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Could the space probe Philae# be energized
remotely?
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Space probes suffer from a fundamental problem, which is the limited energy available for their operation. Energy supply is
essential for continuous operation and ultimately the most important sub-system for its sustainable functioning. Considering,
for instance, the last space probe put on Comet 67P/Churyumov–Gerasimenko, called “Philae”, which was sent by Rosetta
(http://www.esa.int/Our_Activities/Space_Science/Rosetta), to operate and to monitor comet activity, its operation was jeo-
pardized due to the fact that it landed on a shadowed zone (no direct sunlight). Since its operational energy was only based on
solar harvesters, the energy for its operation was limited by solar energy availability. In this paper a study on a viable alter-
native based on wireless power transmission is presented and discussed at the system level. It is proved that, using current
technology, it is possible to create alternatives or supplement to existing power sources such as solar panels to power up
these important space probes and to secure their operation.
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I . I N T R O D U C T I O N

On September 29, 2016 Rosetta spacecraft died as programed by
the European Space Agency (ESA). A successful space mission
ended but a shadow remains on the overall picture of this
amazing adventure. The space probe “Philae” launched from
the Rosetta spacecraft on November 12, 2014 landed on the
comet in the shadowed zone by a nearby cliff. Philae was
unable to collect solar power and charge properly its batteries.
Consequently, its scientific mission was drastically amputated
once its batteries discharged. Due to this DC power problem
Philae performed only a few days of scientific experiments
during the 2 years of Rosetta mission. This issue highlighted
one of the key sub-systems in space exploration and monitoring:
energy availability and energy generation. Energy is mostly gen-
erated using solar panels, and sometimes fossil and/or atomic
generators. However, they have always specific problems: fossil
is limited, atomic collides with legal and societal constraints
and both requires high lift-off costs at the launching phase.

In many situations solar harvesting is the best option, but
there is imposition that this source of energy be available

(by solar availability we assume that sun is within the line of
sight and that the spacecraft or probe has a direct solar illu-
mination), this is not always the case. In the recent Rosetta
mission the Philae probe landed on a comet surface and the
landing site did not allow for a continuous solar exposition,
as shown in Fig. 1, thus limiting the available energy and sub-
sequently the operation of the probe.

One alternative solution to overcome such situations is to
use another energy path, leading to the potential solution of
far-field wireless power transmission (WPT). This is the
case of probes that are powered up by RF/microwave beams
from a main spacecraft, which may be in direct line-of-sight
(LoS) with sun light. The solution may use a microwave
source of energy with energy beams tuned in order to maxi-
mize the energy availability in the probe as is explored in
[1] for the dark side of the moon probes.

I I . W I R E L E S S P O W E R
T R A N S M I S S I O N C O N C E P T A N D I T S
M A I N B U I L D I N G B L O C K S

WPT has three main alternatives: inductive/capacitive coup-
ling, resonant inductive/capacitive coupling, and far-field elec-
tromagnetic transmission. The coupling solutions are quite
interesting for small distances, around tens of meters are
reported in the literature, one of those examples already
tested in space by NASA is the concept of RINGS (Resonant
Inductive Near-field Generation System)1 that was used to
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power up Synchronized Position Hold, Engage, Reorient
Experimental Satellites (SPHERES) (http://www.nasa.gov/
content/rings-resonant-inductive-near-field-generation-system/
#.VPgtkPmsUeo). These tests allow pico-satellites to be
powered up around the international space station.
Nevertheless if the objective is to go further in distance, the
alternative is actually to use far-field WPT based on electro-
magnetic microwave beams.

Figure 2 shows the general concept of WPT far-field
systems, where three main components can be seen:

1. DC–RF generator, which converts solar DC energy to RF
microwave beams. In this case the breakthrough advancing
state of the art is on the increase of the DC–RF energy effi-
ciency [15].

2. RF–RF air interface, which transmits the RF energy from
the source (Tx: transmitter) to the probe (Rx: receiver).
In this case the breakthrough advancing state of the art is
on the increase of the RF–RF energy efficiency, called
beam efficiency.

3. RF–DC converter that converts the energy back from RF to
DC to power up the probe. In this case the breakthrough
advancing state of the art is on the increase of the RF–
DC energy efficiency [15].

The main objective of our approach is actually to demon-
strate that an electromagnetic beam can be used as a mean
to transfer (via RF) wirelessly an amount of electric power
from the satellite to the probe, maintaining a continuous
energy level in the probe. For this to be achieved the whole
chain has to be optimized from the efficiency point of view:
(i) DC–RF conversion, hDC–RF; (ii) transmitting antenna
beam efficiency at the spacecraft as well as receiving
antenna beam efficiency at the probe and their respective
optimum location and polarization, hRF–RF; and (iii) RF–DC
power conversion efficiencies at the probe side, hRF–DC [14].

