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Design of a wireless power transfer system
for assisted living applications
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Advances in material science and semiconductor technology have enabled a variety of inventions to be implemented in elec-
tronic systems and devices used in the medical, telecommunications, and consumer electronics sectors. In this paper, a wireless
charging system is described as a wearable body heater that uses a chair as a transmitter (Tx). This system incorporates the
widely accepted Qi wireless charging standard. Alignment conditions of a linear three-element coil arrangement and a 3 × 3
coil matrix array are investigated using voltage induced in a coil as a performance indicator. The efficiency obtained is
demonstrated to be up to 80% for a voltage of over 6.5 Volts and a power transfer of over 5 Watts. Our results and proposed
approach can be useful for many applications. This is because the wireless charging system described herein can help design
seating areas for the elderly and disabled, commercial systems, consumer electronics, medical devices, electronic textiles
(e-textiles), and other electronic systems and devices.
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I . I N T R O D U C T I O N

Smart clothing is a new trend in wearable technology aimed at
improving human life and satisfaction. Such clothing is made
using combinations of micro-electronics embedded in fabrics
to create functional and fashionable solutions that meet
people’s everyday needs. An area of interest is assisted living
(AL), which takes into consideration the delicate needs of
elderly individuals. In many countries, such as the USA and
European Union (EU) countries, modern medicine has
increased the longevity of people’s lives. However, such coun-
tries are also experiencing a decreasing birth-rate that is
leading to a disproportionate amount of people aged 65 and
above when compared to the younger working population
[1]. With current trends, it is estimated that, in the next 30
years, the elderly (i.e. individuals aged 65 or older) will out-
number their younger counterparts in the EU, for example,
two to one [2]. This phenomenon will create a higher
demand for AL solutions that can be used to provide long-
term care to the aging population [3].

The primary objective of AL technologies is to improve
lives by providing security, comfort, and independence [4].
These technologies can be applied to different environments,

from homes and offices to outdoor public facilities [5–16].
However, devices used in an AL system requires a continuous
source of power which can be provided by supportive batteries
(e.g. lithium-ion batteries) [17]. However, currently available
batteries cannot always meet the demands of the devices
that make up an AL system [18]. That is, prolonged use of
an AL system’s devices eventually requires battery recharging
and replacement, which can be a tedious, expensive, and com-
plicated task for the elderly and other individuals [15]. For
example, replacing batteries in biomedical implants is expen-
sive and a complex procedure. Research into energy harvest-
ing [19–21], wireless charging [22–26], battery and power
management [27–29] has been conducted for AL systems to
improve the functionality and efficiency of device batteries.

Wireless charging offers a great solution to the problems with
batteries as described above. For example, this way of charging
batteries can be more convenient to a user of an AL system than
wired charging and some early examples have been demon-
strated [18], [30], and [31]. To address safety concerns of the
technology, regulations and standards of implementing wireless
power transfer (WPT) for charging should also be considered
[32–38]. Currently, two main commercial WPT standards
exist: (i) the Qi standard created by the wireless power consor-
tium (WPC) and (ii) the A4WP standard the air fuel alliance
(AFA). Both standards enable wireless charging techniques
that use magnetic induction to transfer power from a transmit-
ter (Tx) to a corresponding receiver (Rx) within a target device.
WPC’s Qi and AFA’s A4WP standards are discussed extensively
in [39–41]. The two standards meet the international and
regional regulations on safety and electromagnetic interference
set up by government and health agencies [32]. Safety
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considerations are made by selecting a non-radiative WPT
system design described in [42–50]. More specifically, the
research presented in this paper is directed to exploring the
design of a WPT system for wirelessly charging a wearable
heating belt.

The challenges faced by these wirelessly charged devices
include: (i) electromagnetic safety levels that lead to regulatory
restrictions, which require a low power source with higher trans-
mission efficiency [47]; (ii) limited range of operation, which
leads to positioning issues of the transmitter and receiver [48];
and (iii) problems with integrating the transmitter and receiver
in a seamless way to the user’s everyday environment [49, 50].

Works in [18], [30], [51–54] have also demonstrated
high power transmission efficiency (PTE) using different
approaches. For example, using small biomedical implant coils
a PTE of 58% was achieved in [18]. Metamaterials have also
been used to increase PTE in medium power applications
[30]. In [52] and [53], a transmitter coil array was used to
improve PTE to up to 85 and 50%, respectively.

