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Magnetic coupling coefficient determination
of IPT systems under operating conditions

a. abdolkhani and a.p. hu

This study presents a method of determining the magnetic coupling coefficient of inductive power transfer (IPT) systems under
real-time operating conditions by measuring the open-circuit voltage and short-circuit current of coupled coils. Besides the
theoretical analysis, the proposed method is verified by finite elements simulation and practical evaluation. Both simulation
and experimental results have demonstrated that the proposed method can determine the coupling coefficient of both
closely and loosely coupled coils with high-quality factors. The method can be used for online monitoring of the coupling
condition and real-time power flow controller design of IPT systems.
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I . I N T R O D U C T I O N

The magnetic coupling coefficient is a very important param-
eter determining the performance of inductive power transfer
(IPT) systems [1–3]. The output power of an IPT system can
be quantified as a function of the magnetic coupling coeffi-
cient k by [4],

Pout = V1I1k2Qs, (1)

where (V1I1) is the volt–ampere of the primary side, and Qs is
the quality factor of the secondary circuit.

Currently, the magnetic coupling coefficient is measured
manually using LCR meters [5–9]. However, the method
can only be used offline, so it does not work for live IPT
systems. The actual magnetic coupling coefficient often
varies in practical operation, particularly for loosely coupled
IPT systems having large air gap variations [10–12]. It is
important to monitor the real-time magnetic coupling condi-
tion of an IPT system for its power flow control [13].

This paper proposes a method for determining the magnetic
coupling coefficient of IPT systems during operation. The
proposed method uses the voltage and current ratios, which
can be easily obtained from open-circuit and short-
circuit tests.

I I . E X I S T I N G M E T H O D S

There are mainly two methods widely accepted for determin-
ing the magnetic coupling coefficient of the coupled coils of

IPT systems [5]. The first one is based on the measurements
of self and leakage inductances, which can be expressed by

k =
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1 − Llk1

L1

( )√
or k =

������������
1 − Llk2

L2

( )√
, (2)

where L1 and L2 are the self-inductances of the primary and
the secondary coils measured at each coil when the other
coil is open; and Llk1 and Llk2 are the leakage inductances mea-
sured at each coil when the other coil is shorted.

The second method is a series-aiding/series-opposing
approach, which can be expressed by

k = Lsr+ − Lsr−
4
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√ = M�����
L1L2

√ , (3)

where Lsr+ ¼ L1 + L2 ¼ 2M is measured when the total
inductance of the primary and secondary coils are connected
in series with aiding polarities; and Lsr2 ¼ L1 + L2 2 2M is
measured when the two coils are connected in series with
opposing polarities.

I I I . T H E P R O P O S E D M E T H O D

Unlike the existing methods that are based on off-line mea-
surements, the new method determines the magnetic coupling
coefficient of the coupled coils by online measurements of the
voltage and current ratios, which can be expressed by

k =

�����������
Voc| |
V1| | .

Isc| |
I1| |

√
, (4)

where Voc is the open-circuit voltage of the secondary coil
when the voltage of the primary coil is V1, and Isc is the
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short-circuit current flowing through the secondary coil when
the current of the primary coil is I1.

It should be noted that in IPT systems, the open-circuit
voltage (Voc) and the short-circuit current (Isc) are the two
fundamental parameters used to determine the performance
of the secondary power pickup and power transfer capability
analysis [11, 14–16]. The results of these tests can then be
advantageously used to determine the magnetic coupling coef-
ficient of the system from (4).

A) Theoretical proof
The two coupled coils of an IPT system can be modeled with a
T-equivalent circuit as shown in Fig. 1.

From this model, the open-circuit voltage (when RL ¼1)
and short-circuit current (when RL ¼ 0) can be expressed as

Voc = V1.
jvM

R1 + jv [M + (L1 − M)]
, (5)

Isc = I1.
jvM

R2 + jv [M + (L2 − M)]
. (6)

From (5) and (6) a voltage gain Gv as a ratio of Voc and V1,
and a current gain Gi as a ratio of Isc and I1, can be expressed as
following:

Gv| | = Voc| |
V1| | =

vM���������������
R1

2 + (vL1)2
√ , (7)

Gi| | = Isc| |
I1| | =

vM���������������
R2

2 + (vL2)2
√ . (8)