The overall efficiency is evaluated as, from Fig. 2:

hDC−DC = hDC−RFhRF−RFhRF−DC = PDC,in

PDC,out

This overall DC to DC efficiency can be optimized by
exploring each of the sub-systems individually. Actually in
the case of powering up the space probes the efficiency is
not the main issue to be resolved, because the need to
supply the power to the probe is much more important
even if we lose power within the conversion process. Thus
the first step for this approach is to guarantee that the
system level calculations make sense and that the required
technical solutions are feasible (size of the antennas, RF
power capability of the amplifiers, etc.).

I I I . R O S E T T A M I S S I O N C A S E
S T U D Y

The Rosetta Mission case study was selected as the baseline for
this paper, in order to demonstrate the interest and motivation
of WPT in space environments. The situation in this approach
assumes that we have an orbiter, the Rosetta spacecraft, and a
probe/lander, the Philae, as shown in Fig. 3.

A real approach to this mission can be seen in Fig. 4, where
the orbiter can get as close to the probe as 6 km.

With this mission in mind, the approach is to calculate the
overall need to implement a WPT system. Thus we will
assume the parameters given in Table 1.

At present, comet is at 2.25 AU to sun (with 1.25 AU
minimum distance of its orbit). So we can consider at this
moment Power density ¼ (300/2.252) ¼ 60 W/m2 for the
solar panels.2

With this assumption it follows that the available power on
board the Orbiter from solar panels is in the range of 3–4 kW.

Potential available power on the Lander (Philae) from solar
panels is about 60 W if the solar panels were receiving direct
sun light, which may not be the case.

Range of power consumption for typical Lander from it’s
on board instruments is 10–100 W, we will consider 20 W
for our calculations. The Sun visibility from the Lander is at
this moment ,10% time, close to zero in most of the
situations.

Fig. 1. The likely orientation of Philae probe, shown in a visualization of a
topographic model of the comet’s surface. Credits: ESA/Rosetta/Philae/
CNES/FD, from http://www.esa.int/Our_Activities/Space_Science/Rosetta.

Fig. 2. Typical far-field WPT arrangement.

2300 W/m2 is standard power density at 1 AU distance to sun (about
150 million kilometers).
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In order to get an estimate of the visibility time between
orbiter and lander, at first the orbiter is assumed to be in a
fixed position. This choice can be justified since the comet
rotation time is much longer than the spacecraft orbit time
about the comet. Furthermore, the comet shape is irregular
shape and far from being spherical one.

As a result the percentage of time with LoS condition can
be estimated roughly 2 h over 10 h (20% of time).

Thus, a tentative reference requirement for WPT in this
scenario could be:

Distance (altitude): 6 km
DC power need on the lander: 20 W

We assume that the Lander is equipped with batteries to be
re-charged by sun or WPT. Using the Friis formula at this
stage for free space and the beam efficiency calculated
above, we can actually estimate the overall mission power
needs. For these calculations we assume the following poten-
tial frequencies of operation: 2, 5, 10, and 18 GHz. The calcu-
lations are made for 80% of aperture efficiency,3 and the
distance between the lander and the orbiter is 6 km. The fre-
quencies were selected to show the pros and cons of each
band. Higher frequencies allow better beam efficiency, but
the DC–RF and RF–DC efficiencies are lower due to techno-
logical constraints.

The assumptions are then:

† For each frequency, the beaming efficiency is optimized to
be higher than 1%, i.e. the relation between the RF trans-
mitted antenna aperture and the RF receiving antenna
aperture can be given by: ATAR ¼ 0.01l2(6000)2 to guaran-
tee a minimum of 20 W in the probe [1].

† The far-field condition FF � 4A/l [2] is calculated with respect
to the transmitting aperture area (A) and the wavelength (l),
since the rectenna elements could have individual detectors,
and RF-wise they are not in an array (only the DC adds).4

The calculations implemented in Table 2, can be summar-
ized as:

PRFTX = PDCTXhDC−RF (1)

GTXAnt = 4p
AntennaSize2

TX

l2 hAPTX (2)5

Lfreespace =
l

4pd

( )2

(3)

Fig. 3. Rosetta mission case study.

Fig. 4. Rosetta mission orbits from http://www.esa.int/Our_Activities/Space_Science/Rosetta.

3The aperture efficiency can be calculated as the ratio between the
antenna aperture and its physical size.

4As said before, the final decision on the receiving antenna will be dis-
cussed afterward.

5Antenna size is the physical size of the antenna, TX, and RX, d is the
distance between the orbiter and the lander, and .. is the aperture efficiency
of RX and TX.
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GRXAnt = 4p
AntennaSize2

RX

l2 hAPRX (4)

PRFRX = PRFTX GTXAnt LfreespaceGRXAnt (5)

hBEAM = PRFRX

PRFTX

(6)

PDCRX = PRFRXhRF−DC (7)

This can be simplified using some simplifications, for
instance the transmitter and receiver antenna aperture can
be given by

AT = AntennaSize2
TXhAPTX (8)

AR = AntennaSize2
RXhAPRX (9)

Thus

hbeam = AT AR

l2d2
(10)

And the overall efficiency will be:

PDCout

PDCin

= hDC−RFhbeamhRF−DC (11)

The results presented in Table 2, clearly prove the feasibil-
ity of the proposed scheme, the computed DC power exceeds
the threshold of 20 W. Higher powers can be achieved if the
distance is reduced, as is the case in a space probe or pico-
satellite scenario. The achieved efficiencies considered in
Table 2 are viable and can be obtained as in [1] and http://
www.teslasociety.com/columbia_expo.htm. The low overall
efficiency (DC to DC) is the price to pay for a technical solu-
tion which can save a lander mission when the solar power is
unavailable or limited.

