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Abstract

This paper presents a comparative study on three types of slim coil structures used as a three-
dimensional (3-D) receiver in a wireless power transfer system with a planar transmitter coil.
The mutual coupling values and their variations between the receiver structures and the trans-
mitter coil are compared under different distances and angular orientations with respect to the
transmitter coil. The merits of performance are related to the consistency of the mutual coup-
ling values under different orientations in a range of distances from the transmitter coil.
The practical results show that slim 3-D receiver coil structures can be compatible with a
planar transmitter coil with reasonably high-mutual coupling.

1. Introduction

With the successful launch of the wireless standard Qi by the Wireless Power Consortium
(WPC) comprising over 660 companies by January 2019, wireless charging of portable
consumer electronics [1] has already gained wide-spread acceptance not only in the forms
of wireless charging pads used in office and domestic applications and also installed in vehi-
cles. Presently, the Qi standard focuses on the use of planar receiver coil primarily designed for
one-dimensional (1-D) wireless power transfer (WPT). It should be noted that wireless char-
ging standard does not restrict wireless charging applications. In fact, WPC is expanding its
scope to cover not only mobile phones, but also notebook computers, electric hand tools
and even kitchen electric appliances [2]. Therefore, there is strong motivation to investigate
other forms of WPT structures because international wireless charging standards will continue
to evolve with the demands of new applications.

Recently, omnidirectional WPT has also attracted much attention. In references [3–9], mul-
tiple orthogonal coils are used as three-dimensional (3-D) transmitter coil structures. In [3 4],
3-D receiver coil structures are adopted with their respective 3-D transmitter coil structures for
WPT. In contrast, [5–8] consider the situations of using a 1-D planar receiver coil structure for
a 3-D transmitter coil structure.

This paper focuses on the compatibility of 3-D receiver coil structures with a 1-D planar
transmitter coil structure. In particular, it is the “slim” 3-D receiver coil structures that are
of special interest in this comparative study because many electronic products prefer to accom-
modate slim receiver module due to their form factor restrictions.

3-D receiver coil structures have been reported in several articles. 3-D receiver coil
structures of equal length (i.e. either in cubic or spherical form) in three dimensions are
most common and have been used in [3] and [4]. Reference [9] uses a 3-D receiver with a
rectangular coil structure for use inside a cylindrical solenoid transmitter. Although 3-D
receiver coil structures have been studied previously, the emphasis on “slim” 3-D receiver
coil structures for compatibility with 1-D planar transmitter coil has not been investigated
in detail for use with a 1-D transmitter coil. Reference [10] considers the use of a 3-D receiver
coil structure with a planar transmitter coil, but the 3-D receiver module is of the cubic form
and does not fit into the slim receiver structure requirement in this study. An interesting recent
WPT development is the idea of using multiple dipole receiver coil designs to provide high
degree of freedom of positioning for 1-D to 3-D applications [11].

In this paper, three types of slim receiver coil structures for 3-D use with a 1-D planar
transmitter coil are studied and compared. In order to evaluate their performance, the mutual
coupling coefficient will be used as an indicator. The merit factor includes the consistency of
the mutual coupling factor between the receiver module and the transformer coil under
different angular orientations and distances between the transmitter coil and the receiver
modules. Both finite-element simulation and experimental tests are used to verify the com-
parative results.
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2. The slim 3-D receiver structures

To enable omnidirectional WPT, we could use either a 3-D trans-
mitter coil structure as proposed in [6] which can generate mag-
netic fluxes in a 3-D manner or a 3-D receiver coil structure which
basically can receive fluxes from any direction [3] (Fig. 1). This
paper focuses on slim 3-D receiver coil structures which can
build up an effective WPT coupling with an ordinary planar
transmitter coil at an arbitrary position.

Figure 2 shows three types of slim receiver coil structures to be
evaluated for 3-D use of a 1-D planar transmitter coil.

• Structure #1 consists of a planar spiral coil mounted on a ferrite
plate and is used essentially as a reference for comparison.

• Structure #2 has four coils, with two planar spiral coils placed
on both side of the ferrite plate and two concentrated coils
wound along the two central lines of the ferrite plate.

• Structure #3 has a cross-shaped ferrite structure with a circular
concentrated coil forming the circumference of a circular
receiver and two orthogonal concentrated coils forming another
cross structure.

