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Harmonically terminated high-power
rectifier for wireless power transfer
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The paper presents a simplified analysis of harmonically terminated rectifier circuit and experimental results of a Schottky
diode rectifier with even and odd harmonic terminations. The analysis is based on the Fourier series expansion of the
voltage and current across the diode circuit. Harmonic terminations similar to the techniques used for power amplifiers
are studied. A maximum efficiency of 84% at 30 dBm is obtained with second- and third-order harmonics terminated.
The optimum value of dc load to maximize efficiency is obtained by sweeping the load. An optimal operating range of
28–35 dBm is obtained. The applications of the rectifier in wireless charging and power transfer systems are discussed.

Keywords: Wireless power, Rectifier, Harmonically terminated, High efficiency high power rectifier

Received 14 September 2015; Revised 10 March 2016; Accepted 11 March 2016; first published online 12 April 2016

I . I N T R O D U C T I O N

Nikola Tesla first experimented with wireless power in 1891,
but it gained momentum and widespread interest in the
1970s [1]. During this time, the very first high-efficiency rec-
tenna, a combination of antenna and rectifier circuit used to
rectify the incoming ac signal, was implemented [2–4].
Designs during this era constituted far-field solutions that
have applications in military, space, and industries. Wireless
power transfer can be categorized into three types: near-field
transfer, microwave power transfer, and microwave power
harvesting; among which, near-field transfer can deliver tens
of watts of power using magnetic field coupling with less
safety concerns and with higher efficiency. Thus, this design
is aimed for near-field high-power applications. The power
levels under consideration may cause interference to the
large wireless traffic present at higher frequencies [5].
Therefore, 13.56 MHz is chosen as the frequency of operation.

In a radio frequency (RF) wireless power receiver, the
rectifier circuit is a major contributor to the overall loss of
efficiency. The RF wireless power receiver system has a receiv-
ing antenna followed by a filter-rectifier circuit to convert
energy from the transmitted RF signal. Ideally, the switch
used in the circuit should have no resistance, but in practice
the diode used as a switch has parasitic resistance, resulting
in a lower efficiency. To minimize this loss in efficiency, we

describe a technique to engineer waveforms as used in
switch mode power amplifiers [6] in this paper.

Yoshida et al. [7] demonstrated a high-efficiency rectifier
by terminating the second-harmonic component using a
series-resonant circuit. A maximum efficiency of 85% was
reached at 27 dBm, but the efficiency dropped with an
increase in the input power; falling to 60% at 33 dBm. Fu
et al. [8] designed a wireless power system at 13.56 MHz
that uses a full-wave rectifier with an efficiency of 76–
81%. A high-power, high-efficiency rectifier designed by
Liou et al. [9] uses series and parallel power division
circuit to increase conversion efficiency at high-power
levels. Efficiencies of 62 and 76% have been shown for the
series and parallel power divider networks, respectively.
Hosain and Kouzani [10] compared several rectifier config-
urations to operate at 30 dBm, but none of which has an
efficiency of more than 75%. Noda and Shinoda [11] used
Schottky diodes in an anti-symmetric configuration to
operate in Class-F configuration, achieving 78% efficiency
at 27 dBm. Falkenstein et al. published a rectifier design at
2.14 GHz using a modified inverse Class-F GaN power amp-
lifier that approached 85% conversion efficiency at 40 dBm
[12]. Kang et al., discussed the implementation of a high-
efficiency rectifier [13]. To achieve a high-efficiency, these
designs sacrifice simplicity and ease of implementation.
Several high-efficiency rectifiers have been discussed in lit-
erature, but they are low-power rectifiers operating at
higher frequencies.

The novelty of the solution presented in this paper lies in
the design of a robust, low-frequency, high-power rectifier
for wireless charging at 1 W level. To achieve high conver-
sion efficiency, implementation of harmonic terminations
in a shunt diode rectifier is presented. The theory based on
Fourier analysis as well as the design and measurment
results of our existing prototype are discussed in the sections
that follow.
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I I . B A S I C A R C H I T E C T U R E A N D
F O U R I E R A N A L Y S I S

As shown in Fig. 1, the receiver chain consists of an input
matching network, a switching device, harmonic termina-
tions, an output matching circuit, and a dc load. In practice,
switching elements are implemented using semiconductor
devices such as transistors and diodes [12]. The harmonics
in the receiver circuit are analyzed by applying Fourier
series expansion. Under ideal conditions, the diode behaves
as a switch with resistance given by (1).

