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Abstract
To cope with different charging conditions, a hybrid wired and wireless vehicle-to-vehicle (V2V) charging system is proposed. The series-series (S-S) resonant

topology is  adopted for  the wireless charging mode.  It  can be transformed into a bidirectional  DC-DC converter  for  the wired charging mode.  A simple

circuit connection and switching pattern can achieve this target. Mathematical models of the two modes are developed and system configurations in the

corresponding modes are explored. Two experimental prototypes are implemented to validate the proposal. Compared with the existing V2V systems, the

proposed  V2V  system  can  be  reconfigured  into  wired  and  wireless  charging  modes  simply  and  cost-effectively,  making  it  suitable  for  various  charging

conditions.
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Introduction

The  expansion  of  the  global  economy  has  led  to  increased
reliance  on  non-renewable  energy  sources,  particularly  oil  and
coal[1,2].  Consequently,  this  has  resulted  in  the  emission  of  signifi-
cant  quantities  of  pollutants,  contributing to  environmental  degra-
dation[3,4]. Electric vehicles (EVs) are considered a more environmen-
tally  friendly  mode  of  transportation  compared  with  traditional
fuel-powered  vehicles,  widely  recognized  as  a  viable  solution  for
reducing carbon emissions and mitigating global warming[5,6].

Existing  EV  charging  systems  are  mainly  wired.  Wired  charging
can  provide  wider  voltage  gain  and  higher  transmission  efficiency,
which is  suitable for different models of  EVs[7].  However,  it  requires
wires to connect the EV to a power source, which is not convenient
in  certain  scenarios,  such  as  bad  weather[8].  In  contrast,  wireless
power transfer (WPT) technology utilizes electromagnetic induction
to  transmit  energy  without  physical  wires,  which  significantly
improves  the  safety  and  convenience  of  charging[9,10].  But  wireless
charging is  limited by  relative  position and coil  type[11,12].  With  the
development  of  EVs,  the  demand  for  charging  methods  is  increas-
ingly  diverse.  The  integration  of  the  two  charging  methods  is  the
future trend, which is more conducive to the promotion of EVs.

With  the  increasing  popularity  of  EVs,  one  EV  can  serve  as  an
energy  supplier  to  charge  another  EV,  especially  in  emergencies
without  charging  stations  around[13].  A  wired  charging  method  is
proposed to directly connect the batteries of  two EVs via on-board
charger input ports and switches[14]. A novel vehicle-to-vehicle (V2V)
charging  technology  was  proposed,  which  is  capable  of  grid-to-
vehicle  and  V2V  charging  using  a  single-phase  Cuk-derived  DC-DC
converter[15]. A new V2V interface was proposed, which was realized
by directly  connecting the motor winding neutral  point  of  two EVs
and the negative electrode rail of the drive system[16]. This approach
facilitates  the  formation  of  an  integrated  bidirectional  DC-DC
converter  to  control  the  direction  of  the  power  flow.  A  strongly
coupled V2V wireless charging system was proposed by Xie et al.[17].
Two  power  relay  coils  without  compensating  capacitors  are

introduced  right  beneath  the  transmitting  (TX)  and  receiving  (RX)
coils  and  connected via twisted  wires.  This  scheme  requires  two
additional relay coils, which should align with the TX and RX coils. To
solve  the  angular  misalignment  problem  between  the  TX  and  RX
coils,  a  novel  magnetic  coupler  was  proposed[18].  The  simulation
results  show  that  the  new  structure  can  generate  a  stronger
magnetic  field  than the  traditional  one.  A  prediction  model  of  V2V
charging is proposed, including driver model, motor model, battery
model,  EV  model,  and  WPT  model[19].  Through  simulation,  the
results show that EVs using V2V charging can reach the destination
earlier than EVs charging at traditional charging stations.

Both  wired  and  wireless  charging  systems  share  similar  power
conversion  stages,  including  coupled  coils/transformers,  resonant
networks,  inverters,  and  rectifiers[20,21].  Integrating  similar  compo-
nents  can  achieve  cost-effectiveness  and  enable  operation  in  both
wired and wireless charging modes.  A hybrid wired/wireless charg-
ing system was proposed, which multiplexes the DC power module
and  switches  the  charging  mode  using  two  bidirectional
switches[22].  A  novel  multifunctional  converter  for  EV  charging  was
proposed, which employs a set of power switches to output either a
DC  voltage  for  wired  charging  or  a  high-frequency  AC  voltage  for
wireless charging[23]. A DC-DC topology was proposed to include an
additional receiver coil  that multiplexes the rectifier on the EV side,
enabling  wireless  charging[24].  However,  there  is  currently  no  inte-
grated wired and wireless charging solution for V2V charging[25,26].

