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Abstract

In this paper, we use convex optimization to maximize power efficiency through cascaded
multi-coil wireless power transfer systems and investigate the resulting characteristic spacing.
We show that although the efficiency is generally a non-convex function of the coil spacing, it
can be approximated by a convex function when the effects of higher-order couplings are
small. We present a method to optimize the spacing of cascaded coils for maximum efficiency
by perturbing the solution of the convex approximation to account for higher-order interac-
tions. The method relies on two consecutive applications of a local optimization algorithm in
order to enable fast convergence to the global optimum. We present the optimal configura-
tions of coil systems containing up to 20 identical coils that transfer power over distances
up to 4.0 m. We show that when spacing alone is optimized, there exist an optimal number
of coils that maximize transfer efficiency across a given distance. We also demonstrate the
use of this method in optimizing the placement of a select number of high-Q coils within
a system of low-Q relay coils, with the highest efficiencies occurring when the high-Q coils
are placed on either side of the largest gaps within the relay coil chain.

Introduction

Wireless power transfer (WPT) technology has progressed rapidly in the past decade, with
applications in mobile devices [1], electric vehicles [2], and medical implants [3, 4]. Many
of these applications rely on magnetic resonance coupling (MRC) as the mechanism for
power transfer, which uses inductive coils to transmit power across empty space [5, 6]. This
technique offers many benefits including high efficiency at distances on the order of the radius
of the coils, and low interaction with non-ferrous materials in surrounding environments. In
recent years, applications with multiple transmitters distributed across large physical spaces
have been introduced, such as charging electric vehicles while they are in-motion along a road-
way [7], powering industrial machines in factories [8], and powering wireless sensor networks
[9]. These new applications allow the receiver to be powered anywhere within the WPT envir-
onment, enabling greater mobility than in simple four-coil systems.

To improve the efficiency of WPT systems across greater distances, additional relay coils
between a source and a load have been introduced and their effect on efficiency analyzed.
Placing a single relay coil between a source and load has been shown to improve the efficiency
of power transfer to the load, and it was shown that there exists an optimal location to place
the relay coil for the greatest improvement to the efficiency [10, 11]. The analysis of relay coil
systems and their effect on efficiency has also been extended to increasing numbers of relays
[10–12], and to configurations of curved chains [10, 12, 13]. While many relay coil systems
include a single electrical load, systems with a single transmitter coil and a load connected
to each relay coil have also been analyzed [9, 14].

Optimization techniques have been applied to the design of multi-coil WPT systems con-
taining many degrees of freedom. The spacing of cascaded chains of up to eight coils has been
subject to optimization for maximum efficiency, while also solving for the optimal load resist-
ance [10, 15]. It has been found that systems containing more than three coils have greater
efficiency when the spacing between coils is unequal. Investigations into large multi-element
systems with pre-determined fixed spacing have applied convex optimization techniques to
determine the optimal reactive loading on each coil for maximum efficiency [16, 17]. In
these works, convex optimization has been shown to provide a computationally efficient
way to optimize the loading on cascaded chains of up to 12 coils and metamaterial arrays
with up to 225 elements [17].

Here, we use convex optimization to find the optimal spacing in multi-coil cascaded res-
onator systems by showing that loosely coupled systems with high-quality factor coils can
be modeled as perturbed convex systems. By optimizing the spacing of multi-coil systems,
high-power transfer can be achieved without the need for individualized reactive tuning.
This provides an alternative approach to the design of WPT systems that enables the use of
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sets of identical coils. An expression for efficiency is generalized
for a system of N cascaded identical resonators, and a convex opti-
mization problem is formulated for the case where only the coup-
ling between adjacent resonators is considered. To account for the
non-adjacent coupling in the system, the solution of the approxi-
mating convex optimization is perturbed by performing a second
optimization on the full non-convex system using the convex
solution as a starting point. This two-step method converges to
the global maximum using fast and efficient local optimization
algorithms. The convex formulation also provides insights into
the optimal spacing of systems containing up to 20 coils transmit-
ting power up to 4.0 m. We apply our spacing optimization to two
types of cascaded multi-coil systems composed of identical coils
in order to determine (1) the optimal number of coils that maxi-
mize efficiency over a fixed distance and (2) the optimal place-
ment of a select number of high-Q coils within a system.