Positioning issues have also been researched and overcome
using different techniques in some works in [52], [55], [56],
and [57]. In [52], primary coils were embedded into a desk
surface which significantly improved the charging area.
Further, [55] used a sequence of switchable couples of coils
to adopt a transmitting link side that retains its coupling coef-
ficient for a continuously moving receiver. In [56], a similar
concept to [52] was adopted using magnetically coupled res-
onant wireless power, while [57] used a bowl-shaped trans-
mitter coil for free positioning.

In our proposed design as reported in this paper, which is
based on the widely accepted Qi wireless charging standard,
the transmitter of the WPT system is integrated within a back-
rest of a chair, while the WPT system’s receiver is integrated in
the user’s belt together with a novel far-infrared heating
element (see Figs 1(a) and 1(b)). The belt can be charged

while its user is seated in the chair. This paper also investigates
and examines alignment and power transfer conditions of the
charging area on a chair’s backrest, considering different coil
arrangements and arrays. The WPT system proposed can also
be used in multiple charging scenarios, including AL environ-
ments. In this way, the proposed WPT charging and heating
system can be seamlessly integrated into the user’s life with
ease and comfort.

I I . W I R E L E S S S Y S T E M D E S I G N

The major factors that affect the performance of the WPT
system described herein are: (i) distance and misalignment
between the transmitter and receiver; and (ii) power transfer
between the transmitter and receiver. Both are attributable to
inductive power transfer, which is specified by the Qi standard
[39]. Table 1 shows the initial design constraints of the system.

When the separation distance of the coils for the system is
smaller than 1/10th of the wavelength of magnetic field, an
Equivalent Lumped Parameter Circuit Model of the system
can be made as further described in [58].

The first constraint requires that the receiver to be near the
transmitter of the WPT system. More specifically, and as
shown in Fig. 1(b), the belt to be charged (which includes

Fig. 1. (a) Illustration of the wireless power system to power a belt and integration into a chair. (b) Setup showing the working concept of the WPT system when
the user is sitting on the chair. The actual wearable belt can be seen in Fig. 2.

Table 1. System specifications.

Parameters Value

Pout (W) 5
Vout (V) 5–7
Vin (V) 12
Transfer distance ,3 cm
Efficiency 70–80%
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the receiver) must be close to the chair’s backrest (which
includes the transmitter). Furthermore, the second constraint
requires power transfer in our WPT system to occur at any
sitting position. The proposed WPT system overcomes the
constraints described above by using an array of coils to be
embedded in the backrest of the chair (previously shown in
Fig. 1) and as similarly used in [52] and [56]. Thus our pro-
posed design as described in Fig. 2 can increase the coverage
area for WPT.

The main design constraints of the coil size of the system
include the physical dimensions of the belt (for the receiver)
and load (li-ion battery pack). The battery has a nominal input
voltage of 7 V and an input power of 5 W as specified in [59].

Our design process is shown in Fig. 3 and physical dimen-
sions of the coils were used as initial input parameters to cal-
culate the required self-inductance of the coils and mutual
inductance by the theory reported [60], which was then opti-
mized based on the power transfer efficiency (PTE). The
receiver coil had restrictions due to the belt size while there
were no size constraints for the transmitter, other than it
needed to fit within a chair.

h = 1

1 + A
R1

RL

[ ]
+ R2

RL

(wL2)2

[ ] . (1)

The circuit was then tuned to obtain the resonant capaci-
tors for the primary and secondary coils by following [61].
These parameters were then used in the simulation environ-
ment for further optimization and where the Keysight soft-
ware Advanced Design System (ADS) was employed.

A) Transmitter parameters
The transmitting unit is based on the WPC1.1 Qi specification
with a 5W power level [62]. A WPC A29-type coil was used
and characterized with parameters as in [63]. The transmitter
coil is fabricated from litz wire with nylon spinning having

180 strands of no. 40 AWG (0.08 mm diameter). The mea-
sured inductance and quality factor of the transmitter coil
were 10 mH and 90, respectively. A ferrite sheet was placed
underneath the coil to shield the electronics in the base of
the charger [64].

