehicles  has  been
proposed to enhance the power transfer efficiency in dynamic EVs.
In  this  proposed  model  the  air  gap  between  the  transmitter  and
receiver  is  increased  to  135  mm.  To  optimize  the  coil  parameters
Taylor-based  Firefly  and  Dove  Swarm  Optimization  Algorithm  is
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Table  1.    Comparison  of  the  proposed  method  against  GA,  FA,  and  DSO
methods for the coupling coefficient (k) and mutual inductance (M) at different
air gaps.

Air gap
(mm)

Coupling coefficient (k) Mutual inductance M (nH)

GA FA DSO Proposed GA FA DSO Proposed

150 0.85 0.8 0.75 0.9 500 480 460 556
200 0.8 0.75 0.7 0.85 400 380 360 450
250 0.75 0.7 0.65 0.8 300 280 260 350
300 0.7 0.65 0.6 0.75 200 180 160 250
350 0.65 0.6 0.55 0.7 100 80 60 150

 

Table  2.    Performance  of  the  proposed  method  in  terms  of  number  of  coil
turns and coil width.

Air gap
(mm)

Number of turns Width of coil (mm)

GA FA DSO Proposed GA FA DSO Proposed

150 18 17 16 20 2.5 2.2 2.1 2.0
200 20 19 18 22 2.6 2.3 2.2 2.2
250 22 21 20 24 2.7 2.4 2.3 2.4
300 24 23 22 26 2.8 2.5 2.4 2.6
350 26 25 24 28 2.9 2.6 2.5 2.8

 

Table 3.    Performance of the proposed method in terms of inner diameter and
outer diameter.

Air gap
(mm)

Inner diameter (mm) Outer diameter (mm)

GA FA DSO Proposed GA FA DSO Proposed

150 14 13 12 15 24 23 22 25

200 15 14 13 16 25 24 23 26

250 16 15 14 17 26 25 24 27

300 17 16 15 18 27 26 25 28

350 18 17 16 19 28 27 26 29
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Fig.  10    Comparison  of  operating  efficiency  with  various
compensation.
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introduced,  which  ensures  the  problem-solving  strategy  and  over-
comes  the  computation  difficulty.  The  circular  spiral  coil  form  is
used on both the transmitter  and receiver  sides.  As a  result,  power
transfer  performance  improves  and  misalignment  tolerance
improves.  Furthermore,  the  LCC  and  series-series  compensation
circuit are combined in this study, which enhances the bifurcation or
soft  switching  analysis.  Furthermore,  PI  was  unable  to  handle  the
current  after  saturation,  thus  a  Bessel  Filter-based  Fuzzy  Recurrent
Neural Network Controller is used to maintain the reference current
even  after  saturation  and  decrease  group  latency.  The  proposed
approach  shows  superior  performance  compared  to  existing
models, with an air gap of 135 mm, an efficiency reaching 95%, and
a  coupling  capacitance  value  of  3.8  pF.  The  proposed  model
achieves a constant battery voltage of 25 V,  a low coupling capaci-
tance of 1.7 pF, and a high SOC value of 45%. This demonstrates that
the proposed system performs well  when compared to other exist-
ing techniques. 
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