Optimization methodology

We begin our study of multi-coil WPT by deriving the efficiency
of a system considering only the direct coupling between coils.
This is typically valid when the multi-coil system contains high-
quality factor coils with small coupling coefficients between adja-
cent coils (i.e. when the system contains few coils or transmits
power over a large distance). In these systems, the efficiency can
be formulated as a convex function, allowing the optimal spacing
to be calculated using standard convex optimization methods
[18]. Following the formulation of the convex optimization prob-
lem, a perturbation is applied to the resulting optimal spacing in
order to account for the cross-coupling terms.

System model

A cascaded multi-coil system can be modeled by an equivalent cir-
cuit of coupled series RLC resonators [13]. This model allows for
accurate calculation of system efficiency through circuit analysis,
avoiding the need for computationally expensive full-wave simula-
tions when considering large multi-element systems. Each coil
resonates at the operating frequency ωo and can be modeled by a
quality factor Qn and series resistance Rn (the corresponding
inductance and capacitance are then uniquely determined through
ωoLn = 1/ωoCn = RnQn). The coils are magnetically coupled through
mutual inductances represented by the coupling coefficients kmn.
These coefficients can be separated into two distinct categories:
the direct coupling coefficients between adjacent coils, where
|m− n| = 1, and the cross-coupling coefficients between non-
adjacent coils, where |m− n|≥ 2. Since the magnetic coupling
decays rapidly with distance (approaching an inverse cubed rela-
tionship as the distance becomes very large), the higher order

coupling terms are typically much smaller than the direct coupling
terms. We should also note that although cross-coupling provides
additional paths for power to flow between resonators, these paths
do not always increase the power delivered to the load and can
introduce impedance mismatches within the system [15].

A general multi-coil system containing N identical coils is con-
sidered in this paper, as depicted in Fig. 1. The first coil is con-
nected to the voltage source VS through a source resistance RS
and the last coil is connected directly to the load RL. The remaining
intermediate coils act like relay coils to transfer power from the
source to the load. In order to calculate the power efficiency of
the system, we solve for the source-to-load admittance by inverting
the system impedance matrix. By normalizing the voltages and cur-
rents with respect to the coil resistances Rn, the normalized imped-
ance matrix can be expressed in terms of coupling coefficients,
quality factors, and normalized source and load resistances:

The cross-coupling terms in (1) have been highlighted in grey.
When the coils are not tightly coupled and the quality factors are
large, these terms can be neglected and the normalized impedance
reduces to a tri-diagonal matrix. Solving the matrix equation yields
the current at the load, from which the efficiency can be calculated,
as shown in the following section.

Convex formulation of system efficiency

The efficiency for the directly coupled system model, ηd, is calcu-
lated from the current passing through the load coil, IN, as deter-
mined from the matrix equation in (1). We define the efficiency as
the ratio of power delivered to the load over the power available
from the source,
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in place of Qn. The function KN(a12, …, aN−1,N) generates a con-
tinuant polynomial (representing the determinant of a particular
N × N tri-diagonal matrix) defined through the following recur-
sive relation [19]:

K0 =1

K1 =1

Kn =Kn−1 + an−1,nKn−2.

(4)

These functions are polynomials of an,n+1 with each term contain-
ing a positive coefficient.1

Our objective in this work is to maximize the efficiency of
multi-coil systems. We therefore invert (2) to express it in stand-
ard form as a minimization problem:

minimize
k

fgp(k) = 1
hd(k, Q

′, RS/R1, RL/RN )

where k = k12, . . . , kN−1,N
[ ]T

subject to k ≥ 0,
k ≤ 1.

(5)

In (5), k is the vector of variables to be optimized and contains the
direct coupling coefficients. Although the objective function in (5)
is not itself convex, it can be recognized as a geometric program
fgp with a posynomial numerator and monomial denominator
[18]. A geometric program in xn can be transformed into convex
form by substituting new optimization variables yn = lnxn in for
xn. The new objective function becomes an affine function raised
to an exponential which is now convex in terms of yn [18].