B) Receiver parameters
The design constraints for the individual receiving coil (32 ×
48 mm2) was more due to the limited dimensions of the textile
belt. During the initial design phase, efforts were made to
ensure that the employed receiver coil was able to provide a suit-
able mutual inductance [65] and thus provide sufficient coupling;
i.e. the coil had an inductance of 15 mH and a quality factor of 60
(Fig. 4 illustrates the design process in terms of size, load resist-
ance and coupling distance). Table 2 shows the performance data
of the transmitter and receiver modules.

I I I . W I R E L E S S P O W E R D E S I G N

The wireless system transmits power from a transmitter
embedded in a chair then a belt containing the receiver unit
receives and harvests the power. The harvested power is
used to provide a regulated supply voltage suitable for char-
ging the lithium-ion battery. The connection between the
battery and the receiver has been implemented on a bread-
board. Voltmeters and ammeters were connected to allow
power consumption to be measured, as shown in Fig. 4.

I V . S Y S T E M M O D E L I N G A N D
S I M U L A T I O N

Modeling the wireless power system (transmitter and receiver
modules) through a simulation tool is an important part of the
design before implementing the physical system. This kind of
simulation-based approach can help to estimate and quantify
expected outcomes of the real time experimentation. The

Fig. 2. Wearable belt with the charging element.
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simulation software Keysight ADS was used to obtain the
power output at the receiver for any coupling condition
using coil types of the chosen transmitter and receiver
modules.

The transmitter and receiver modules operated using
inductive coupling regulated by the Qi standard which oper-
ates at frequencies between 100 and 200 kHz. The transmitter
module is made up of an oscillator capable of producing the
required resonant frequency. An amplifier then drives alter-
nating current into the primary coil. The receiver converts
the signal to DC through rectifying circuits [39].

The combination of the BQ500215EVM-648 wireless
power transmitter and the BQ51025EVM-649 receiver
shown in Fig. 8 are expected to give an output of 7 V at a
maximum current of 1 A.

A) Coupling factor and coil modeling
Coupling factor quantifies the strength of magnetic field gen-
erated by the transmitter coil and it varies between 0 and 1. It
must be noted that, when k ¼ 1 this represents perfect coup-
ling. Coupling is also highly dependent on the distance
between the coils as will be shown in the paper.

From [66] and [67] the inductance of the transmitter and
receiver modules were obtained respectively to calculate the
coupling coefficient, k, before calculating the mutual induct-
ance between the coils, M. Also, the coupling factor can be
measured from an existing system as a relative open loop
voltage, u, it can be given as follows from (5a) in [61]:

u = U2

U1
= k

�����
L22

L11

√
, (2)

where U1 and U2 are the voltages applied to coil, L11 is the self-
inductance of the transmitter coil, and L22 is the self-inductance
of the receiver coil. These parameters are also related to the
general set of equations for coupled inductors as seen in [68]:

U1

jv
= L11I1 + MI2 = L11I1 +F12, (3)

U2

jv
= MI1 + L22I2 = F21 + L22I2. (4)

Inserting equation (2) into equations (3) and (4) we get the
following:

U1

jv
= L11I1 +F12, (5)

U2

jv
= F21 + L22I2. (6)

These equations show that the voltage can be expressed in the
form of flux density. This condition is possible when the trans-
mitting and receiving coils are coupled strongly with each other,
in other words, a very small distance is separating them [69].
The overall measured inductance is given by LS in [61], which is:

LS = L11 + L22 + (2M). (7)

B) Resonant capacitors
The receiver circuit has two resonant capacitors Cs, and a
series resonant capacitor and Csp. These capacitors along
with the receiver coil make up a dual resonant circuit. The
two capacitors are used to tune the receiver coil and by the
Qi standard, should be sized correctly based on the WPC spe-
cification [62], and where the receiver coil is then placed on
the spacer, and Lrx is measured with a stimulus of 1-V RMS
and 100 kHz. These capacitors can be further calculated
using the 100 kHz resonant frequency:

Cp = 1
[100kHz 2p]2 Lp

,Cs =
1

[100kHz 2p]2 LS
, (8)

Fig. 3. Flowchart of the design methodology for the proposed WPT system.
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and Csp is the secondary resonance considering 1 MHz:

Csp = 1

[1MHz 2p]2 LS −
1

Cs

[ ] . (9)

The quality factor must also be .77 after tuning and is
given by:

Q = 1MHz 2p LS

R
, (10)

where R is the resistance of the coil. Table 3 below shows data
calculated for the circuit modeling.