The overall systems can be described as shown in Fig. 5. On
the transmitter side (Tx, Rosetta spacecraft) several phased
locked RF oscillators are combined with a high efficiency
GaN power amplifier (PA) in order to feed the corresponding
element of the transmitting antenna. In this way fairly low
power GaN devices can be used to power up the overall
energy beam with a power in the order of several kilowatts.
As an example, 4 kW of the RF power can be obtained by
using an array of 500 GaN PAs. The amount of energy per
element should be around 8 W, which is feasible at the
current state of space hardness GaN solutions available on
the market [1]. Since the objective is WPT and not data com-
munications, the PA could be pushed into compression
(using very high efficiency configurations as class E, F, etc.)
to pursue its maximum power efficiency and thus contributing
to the optimization of the overall efficiency on the whole chain.
The antenna implementation on Tx side will benefit from the
recent advances in antennas for space communications [2–13].

Multiple-beam antennas composed of a multiple feed per
beam (MFB) focal array and a deployable reflector seem to
be ideal candidates because of their beam shaping (the

Table 1. Baseline metrics for the WPT link case study.

Metric Value

Distance between Orbiter and Comet 5–50 km, let’s consider 6 km
Rotation period of the comet About 10 h
Orbiter solar panel surface About 60 m2

Lander solar panel surface About 1 m2

Table 2. Potential figures for the case study feasibility.

Signal information

Frequency (GHz) 2 5 10 18
Wavelength, l (m) 0.15 0.06 0.03 0.017

DC–RF conversion
DC power in transmitter PDCTX (W) 3700 3700 3700 3700
DC–RF efficiency, hDC–RF (%) 80 75 65 60
RF transmitted power, PRFTX (W) 2960 2775 2405 2220

Beam efficiency
TX antenna size (m) 18 13 10 7
Aperture efficiency on TX side, hAPTX (%) 80 80 80 80
TX antenna gain, GTXAnt (dB) 51.6 56.7 60.5 62.5
Distance, d (m) 6000 6000 6000 6000
Far field, FF (m) 4320 5633 6667 5880
Free space attenuation, Lfreespace 3.96 × 10212 6.33 × 10213 1.58 × 10213 4.89 × 10214

RX antenna gain, GRXAnt (dB) 47.3 51.4 52.5 55.1
Rx antenna Size (m) 11 7 4 3
RF–RF efficiency, hBEAM (%) 3.10 4.09 3.16 2.82

RF–DC conversion
Received RF power, PRFRX (W) 91.69 113.48 76.01 62.66
RF–DC efficiency , hRF–DC (%) 80 78 76 74
DC power, PDCRX (W) 73.35 88.51 57.77 46.37

Overall DC–DC efficiency
DC–DC efficiency, hDC–DC (%) 1.98 2.39 1.56 1.25
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spacecraft needs to shape the microwave beam in order to
track the position of the space probe) and power handling
capabilities. The MFB focal arrays, having excellent power
handling capabilities, are traditionally manufactured by
using a mechanical/milling technological process and their
performances have been proved for satellite broadcasting
data links.

A recent interesting solution has been presented in [4] con-
sisting of a very large planar holographic metasurface reflec-
tarray at 5.8 GHz to form a focused spot in the Fresnel-zone
(for the present case 6.5 m) for microwave wireless power
transfer experiment. A 40% of the transmitted power was esti-
mated to incident onto the receiver at the focus point.

The emerging 3D printing techniques can offer new per-
spective for manufacturing such antennas.

Regarding the receiver, RF–DC converter, the approach to
be followed is to use high efficiency RF–DC converters using
approaches based on class E or F rectifiers, followed by DC to
DC sub-system to guarantee constant impedance at the output
of our RF–DC converter.

I V . D I S C U S S I O N

In this paper we show that the powering up by means of remote
far-field WPT of space probes/landers could be a viable solution
for the last Rosetta mission, and could actually be a “must”
solution for next space missions with the purpose to signifi-
cantly improve their probability of success. By using theoretical
computation and based on the today state-of-art solutions for
PAs, antennas, and RF–DC converters a realistic FF WPT
approach was proposed. A DC power exceeding 20 W can be
transferred over a distance of 6 km offering a reliable alternative
solution to power up space probes when the solar power is
unavailable or limited. We note also that all the building
blocks of the proposed FF WPT solution are based on mature
technologies that were already used in space missions or are
selected for the next (decade) space missions.

The data reported in Table 2 actually demonstrate that the
proposed solution can be achieved with current state of the art
technologies for PAs, antennas, and RF–DC converters; it is
mainly a matter of developing the next missions with this

WPT capability in mind in order to avoid DC power issues
as recently Philae experienced.
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