Up to this point, the objective function, constraints, and opti-
mization variables have all been expressed in terms of the coup-
ling coefficients. The physical constraints on the system,
however, would be more conveniently expressed in terms of dis-
tance and spacing. Since the coupling coefficients decrease con-
vexly with increasing distance between coils (as shown by the
sample curve in Fig. 2), they can be mapped to coil spacing
while maintaining convexity by leveraging the transformation
xn = exp ( yn) introduced above. Each pair of coils can therefore
be approximated locally with the following exponential fit:

k(d) ≈ fn,n+1(d) = exp (−an,n+1d + bn,n+1), (6)

where αn,n+1 and βn,n+1 are positive exponential fitting parameters
relating the coupling coefficients kn,n+1 and distance dn,n+1
between the nth and (n + 1)th coils. Each set of fitting parameters
is calculated such that the values and slopes of k(d) and fn,n+1(d)
are matched at dn,n+1,

fn,n+1(dn,n+1) = kn,n+1, (7)

∂
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as illustrated in Fig. 2. The convex optimization is first performed
using default fitting parameters corresponding to equal spacing.
Once a set of distances dn,n+1 are determined, the αn,n+1 and βn,n+1
coefficients are re-calculated and the optimization is repeated
using the solution of the first optimization as a starting point.
This iterative procedure converges very quickly, typically requir-
ing only two or three iterations to reach a stable solution.

Now that the optimization objective is formulated as a convex
function of coil spacing, we introduce two new convex constraints
to the system. First, the total distance, D, is fixed between the
source and load coil and set equal to the sum of the spaces in
the system. Second, a minimum separation distance between
coils, dmin, is introduced to prevent physical overlap. Note that

Fig. 1. Equivalent circuit model of a multi-coil WPT system
with N coils. Each coil resonates at ωo with a quality factor
Qn and loss resistance Rn. The source and load coils are con-
nected in series to the source resistance, RS, and load resist-
ance, RL, respectively.

1For example, the first few polynomials up to N = 6 are written as

K2 = 1+ a12
K3 = 1+ a12 + a23
K4 = 1+ a12 + a23 + a34 + a12a34
K5 = 1+ a12 + a23 + a34 + a45 + a12a34 + a12a45 + a23a45
K6 = 1+ a12 + a23 + a34 + a45 + a56 + a12a34 + a12a45

+ a12a56 + a23a45 + a23a56 + a34a56 + a12a34a56.
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this minimum distance constraint also ensures the coupling coef-
ficient is always convex with respect to separation distance.

We now summarize the final optimization problem with the
convex optimization function fcvx and all constraints below:

minimize
d

fcvx(d) = 1
hd(k, Q

′, RS/R1, RL/RN )

where k = exp (− a ◦ d+ b)

d = d12, . . . , dn,n+1
[ ]T

a = a12, . . . , an,n+1
[ ]T

b = b12, . . . , , bn,n+1

[ ]T

subject to d ≥ dmin1
1Td = D,

(9)

where ○ is the Hadamard (entrywise) product between vectors.

Cross-coupling perturbation

We have now formulated the efficiency of the multi-coil WPT sys-
tem as a convex function fcvx of the coil spacing. However,
neglecting the higher order cross-coupling terms decreases the
accuracy of the optimal spacing values for maximum efficiency.
It also limits the ability to optimize systems in which the cross-
coupling significantly impacts the efficiency. Examples of these
systems include tightly packed coils within short transmission dis-
tances and large systems with low-quality factor coils. An opti-
mization procedure which accounts for the cross-coupling terms
must therefore be developed to ensure the convex formulation
is useful for applications requiring high precision.

By including the cross-coupling terms in our system model,
the equation for efficiency is no longer convex, and thus convex
optimization cannot be directly applied. However, because the
cross-coupling terms are typically much smaller than the direct
coupling terms, we can treat them as perturbations to the convex
system model. Thus, an additional step can be applied to the

optimization process to account for this perturbation to the con-
vex optimal efficiency solution. The first step in the overall opti-
mization procedure is to apply the convex optimization to the
direct coupling model, as presented in the previous section. The
optimal spacing values from this first step are then used as the
starting point of an efficiency optimization based on the complete
coupling matrix from (1). In both steps, a non-linear program-
ming solver based on an interior point algorithm is used [20].
The second step perturbs the convex solution by converging to
the nearest optimum of the non-convex system. By feeding the
solver a starting point determined from the optimal solution of
the approximating convex system, the results from the second
step of the optimization converge quickly to the global optimum.
The assumption underlying this perturbation model is that the
approximating convex solution is closer to the global optimum
of the cross-coupled system than any other local optimum,
which is valid in the limit as cross-coupling goes to zero.

Comparison of convex and perturbed convex optimization

A comparison can now be made between the spacing results of
the convex optimization and the perturbed convex optimization.
First, the optimal spacing configurations which maximize the sys-
tem efficiency are determined for the convex model. Next, the
optimal spacing of the system is determined from the two-step
optimization, and the results are compared. Finally, the accuracy
of the convex model is evaluated by comparing the solutions from
the convex optimization to full-wave simulations and to the solu-
tions of an independent quasi-global optimization method.