C) PTE simulations
Figure 5(a) shows the circuit schematic of the modeled wire-
less power system while Fig. 5(b) shows the ADS schematic of
the system. This simulation model is expanded on and based
on the reported findings from [70]. The source is an oscillator

which generates the AC signal at 100 kHz that flows into the
transmitter coil, Lp generates an oscillating magnetic field, Cp

is the resonant capacitor calculated from equation (8) that
generates a resonance for Lp with a coil resistance of R equa-
tion (10). Through the mutual induction tool from ADS,
energy from the magnetic field induces AC current in the
receiver coil, Ls.

At the receiver the conventional bridge diodes made of
Schottky diodes, convert the signal to DC. Cs is the series res-
onant capacitor calculated in equation (8) while Csp is the par-
allel resonant capacitor calculated in equation (9) for the
receiver coil under test. This receiver model is based on the
Qi specification in [63] for type A5.

Figure 6 shows the rectified voltage of a 15 V load to be
between 6.7 and 7 V. The current is between 500 mA
(0.5 A) and 460 mA (0.46 A). The output power was tabulated
for a load resistance ranging from 3 to 200 V.

The lithium ion battery used in our system has a high resist-
ance at full charge. Also, to measure the impedance, a battery
must be at least 50% charged in practice. A completely
drained or nearly empty battery has a high internal resistance.
As the battery reaches 50% state-of-charge (SOC), the resistance
drops and then increases again towards full charge [60]. Table 4

Fig. 4. Left side shows measurement equipment and setup. Right side shows the wireless power system operating in the belt and a chair.

Table 2. Relevant parameter for selected transmitter and receiver units.

Transmitter BQ500215EVM-648

Power supply AC 100�240 V (50/60 Hz)
Nominal Vin 11.5212 V
Rated output 7 V, 10 W
Estimated overall system efficiency 80
Operating frequency 100–205 kHz

Receiver 595-BQ51025EVM-649

Max Vin 20 V
Rated output 4.5–10 V, 10 W
Estimated overall system efficiency 80
Operating frequency 100–205 kHz

Table 3. Data for simulation setup.

Transmitter Receiver

Self-Inductance (mH) 10 15
Coil impedance (Ohm) 0.174 0.157
Quality factor 90 60
Coupling factor 0.59 0.59
Primary resonant capacitor, Cp (F) 1.0132×1027 N/A
Series resonant capacitor, Cs (F) N/A 5.3052×1028

Parallel resonant capacitor, Csp (F) N/A 1.3438×10223

Source voltage, Vo (V) 5 N/A
Load impedance, ZL (V) N/A 3–200
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shows the output efficiency of the system when charging the
battery for increasing resistance as SOC increases towards full
charge at 200 V. At a low charge, the system has higher and
over time the efficiency drops as the battery continues to charge.

D) Misalignment calculations
Simulations for different alignment conditions were done in
MATLAB using equation (22) from [71]. The translational
misalignment, dtm was simulated at a varying distance of sep-
aration, dr between the coils as shown in Fig. 7.

Figure 8 shows the plotted power efficiency against a chan-
ging transition misalignment, dtm going from 0 to 7 cm at a
varying distance of separation, dr, ranging from 0 to 4 cm.
The simulations suggest high coupling at smaller dtm and dr

distances and tend to zero as the coils are further separated
as a result of a lowered coupling factor. The analysis suggests
that a misalignment up to about 3 cm will not affect the

performance of the proposed system (since PTE is well
above 10%) as this is usually the normal sitting position of
the user.

V . E X P E R I M E N T A L P R O C E D U R E

The amount of power transferred with the system varied
depending on the load resistance connected to the receiver.
Moreover, a range of dummy loads was tested to understand
the battery’s impedance since the battery’s charging and dis-
charging activity is a chemical process.

A) WPT efficiency
The first test procedure is to carry out measurements to deter-
mine the power efficiency of the WPT system. The connection
was done between the wireless power system consisting of a

Fig.5. (a) Circuitry of the receiver and single coil transmitter units. (b) ADS simulation model illustrating receiver circuit and the single coil transmitter.
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dummy load, a receiver and transmitter. The methods, steps,
and relevant documentation are described in [66]. These steps
serve as a precaution against wrong connections which could
lead to components blowing up.