In order to make a comparative study, the dimensions of these
structures should be as close to one another as possible. Three
experimental prototypes have been constructed and their top
views are shown in Fig. 3, while their side views shown in
Fig. 4. An adjustable mechanical system has been built to keep
the position of the receiver modules for the tests in the presence
of the transmitter coil as shown in Fig. 5.

3. Circuit topologies and theoretical analysis

Figure 6 shows the two possible circuit topologies for a WPT sys-
tem using a slim 3-D receiver consisting of multiple coils. The
outputs of the receiving coils can be either in parallel or in series.

For the parallel-output connection, we use LT to represent the
self-inductance of the transmitter coil and Li, Mi (i= 1, 2, …) to

Fig. 1. Diagram of a traditional 3-D receiver coil structure [3].

Fig. 2. Diagrams of three slim 3-D receiver coil structures.

Fig. 3. Top views of the three slim receiver coil structures (with dimensions).
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represent the self-inductance of the ith receiver coil and the
mutual inductance between the ith receiver coil and the

transmitter coil, respectively. Then, in the ith receiver coil, we have

jvMiIT + RiIi + VLi = 0 (1)

Fig. 4. Side views of the three slim receiver coil structures (with dimensions).

Fig. 5. Photographs showing (a) an adjustable mechanical system for holding the receiver module in position and (b) the corresponding 3 receivers.

Fig. 6. The circuit topology of the WPT system with a single-coil transmitter and a multi-coil receiver when (a) the outputs are connected in parallel and (b) the
outputs are connected in series.
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where the voltage drop of the diodes is neglected, the current in
the receiver coil is set as the reference (i.e. with a zero phase
angle), IT is the current phasor in the transmitter coil and VLi is
the root mean square value of the fundamental component of
the input voltage of the full-bridge rectifier. If the receiver current
can be considered continuous, VLi is given by

VLi = 2
��

2
√

p
VL (2)

where VL is the output voltage applied to the load RL.
From (1), we can see that if the induced voltage in the

receiver coil |jωMiIT| is lower than the output voltage VLi, then
there will be no current in this receiver coil. If the induced volt-
age is higher than VLi, then the current in the receiver coil is
given by

Ii = vMiIT − VLi

Ri
(3)

and thus, the equivalent load resistance for this receiver coil can
be derived as

RLi = VLi

Ii
= VLiRi

vMiIT − VLi
(4)

It can be seen from (4) that a weaker mutual coupling leads to
a larger equivalent load resistance. Recall that the reflected resist-
ance Rreflected_i at the primary side, which is the equivalent

resistance seen from the transmitter coil, with the coil resistance
neglected, is given by

Rreflected i = v2M2
i

RLi
(5)

Therefore, a larger RLi leads to a smaller reflected resistance in
the transmitter coil. So the power delivered to the receiver coil
with a weaker mutual coupling will be lower assuming the trans-
mitter coil current is constant. Eventually, by using this circuit
topology, the receiver coil with a stronger coupling with the trans-
mitter coil will deliver more power than the one with a weaker
coupling and thereby, the efficiency of the whole system can be
maintained high.

For the series-output connection, we firstly assume the i th

receiver coil can generate a non-zero voltage VLi on its
output capacitor CLi. The load current is IL. The circuit equa-
tion is the same as (1) and the equivalent load resistance is
given by

RLi = 8
p2

VLi

IL
(6)

and the receiver coil current is given by

Ii = p

2
��

2
√ IL (7)

By substituting (7) into (1), we get

VLi = vMiIT − p

2
��

2
√ RiIL (8)

By substituting (8) into (6), we get

RLi = 8
p2

vMiIT − (p/2 ��

2
√ )RiIL

IL
= 8

p2
vMi

IT
IL

− 2
��

2
√

p
Ri (9)

It can be seen from (9) that for a given IT, the equivalent load
resistance of a receiver coil is proportional to the mutual induct-
ance between the receiver coil and the transmitter coil which is