These two gains can be further expressed using the quality
factors of the primary coil (Q1 ¼ vL1/R1) and the secondary
coil (Q2 ¼ vL2/R2),

Gv| | = M/L1������������
1/Q1

2 + 1
√ , (9)

Gi| | = M/L2������������
1/Q2

2 + 1
√ . (10)

In a practical IPT system, coil quality factors are normally
designed to very high (Q1 and Q2 ≫1). Thus, (9) and (10) can

be simplified as

Gv| | = M
L1

and Gi| | = M
L2

. (11)

From (11) it can be proven that the magnetic coupling
coefficient k can be determined by (4), which can also be
expressed by the voltage and current gains,

k = M�����
L1L2

√ =
������������
Gv| | × Gi| |

√
=
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√
. (12)

B) Simulation and practical verifications
To verify the proposed method, a closely coupled setup similar
to a traditional transformer, and a loosely coupled setup with
an air gap of 5 mm are built. Fig. 2 shows their three-

Fig. 1. T-equivalent circuit of two magnetically coupled coils.

Fig. 2. 3D finite-element models: (a) un-gapped setup and (b) gapped setup.

Table 1. Systems specifications.

Parameter Value

f (kHz) 50
N1 ¼ N2 18
L1 ¼ L2 (mH) (closely coupled setup) 260
L1 ¼ L2 (mH) (loosely coupled setup) 16.1
Q1 ¼ Q2 (closely coupled setup) 1614
Q1 ¼ Q2 (loosely coupled setup) 101
Air gap (mm) 5
Bs of the Mn–Zn ferrite material (T ) 0.5
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dimensional (3D) finite-element models developed by JMAG
package. The practical setups are built with the same geom-
etries wound around the U-shape ferrite cores as the simu-
lated model (see Fig. 2). In this research, the simulation and
experiments were accomplished at 5 W output power from
the power pickup as an example for verification. It should
be noted that the actual layout of the magnetic structure
and the power level of IPT systems can vary depending on
specific application and load requirements.

Table 1 shows the system parameters for simulation study
and practical experiments. The magnetic coupling coefficient
is obtained from the finite elements simulation for both
setups. Then practical testing is performed using the tradition-
al self and leakage inductances offline measurements method.
The offline measurement is conducted by disconnecting the
coils from the circuit and measuring the inductances of both
side coils individually using an LCR meter and then calculat-
ing the magnetic coupling coefficient between them from (2).
Finally each setup is driven by a high-frequency power con-
verter, and the magnetic coupling coefficients are determined
using the proposed method. The primary side voltage
and current are measured directly across the primary coil
using voltage/current probes and an oscilloscope (Model:
DSO5054A Agilent). As the operating frequency of circuit is
only at kHz levels and the impedance of the measurement
probe is very high, the effect of the probe connection to the
circuit on the system tuning is negligible. On the secondary
side, when the pickup circuit and the load are in operation,
they are disconnected for a short time for getting the
reading using the two added switches S1 and S2 as shown in
Fig. 3. As practical power pickups have filters at the output
with high time constants [1, 17, 18], the effect of short time
disconnection from the pickup coil on the output voltage
would be very small.

There is another measurement method that has been pro-
posed in [19], which requires the values of the inductances as
well as the capacitances of the system for the initial measure-
ments, and then the contribution of the capacitance is sub-
tracted from the calculated results to separate the
contribution of the inductive components. The proposed
method determines the magnetic coupling using the voltage

and current ratios (Voc/V1 and Isc/I1) without the inductances
values, and it does not need to involve the capacitances of the
system, making online measurement of the coupling coeffi-
cient possible.

The results are listed in Table 2, which shows a very good
agreement between the simulation, offline and the proposed
online method. This signifies that accurate magnetic coupling
coefficient can be obtained using the proposed method.

I V . C O N C L U S I O N

This paper has presented an online method for determining
the magnetic coupling coefficient between two coupled coils
for IPT applications. It has been found that the real-time mag-
netic coupling coefficient can be obtained by online measure-
ments of the open-circuit voltage and short-circuit current of
IPT systems during practical operation. The results from the
finite-element simulation and practical experiments have
shown that the proposed method can be used to accurately
determine the magnetic coupling coefficients of both closely
and loosely coupled coils with high-quality factors.
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