B) Three-Element Array
The next step was to replace the single coil with an array of
three overlapping coils; i.e. a 3 × 1 array. The coils overlap
each other to achieve uniform distribution of the magnetic
field, without fields canceling each other [39]. The 3-coil

array is the 760308106 wireless charging coil from Wurth
Electronic made of ferrite core material. The middle coil
has an inductance of 11.5 and 12.5 mH for the side coils.
The coils were connected in parallel to the transmitter
and tested with the receiver without the battery, as described
in Fig. 9.

Fig. 6. ADS simulation results at 15 V: (a) voltage, (b) current, and (c) power.

Table 4. Output result from simulation.

Load (V)

Output
voltage

(V)

Output
current

(A)

Power
out
(W)

Power
in (W) Efficiency (%)

5 6.54 1.34 8.7636 11 79.7
7 6.63 0.91 6.0333 7.7 78.4
10 6.69 0.6 4.014 5.2 77.2
15 6.8 0.47 3.19 4.2 77
20 7.11 0.35 2.53 3.5 72.4
25 7.31 0.29 2.14 3 71
50 7.64 0.15 1.169 1.92 61
75 7.64 0.10 0.78 1.65 47
100 7.72 0.07 0.59 1.44 41
200 7.77 0.03 0.30 1.32 22

Fig. 7. Basic configuration of translational misalignment between the coils.
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C) 3 3 3 Coil array
In this set-up a couple of rows were added to the 3 × 1 array
(as described above) to increase the free positioning range on
the backrest. Only the primary coils next to the receiver acti-
vated the power transfer process. This coil arrangement was
made of three single 3 × 1 coil array resulting in a 3 × 3
coil arrangement array as described in Fig. 10.

V I . E X P E R I M E N T A L R E S U L T S

A) WPT efficiency measurement
The wireless PTE of the system was calculated by measuring
the input power at the transmitter and the output power at
the receiver as expressed by: h = PRX/PTX 100 %, . where
h is the efficiency, PRX is the output power in watts and PTX

Fig. 8. Power transfer efficiency at different misalignment positions shown in Fig. 7 by varying the distance between the transmitter and receiver coils in x and y
directions.

Fig. 9. Single transmitter coil replaced by the 3 × 1 array.

Fig. 10. Model illustrating the primary coil arrangement in the backrest.
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is the input power in watts. The efficiency of the system went
up to 80% and decreased as the load resistance increased.

Figure 11 shows the efficiency plot of the simulated and
measured device. From this plot we are certain the WPT
system works properly.

B) Power measurement
An open circuit test was done to estimate the batteries SOC,
which is the maximum possible charge inside a battery at

any one time. It mainly involves measuring the two terminals
of a battery in open-circuit as described in [72] to obtain the
voltage per cell. The battery was charged using an industrial
charger and results from this were compared to the charging
process done by the wireless power system, shown in Table 5,
Fig. 12.

When the battery starts to charge, the voltage starts to rise
quickly while the current is constant and then when charging
progresses towards saturation, the current starts to drop while
the voltage remains constant until terminated at stage 3.
Meanwhile the charge capacity increases as shown in Fig. 13.

Fig. 11. Measured and simulated efficiency.

Table 5. Open-circuit measurement using industrial charger.

Charger
voltage (V)

Charger
current (A)

Time
(hrs)

Voltage per
Cell (V/cell)

Estimated
saturation

capacity (%)

8.79 0.63 0.5 0 0
8.79 0.63 1 2.9 69
8.79 0.63 1.5 3.4 80.9
8.79 0.63 2 3.51 83.5
8.79 0.63 2.5 3.57 85
9.56 0.38 3 3.9 92

Fig. 12. Open-circuit measurements using WPT system.

Table 6. Discharge result of battery.