This  paper  proposes  a  simple  integrated  solution  of  a  reconfig-
urable wired and wireless V2V charging system, as depicted in Fig. 1.
The  coils  are  installed  in  the  front  of  the  EV.  The  series-series  (S-S)
resonant topology is adopted for the wireless charging mode, which
requires  coils  to  be  aligned  well  to  transmit  power  at  maximum
efficiency.  It  can  be  transformed  into  a  bidirectional  DC-DC  con-
verter  for  the  wired  charging  mode,  which  allows  misalignment  of
the  coils  and  even  long-distance  placement.  A  simple  circuit
connection  and  switching  pattern  can  achieve  this  target.  Com-
pared  with  previous  V2V  systems,  the  proposed  V2V  system  is
simpler,  more  cost-effective,  and  suitable  for  different  charging
conditions. 
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Proposed hybrid V2V system
 

Proposed topology
The  topology  of  the  proposed  hybrid  V2V  charging  system  is

shown in Fig. 2. V1 and V2 are the inverter and rectifier DC voltages,
respectively. C1 and C2 are  the  compensation  capacitors. L1 and L2

are  the  self-inductances. RL is  the  load  resistance. M is  the  mutual
inductance. A1, A2, B1, and B2 are the cables for the wired charging
mode. S1-S8 are power MOSFETs.

With different configurations, the proposed integrated V2V charg-
ing system can be switched to two operating modes, namely wired
charging  mode  and  wireless  charging  mode.  In  both  modes,  the
system operates at frequency f. 

Wired charging mode
The  voltage  range  for  EV  batteries  typically  falls  between  200  V

and 450 V. If  there is a need to transfer power across different volt-
age levels, wired charging becomes necessary. The proposed system
is  equivalent  to  a  two-quadrant  DC-DC  converter  when  A1  is
connected  to  A2  and  B1  is  connected  to  B2  and  the  switches  are
controlled  by  the  driving  rules  shown  in Fig.  3.  The  topology  and
equivalent circuit of wired charging mode are depicted in Fig. 4.

Under the driving rule of Fig. 3a, the system can be further equiv-
alent to a buck converter, as shown in Fig. 4b, where D1 is the duty
cycle. V2 can be conducted as:

V2 = D1V11 (1)
Under the driving rule of Fig. 3b, the proposed system is equiva-

lent to a boost converter,  as shown in Fig.  4c,  where D2 is  the duty
cycle. V2 can be conducted as:

V2 =
V12

1−D2
(2)

From  Eqns  (1)  and  (2),  the  output  voltage  is  independent  of  the
load, indicating that a constant-voltage (CV) output can be achieved
in  wired  charging  mode.  In  this  mode,  one  EV  can  either  buck  or
boost  to  charge  another  EV  with  a  different  voltage  level.  In  addi-
tion,  the  circuit  and  control  strategy  of  this  mode  is  simple,  with
fewer  power  conversion  stages,  which  can  realize  high-efficiency
outputs. 

Wireless charging mode
In  bad  weather  or  when  the  charging  interface  is  damaged,  it  is

suitable for wireless charging. The topology and equivalent circuit of
wireless charging mode is depicted in Fig. 5, where U1 is the inverter
AC output voltages. REQ is the equivalent AC load resistance. I1 and I2

are the corresponding currents. U1 and REQ can be expressed as:

U1 =
8
π2 V1 (3)
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Fig. 1    Proposed V2V power transfer system. (a) Wired charging mode. (b) Wireless charging mode.
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Fig. 2    Proposed integrated wired and wireless V2V charging system.
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REQ =
8
π2 RL (4)

Based on Kirchhoff's Voltage Law, I1 and I2 can be conducted as:

I1 =
U1REQ

(2π f M)2 (5)

I2 =
U1

2π f M
(6)

In this case, a typical S-S topology is formed. The output current is
independent  of  the  load,  indicating  that  a  constant-current  (CC)
output can be achieved in the wireless charging mode. 