Table 2. Coil inductances at a frequency of 100 kHz

Transmitter Receiver #1 Receiver #2 Receiver #3

Simulation (μH) 172.1 15.4 Coil 1 15.6 Coil 1 15.4

Coil 2 15.1

Coil 3 15.4 Coil 2 15.4

Coil 4 14.9

Mutual inductance of coils 1 and 2 1.1 Coil 3 14.8

Measurement (μH) 174.5 15.4 Coil 1 14.7 Coil 1 16.5

Coil 2 15.0

Coil 3 14.9 Coil 2 16.2

Coil 4 14.8

Mutual inductance of coils 1 and 2 1.0 Coil 3 15.4

Table 1. Number of turns in the coils

Transmitter Receiver #1 Receiver #2 Receiver #3

21 15 Coil 1 15 Coil 1 12

Coil 2 15 Coil 2 13

Coil 3 10 Coil 3 13

Coil 4 10
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different from that of the parallel-output case. Therefore, we can
predict that this series-output connection might have a lower sys-
tem efficiency than the parallel-output connection. However, it
might generate higher output power under the same operation
conditions, since the reflected load resistance of this series-output
connection is larger.

4. Simulation and experimental verifications

Simulations and measurements are carried out based on the coils
and circuits described above. Tables 1–3 show the details of the
practical coils. A 2 Ω power resistor is used as the load. The diodes
of the diode bridges are the Schottky barrier diodes with a for-
ward voltage of 0.39 V.

The coupling coefficients between the transmitter and the
receivers, as well as the system efficiencies of using the circuits
in Fig. 6, with different coupling positions (i.e. different distances
and different angles) are shown in Fig. 7. Totally eight positions
are investigated. The first four positions are

(1) the receiver is aligned to the center of the transmitter coil and
the angle between the receiver plane and the transmitter
plane is zero, as shown in Fig. 7(a);

(2) the receiver is aligned to the center of the transmitter coil and
it rotates 45° around its Y axis, as shown in Fig. 7(b);

(3) the receiver is aligned to the center of the transmitter coil and
it rotates 45° around both of its Y and X axes, as shown in
Fig. 7(c);

(4) the receiver is aligned to the center of the transmitter coil and
it rotates 90° around its Y axis, as shown in Fig. 7(d).

Then the receiver is moved to align to the edge of the transmit-
ter coil and the same rotations are realized as described above.
The distance in Fig. 7 represents the distance from the top surface
of the transmitter coil to the center of the receiver.

For each position, the finite element analysis simulation
models of using #2 and #3 receivers (e.g. the top row of
Fig. 7(a)-1), the coupling coefficients for using three receivers
(e.g. the bottom row of Fig. 7(a)-1), and the system efficiencies
of using parallel-output and series-output connections (e.g.
Figure 7(a)-2) are given. The efficiency of using the single-coil
receiver coaxially aligned with the transmitter is also provided
in all of the efficiency figures for comparison.

The following important observations should be noted:

• For #1, k is very close to zero when the coil is placed at the cen-
ter of the transmitter coil at 90o (Fig. 7(d)), as the two coils are
perpendicular and the fluxes generated by the transmitter coil
will not penetrate #1. k is also very low when the coil is placed
at the edge of the transmitter coil at 0° (Fig. 7(e)), because at

this position, the fluxes generated by the transmitter coil will
be basically parallel with the XY plane and thus will not pene-
trate #1. At these two positions, coil 4 of #2 and coil 2 of #3
which are orthogonal to #1, provide much stronger couplings
with the transmitter coil. This verifies the idea of the proposed
slim 3-D receiver coil structures.

• #2 and #3 can achieve higher efficiency than #1 at almost all of
the positions, with either the parallel-output connection or the
series-output connection.

• The parallel-output connection can achieve higher efficiency
compared with the series-output connection as explained in
the last section.

5. Discussion

Figures 8(a), 8(b) and 8(c) show the coupling coefficient for using
receiver #1, #2, and #3, respectively under several positions and
angular orientations. The average k values of these three receiver
coil structures are also calculated and plotted in Fig. 9. The fol-
lowing important observations should be noted:

• For #1, k is very close to zero when the coil is placed at the cen-
ter of the transmitter coil at 90o, as the two coils are perpendicu-
lar (Fig. 8(a)). The low k value means that it is not suitable as a
3-D receiver for use with a planar transmitter coil. Nevertheless,
#1 is included here as a reference case.

• For #2, the k is much higher than that of #1 for each distance,
but the variation of k for any given distance between the centers
of the transmitter and receiver coils is wider than the variation
of k of #3. A wide variation of k for a given distance means that
it is more sensitive to angular orientation (Fig. 8(b)).