Industrial charger WPT system

Time
(hrs)

Voltage
(V)

Current
(A)

Time
(hrs)

Voltage
(V)

Current
(A)

0 7.49 0.64 0 7 0.46
0.5 7.4 0.626 1 6.8 0.43
1 7.04 0.61 2 6.08 0.42
2 6.8 0.58 2.5 5.8 0.39
3 6.3 0.56
4 6.2 0.53
5 5.9 0.5

Fig. 13. Voltage-current curve of wireless power system and battery pack.
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C) Discharge testing
It was observed the custom-made battery pack was able to
regulate the current going into it. This safety feature was
necessary as the battery was used to power a wearable and
textile-based commercial product. This led to the significant

drop of charge current as compared to the charger which
employs a voltage regulator circuitry.

The WPT system cannot raise the voltage per cell higher as
the charge current becomes too low resulting in lower satur-
ation which can led to a lower discharge time of 2.5 h com-
pared to 5 h seen when the battery reaches a higher capacity

Table 7. Alignment results.

Single Coil 3-Coil Array

Model 760308141(Wurth Electronic) 760308106 (Wurth Electronic)
Inductance (mH) 10 12.5, 11.5, 12.5
Resonance frequency (MHz) 11 14
Operating Area (cm2) 1.56 20

Displacement (cm) Voltage (V) Displacement (cm) Voltage (V)

Ideal Position 0 7.05 0 7.08
X-axis 2.4 7.01 10.6 6.96
Y-axis 2.6 7.02 2.7 5.1
Z-axis 2.2 6.99 3 4.96

Fig. 15. The 3 × 3 coil array structure.

Fig. 14. Measured induced voltage in the secondary coil for the 3 × 1 array. (a) 3D representation, (b) contour plot representation.
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from the use of an industrial charger. Table 6 shows the
voltage discharged after 3 hours when charged with the
original charger and WPT system.

D) Alignment testing
One of the main issues of concern is the systems flexibility
particularly relating to alignment. Coupling should occur at
any part of the system regardless of the sitting position. A pos-
sible solution is the use of an array of coils at the transmitter.
The single transmitter coil was replaced by a 3-coil array as
shown in Fig. 14, Table 7.

V I I . 3 3 3 C O I L A R R A Y
I M P L E M E N T A T I O N

The voltage induced at the secondary coil using a 3 × 3
primary coil array was compared to that of a primary 3 × 1
coil array as shown in Figs 14 and 16, this was done to deter-
mine the dependence of the flux linkage. The primary coil
array was connected in such a way to have an approximate
inductance value of 10 uH as specified in [66]. The inner
diameter and outer diameter of a single coil element within
the array was 44.8 and 15.5 mm, respectively. It has 13 turns
and a wire diameter of 1.19 mm. The gap between coils
within the array was 1.85 mm and a single 3 × 1 array (3 ele-
ments) has a dimension of 94.7 mm × 53.35 mm while the
complete 3 × 3 array (9 elements) is 94.7 mm × 162 mm.

The 3 × 3 array was found to have an increased coverage
area of 187 cm2 from that of 28.62 cm2. Figure 14(b) shows
the coverage area as a function of voltage recorded for the
3 × 1 array, the concentration, and charge area is seen to
have increased in Fig. 16(b). The induced voltage at the
receiver was measured by moving the coil center at grid inter-
vals of 17 cm × 11 cm and spaced at 1 cm apart. A similar
technique was used in [73]. Fig. 15 shows the coil arrangement
under the charge area.

High and low peaks for the induced voltage can be
observed in Fig. 16. The presence of low peaks indicates a
low charge area due to the fact that the coil array elements
do not completely overlap each other or are not completely
close enough to ensure uniform coverage. Thus, improve-
ments in the transfer efficiency could be possible by using a
more compact array.

V I I I . C O N C L U S I O N A N D F U T U R E
W O R K

A WPT system was designed for a novel wearable heating
system that provides warmth to its user. The wireless system
consists of an array of coils at the transmitter and a single
coil receiver that powers polymer resistors that generate
heat when driven by applied current. This provides comfort
and heat therapy for the wearer of the belt. The flux distribu-
tion was also investigated among two array configurations by
moving the receiver across the array surfaces and recording
the induced voltage. This helped determine the alignment
conditions of the set of the arrays to achieve a considerable
area of operation. Results in the paper demonstrated that a
significantly increased charge area was made possible by the
employed 3 × 3 coil array. Further improvements for the
system can be made by designing an accompanying voltage
regulator integrated circuit such as LM317 (variable regulator)
or any fixed regulator such as LM7808 or LM7812 for better
output voltage stability.
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