Rd = 0, diode is ON,

1, diode is OFF.

{
(1)

The input RF signal is represented by (2).

Vi = Vm sin(vt). (2)

The response of the diode connected in a shunt reverse
bias configuration is represented in (3). Fourier series expan-
sion, as explained in [6, 12] is applied to study the harmonics
generated in the circuit. The transformed equations for
voltage across and current through the diode are derived as
(4) and (5).

Vd = Vmsin(vt), 0 ≤ t ≤ p,

0, p ≤ t ≤ 2p,

{
(3)

vd = Vdc + V1cos (vt) + V2cos (2vt) + V3cos (3vt), (4)

id = Idc + I1cos (vt) + I2cos (2vt) + I3cos (3vt). (5)

Voltage and current waveforms contain high-frequency
harmonics that can be shaped to achieve high RF–dc con-
version efficiencies. The diode’s internal resistance is the
main cause of power loss. However, tuned circuits can be
used to terminate high frequency to shape voltage and
current, forcing a zero voltage switching condition across
the diode. In this paper, Class-F type of terminations is

implemented where all the odd harmonic components are
open-circuited and even harmonic components are short-
circuited. Terminations are designed using discrete compo-
nents unlike in [11, 12] where transmission lines were used.
Transmission lines at 13.56 MHz would physically be too
long, making the design inefficient and impractical.

The terminations work on the concept of different imped-
ance values seen by the harmonics. For odd harmonic termi-
nations, a parallel LC tank, which has a reflection coefficient of
one (Fig. 2(a)) is used. The circuit presents high impedance to
the odd harmonic of voltage (Vodd) and reflects the signal
toward the diode. Since a high impedance is present at the
odd harmonics (Zodd), Ohm’s law (Vodd ¼ Zodd × Iodd)
results in an infinitesimal current at odd harmonics (Iodd).
Thus, the odd harmonic component of current is ideally
reduced to zero.

The even-order harmonic termination circuit, represented
by Fig. 2(b) creates low impedance and a reflection coefficient
of 21 to even harmonics. Since impedance seen by even har-
monic components (Zeven) is ideally zero, Ohm’s law (Veven ¼

Zeven × Ieven) results in a zero even-order harmonic compo-
nents (Veven) and reflects even harmonic component of
current (Ieven).

The reflection coefficients measured across the tuned cir-
cuits in the prototype are presented in Smith charts simulated
using Agilent ADS. From Fig. 2 it is clear that for the third-
harmonic frequency component, i.e. 40.68 MHz, the reflection
coefficient is 1 (open circuit) and for the second-harmonic fre-
quency component, i.e. 27.12 MHz, the reflection coefficient is
21 (short circuit). Therefore, the terminations are pivotal for
controlling impedance of each of the harmonics to shape the
voltage and current across the diode.

For obtaining a zero loss condition as shown in Fig. 3, all
the harmonic frequency components need to be terminated.
The phenomenon of waveform shaping using termination cir-
cuits is shown in this figure. Figure 4 illustrates the effect of
terminations on the voltage and current waveforms across
the diode when the finite numbers of harmonics are termi-
nated. When no harmonic terminations are used, the circuit
behaves like a half-wave rectifier. If only one termination is
used, then the efficiency of the circuit is greater than that of
the half-wave rectifier, but still does not reach an appreciable
level. The circuit attains optimum efficiency when both second-

Fig. 1. Block diagram of a WPT receiver system.
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and third-order harmonics are terminated. As shown in Fig. 5,
if higher-order harmonics are terminated, the voltage current
waveforms across the diode approaches the theoretical predic-
tion, but the dc resistance (DCR) of the higher-order harmonic
termination circuit will cause additional loss in efficiency.

Moreover, the design complexity outweighs the benefits of
using higher-order terminations. So, only second- and third-
harmonic terminations are considered for practical implemen-
tation and prototyping.