• For #3, the variation of k for each distance is narrower than
those of #1 and #2. This means that the k value stays within
a small range for a given distance regardless of its angular orien-
tations (Fig. 8(c)). The practical implication is that #3 offers a
more consistent mutual coupling and therefore WPT capability
with less sensitivity of the angular orientation.

• The average k plot in Fig. 9 shows that the average k for #2 and
#3 is almost identical except when the distance is less than 20
mm (where #2 has a slightly higher k than #3). These results
mean that both #2 and #3 are capable of functioning as a
3-D receiver when use with a 1-D transmitter coil. But #3 has
less sensitivity than #2 in terms of angular orientation.

The average efficiencies η are calculated and shown in Fig. 10
which confirms that the two proposed multi-coil receivers #2 and
#3 can achieve higher efficiencies than the ordinary single-coil
receiver #1, whichever connecting manner (parallel or
series-output) is used. It also indicates that when aligned at the
center of the transmitter, #3 connected in parallel has a little

Table 3. Measured coil resistances at a frequency of 100 kHz

Transmitter Receiver #1 Receiver #2 Receiver #3

0.28 Ω 0.085 Ω Coil 1 0.087 Ω Coil 1 0.104 Ω

Coil 2 0.094 Ω Coil 2 0.064 Ω

Coil 3 0.069 Ω Coil 3 0.061 Ω

Coil 4 0.069 Ω
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Fig. 7. Simulated and measured results of the coupling coefficients and system efficiencies at different relative positions (#1: the ordinary single-coil receiver; #2:
the proposed multi-coil receiver with a square ferrite plate and #3: the proposed multi-coil receiver with a cross-shaped ferrite plate. The solid lines represent
simulation results, and the dots represent practical measurement results).
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Fig. 7. Continued.
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Fig. 7. Continued.
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Fig. 7. Continued.
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lower averaged efficiency than #2, but in other three cases (center-
series connection, edge-parallel connection, and edge-series con-
nection), the average efficiencies of #3 are all obviously higher
than #2, and the overall average efficiencies of #3, whether in par-
allel or series connection, are higher than that of #2. Figure 10
also shows that in most of the positions, the parallel-output con-
nection has higher efficiencies than the series-output connection,
for both receivers #2 and #3.

Generally, both receivers #2 and #3 can be used as a 3-D
receiver, but receiver #3 has a more stable performance against
position changes, and a higher averaged circuit efficiency.
Besides, #3 uses less ferrite material, which results in less

Fig. 8. Measured coupling coefficients of receivers #1, #2, and #3 at different dis-
tances from the transmitter coil under different angular orientations, respectively.

Fig. 9. Averaged mutual coupling coefficient of receivers #1, #2, and #3 at different
distances from the transmitter coil under different angular orientations. (a)
Averaged k of receivers at center or edge and (b) the averaged k over all positions.

94 Minxin Wu et al.



Fig. 10. Averaged circuit efficiencies of using receivers #1, #2 and #3 at different distances from the transmitter coil under different angular orientations. (a)
Averaged η at center, (b) averaged η at edge and (c) averaged η over all positions. The solid lines represent simulation values and the dots represent the measured
values.
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fabricating cost. Therefore, #3 has a better performance for omni-
directional WPT with a 1-D planar transmitter coil. For an output
connection manner, the parallel method offers higher efficiencies.

Furthermore, some improvements of the proposed planar
multi-coil receivers can be made in the future. Figure 7 indicates
that the coils 1 and 2 of receiver #2 have similar coupling coeffi-
cients at all the eight cases, which means one of them can be
removed to further reduce the thickness of receiver #2. Besides,
the PCB wires can replace the litz wires and thinner ferrite
plate can be used to reduce the thickness of the planar receivers.

6. Conclusions

This paper presents a comparative study on three “slim” receiver
coil structures for use as a 3-D receiver with a planar transmitter
coil. The mutual coefficient k is adopted as a performance indica-
tor for comparison because it is directly related to the energy effi-
ciency in WPT applications. Experimental results show that some
receiver coil structures have wide variation of k under different
angular orientations than the others. It is found that both (i)
the magnitude of k and (ii) the variation of k under different
angular orientations for a given distance are important factors
in the comparison. In this particular study, receiver #1 is not suit-
able as a 3-D receiver. Both #2 and #3 can serve as a 3-D receiver
because they have reasonably high k over the transmission dis-
tance, but #3 is less sensitive to angular orientations because its
k value has the smallest variation range for a given distance.
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