Experimental verification

To validate the effectiveness of the proposed system, two hybrid
V2V experimental prototypes are implemented, as depicted in Fig. 6.
Note  that  in  the  wired  charging  mode,  the  mutual  inductance  is
close  to  0  due  to  the  large  distance  between  the  TX  and  RX  coils.
The  sizes  of  the  coils  are  300  mm  ×  300  mm.  The  specific  para-
meters are provided in Table 1. Define the fluctuation coefficients of
the output voltage, output current, and efficiency as:

β =
Max−Min
Max+Min

×100% (7)
 

Wired charging mode
In the wired charging mode, RL ranges from 20 to 60 Ω. The calcu-

lated and experimental results of the output voltage and efficiency
are depicted in Fig. 7.

For the buck converter, the output voltage has a fluctuation coef-
ficient  of  0.44%  over  the  entire  range  of  load  variation,  indicating
that  the  converter  has  good  CV  output  characteristics.  The  effi-
ciency  of  the  buck converter  increases  from 97.6% to  98.9% as  the
load  increases,  indicating  a  positive  correlation  between  efficiency
and load.

The boost converter  demonstrates an output voltage fluctuation
coefficient  of  less  than  0.14%  across  the  range  of  load  variations,
indicating  stable  CV  output  characteristics.  The  efficiency  of  the
boost converter also increases with the load. It increases from 97.5%
to  98.8%,  indicating  a  positive  correlation  between  the  efficiency
and the load.

The  efficiency  of  the  wired  charging  mode  is  positively  related
to  the  load.  The  reason  for  this  may  be  that  the  total  losses  under
heavier loads decrease as a percentage of the system power. 

Wireless charging mode
In  the  wireless  charging  mode, RL ranges  from  20  to  60 Ω.  The

output current and the efficiency are illustrated in Fig. 8. The output
current under the two input voltages decreases with the increase of
load,  and  the  fluctuation  coefficients  are  3.6%  and  3.4%  over  the
whole load variation range, respectively,  indicating that the system
output current characteristics  are stable.  The efficiency of  the wire-
less charging mode increases from loads of 20 to 30 Ω,  reaching its

 

Switch

Inductance

a

Inductance

DSP

b

DSP

TX RXCapacitor

Rectifier Inverter

Fig. 6    Experimental prototypes. (a) Wired charging mode. (b) Wireless
charging mode.

 

Table 1.    Parameters of experimental prototype.

Charging mode parameters

Wired L1 (μH) 186.01 L2 (μH) 180.57 V11 (V) 300.00
V12 (V) 230.00 D1 0.80 f (kHz) 85.00

Wireless L1 (μH) 191.09 L2 (μH) 193.92 M (μH) 52.82
k 0.27 C1 (nF) 18.20 C2 (nF) 18.14
V1 (V) 230.00 D2 0.25 f (kHz) 85.00
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Fig. 7    Calculated and experimental results of wired charging mode. (a)
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peak  at  30 Ω,  and  subsequently  decreases.  This  likely  occurs
because  the  optimal  load  for  the  system  is  approximately  30 Ω,
where system losses are minimized as a proportion of output power,
leading to maximum efficiency. 

Conclusions

This  paper  has  proposed a  hybrid wired and wireless  V2V charg-
ing system suitable  for  emergency charging.  The wireless  charging
mode  can  improve  the  safety  and  convenience  of  the  charging
process without additional connecting wires, but it requires the coils
to  be  aligned  and  is  suitable  for  use  in  bad  weather.  The  wired
charging mode, which requires additional connecting wires but has
no requirement on the relative position of the EVs,  can be used for
different models of EVs because it  provides wider voltage gain and
higher  transmission  efficiency.  The  S-S  resonant  topology,  which
can  be  transformed  into  a  bidirectional  DC-DC  converter  for  wired
charging mode,  is  adopted in  wireless  charging mode.  The mathe-
matical  models  and  the  experimental  prototypes  have  been
constructed. The proposed V2V system can realize stable CV output
in wired charging mode and CC output in wireless charging mode.
The efficiency  of  the  wired charging mode is  higher  than 97% and
the efficiency of the wireless charging mode is higher than 96%. The
experimental results confirm the competitiveness of this proposal as
a  solution  for  wireless  charging  in  V2V  applications.  In  comparison
to  existing  V2V  systems,  the  proposed  V2V  system  is  capable  of
being  reconfigured  into  wired  and  wireless  charging  modes
straightforwardly and cost-effectively, which is suitable for a variety
of charging conditions. 
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