Applying this approximation to equations (4) and (5), the
voltage and current across the diode are now given by (6) and (7).

vd = Vdc + V1cos (vt) + V3cos (3vt), (6)

id = Idc + I1cos (vt) + I2cos (2vt). (7)

I I I . E X P E R I M E N T

Simulations in ADS and bench tests on a shunt diode rectifier
with second- and third-order harmonics terminated are per-
formed to validate the theory discussed. The terminations
built using lumped components are tuned to 27.12 and
40.68 MHz, the second- and third-harmonic frequencies,

Fig. 2. (a) Third-order harmonic termination circuit (b) Second-order harmonic termination circuit.

Fig. 3. Ideal voltage and current waveforms across the diode if all harmonics
are terminated.

Fig. 4. Voltage and current waveforms across the diode when different terminations are used.
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respectively. MBRA 140, is chosen as the switching device for
this work, as it has a high reverse breakdown voltage (40 V),
large current-handling capabilities (1 A) and a low forward
voltage drop (0.55 V) (see the Appendix). The junction cap-
acitance and resistance of this device are �40 pF and
�98 mV, respectively. Cin and Cout form the input and
output match circuits, respectively. Their values are chosen
to create a power match at the source, reducing any mismatch
loss. The value of Cout, part of the smoothing circuit, ensures
that the RC time constant of the circuit is . 1/f (t ¼ Rload ×
Cout ≫ 1/f ). Figure 6 shows the schematic representation of
the rectifier and Table 1 lists the components used for the

tests performed. Simulations in ADS use the Harmonic
Balance solver with the fundamental frequency set to
13.56 MHz and the order set to 7. To increase the computa-
tional accuracy of the solver, the order is set to 7 even
though only 5 harmonics are analyzed. Figures 7 and 8
show the populated PCB and measurement system used to
perform bench tests.

To prove the Class-F operation of this design, the load used
at the output to measure voltage and currents across the diode
is chosen based on simulations in ADS. It is observed that a
large output impedance causes a high reverse voltage to
appear across the diode, which results in a large output dc
voltage. A larger load results in higher efficiency, but the
diode reaches breakdown faster [14]. The circuit is simulated
with several loads and the efficiencies are measured between 0
to 50 dBm. A 100 V load is chosen as it is a good compromise
between, achieving high-efficiency and preventing the diode
from reaching breakdown faster. The simulated load analysis
is plotted in Fig. 9.

The effect of terminations is verified by analyzing voltage
and current across the diode. The ratio of output dc power
to the input RF power determines the conversion efficiency

Fig. 5. Comparison of efficiency with number of terminations being used.

Fig. 6. Schematic representation of the rectifier circuit.

Table 1. Components.

Schematic label PCB label Value

Ceven Ceven 22.7 pF
Leven Leven 1.8 mH
Codd Codd 10 pF
Lodd Lodd 1.4 mH
Schottky diode (D1) Schottky diode (D1) MBRA 140
Cin L1 2200 pF
Cout Cout 2200 pF

Lchoke, C1, C2 (Not used)

Fig. 7. Experimental board.

Fig. 8. Measurement system.
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(h ¼ output dc power/input RF power). From Fig. 10, it is
seen that the simulation and the bench test results are in
agreement of each other. The square voltage and sinusoidal
current waveforms, confirm the use of terminations to
improve the efficiency of the rectifier. It is seen that the mea-
sured waveforms are non-ideal representations of the Class-F
waveforms. This could be an effect of the voltage reduced by
the junction capacitance, Cj, of the diode which is similarly
explained by Guo et al. [14] in their analysis.

The efficiency of the circuit at different power levels is pre-
sented in Fig. 11. This graph represents the typical behavior of
a harmonically terminated diode rectifier. The entire plot can

be divided into three regions based on the operating point of
the diode; the first being the “turn-on” region where the input
power is not sufficient to completely turn ON the diode. This
results in a large power loss across the diode. In the second
region, the diode is ON and is operating nominally; this is
also the region where the maximum rectification efficiency
is obtained. Beyond this region, if a higher input power is
applied, the diode enters breakdown region and may lead to
device failure [14].

In our design, a maximum efficiency of 84.3% is obtained
with a 30 dBm input. Also, for the input power ranging from
28 to 35 dBm, the average conversion efficiency is 80%.
Beyond which the diode starts entering the breakdown region.
Figure 12 represents the power budget of this design. As
explained in the introduction, most losses occur at the diode.
However, the deviation in the measured and simulation results
are attributed to DCR losses present in the lumped components.
Since low frequencies are being used, the dielectric losses in the
substrate can be neglected. In this work, either the electrostatic
resistance (ESR) or DCR in capacitors and inductors are the
main contributors for the loss in rectification efficiency.

There are ways in which the measured results can be
improved. First, the efficiency can be brought closer to the
simulation results by choosing low tolerance components
and components with low parasitic losses. Second, a diode
with lower turn ON voltage, lower Rd, and lower junction cap-
acitance [14] can be chosen.

Rectifier designs discussed in literature are listed in Table 2.
Kang et al. [13] developed a Schottky diode rectifier where a
control circuit is used to switch between rectifier and
voltage multiplier modes. An impedance matching controller
is also implemented to match varying loads. Although a
higher conversion efficiency is achieved, a complex architec-
ture is needed. The highest conversion efficiency at 40 dBm
is reported by Roberg et al. [12]. However, this design is
implemented using a GaN transistor at a higher frequency
with transmission line harmonic terminations. Our design
has an advantage over these designs by being simpler to imple-
ment and has the highest efficiency at the frequency of
operation.

Fig. 9. Simulated output versus dc load.

Fig. 10. Simulated (top) and measured (bottom) voltage and current across
the diode.
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I V . C O N C L U S I O N

We have developed a high-efficiency, low-complexity rectifier
geared toward short-range wireless power transfer. Such a
device will enable fast and efficient charging of devices requir-
ing high power. This will enable wireless charging for not only
portable electronic devices, but also for larger devices such as
laptops. The flexible design of the rectifier allows it to be cus-
tomized for use in various wireless power receiver systems.

The rectifier based on a shunt Schottky diode with harmon-
ic terminations is simulated and tested with input power
ranging from 27 to 40 dBm. On comparison with similar
devices in literature, our design achieves a power efficiency
of 84%, which is higher than most shown in Table 2. The
highest reported efficiency of 85% in Table 2 comes at the
expense of greater design complexity and higher implementa-
tion cost than our prototype. Furthermore, the efficiency of our

Fig. 12. Power budget diagram.

Table 2. Comparison of rectifier circuits.

Paper Frequency of operation Power (dBm) Method used to increase efficiency Efficiency achieved (%)

[13] 128 kHz 36 Schottky diode with control circuit 85
[7] 13.56 MHz 30 Schottky second-order terminations 75
[8] 13.56 MHz 46 SiC diodes in Full-wave configuration 78
This work 13.56 MHz 30 Schottky diode with even and odd terminations 84
[10] 915 MHz 30 Schottky diode in various configurations 75
[9] 920 MHz 41 Schottky diodes with Power Split circuits 62–76
[12] 2.14 GHz 40 GaN transistor in Class F21 85
[11] 2.45 GHz 27 Full-wave with third order 77.9
[15] 2.45 GHz 16 Schottky second and third-order terminations 66.5

Fig. 11. Efficiency comparison of experimental and simulated data.
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design can readily be improved, if needed, using Schottky
diodes with lower junction capacitance and forward voltage,
and components with smaller tolerance, ESR and DCR.

A C K N O W L E D G E M E N T S

None.

S T A T E M E N T O F I N T E R E S T

None.
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A P P E N D I X

Table 3. Spice model for MBRA140.

Parameter Value Unit

Is 4.21144 × 1027 A
Rs 0.098312 V

N 0.973949
Cjo 1.4486 × 1021010 F
Vj 1.09761 V
M 0.536808
Fc 0.5
Bv 40 V
Ibv 0.0005 A
Nbv 0.973949
Kf 0
Af 1
Tnom 27 C
Xti 2.44859
Eg 0.596398 eV
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