In our study, we consider WPT systems composed of 4–20
coils operating over distances ranging from 0.3 to 4.0 m, with
each coil having a quality factor of 150. Each coil is modeled as
a conducting loop (i.e. a torus) with a 1 cm minor diameter and
a 20 cm major diameter. The self and mutual inductances of
the coils were calculated by numerically evaluating the inductance
field integrals [21] and corroborated by full-wave simulations
using an in-house full-wave solver based on the Multiradius
Bridge Current (MBC) moment method [22]. These inductances
were then used to calculate the mapping between coupling coef-
ficient and distance discussed in the previous section (plotted
in Fig. 2). The capacitance of the coils was chosen to ensure res-
onance at 13.56 MHz, while the coil resistance was chosen to spe-
cify one of the three quality factors considered in our study: Q =
50, Q = 150, and Q = 350. These resistance values include ohmic
losses, capacitor losses, and radiation losses, the latter being on
the order of 10−4Ω for loops of radius 0.1 m at 13.56 MHz
[23]. The width of the loop introduces an additional constraint
on the spacing of the system, limiting the center-to-center dis-
tance between coils to dmin = 1 cm. We assume the chain of reso-
nators will be connected to a 50Ω system and set our source and
load impedances equal to this value (RS = RL = 50Ω). A complete
list of model parameters is provided in Table 1.

Convex optimization

Figure 3 depicts the optimal spacing of various multi-coil systems
at a transmission distance of 0.6 m, with Fig. 3(a) illustrating the
position of the spaces between coils. In Fig. 3(b), we observe a
characteristic non-uniform spacing pattern consisting of short
gaps at each end of the coil system, followed by transition gaps
into the quasi-uniform spacing between the 3rd and 3rd-to-last
coils. The short separation distance between the low-Q loaded

Fig. 2. (Color online) An example of the functional dependence of the magnetic coup-
ling between coils, k, on the distance between them, d, calculated by numerically
evaluating the inductance field integrals between conducting loops of major radius
0.1 m and minor radius 0.005 m. The solid blue curve plots the coupling decay as
a function of distance, while the dashed red curve plots an exponential function
that can be used to locally approximate the coupling at the distance indicated by
the black dot.
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source coil and the first relay coil enables power to be transferred
into the cascaded coil system without the need for large source
currents. The adjacent transition gap then provides the imped-
ance transformation that matches the source coil to the uniformly
spaced cascaded interior relays. This spacing is then reversed at
the load end of the system to couple power from the relays
back to the load. The use of tightly spaced high-Q coils adjacent
to the source and load coil systems as a method of impedance
transformation and improved power transfer efficiency is com-
monly seen in four-coil MRC WPT systems [24]. By extending
the optimization of these systems to increasing numbers of
coils, it is seen that this characteristic spacing is present all the
way through to systems containing 20 coils. Note that although
only a 0.6 m system is shown here, this spacing profile is present
in systems operating over all transmission distances.

Non-uniform end spacing has been observed in systems of up
to eight coils [10, 15], but the suggested explanation that it is due
to the end coils being adjacent to only one other coil does not suf-
ficiently explain the characteristic spacing observed in larger sys-
tems. The quasi-uniform spacing away from the ends of the chain
implies that the source and load impedances are being matched to
the impedance of the interior cascaded relay coils. This cascaded
relay impedance can be calculated by considering the image
impedance of an infinite periodic chain of identical resonators.
Using the equation for the effective impedance of each coil
[24], the image impedance at the coil resonance frequency is
purely real and given by

Rimage = R+ v2k2L2

R+ Rimage
= R+ R2k2Q2

R+ Rimage
, (10)

where k is the coupling coefficient between adjacent resonators,
and R, L, and Q are the resistance, inductance, and quality factor
of each resonator, respectively. Rimage can be solved for as

Rimage =
��������������
R2 + v2k2L2

√
= R

����������
1+ k2Q2

√
. (11)

Since R and kQ are typically not large, the image resistance of a
system of chained resonators is typically much lower than 50Ω.
The image resistance increases with tighter spacing (larger k)
and decreases with relaxed spacing (smaller k). For example, the
image resistance can be calculated at the center of the 20-coil sys-
tem in Fig. 3(b). The frequency, inductance, and resistance of the

coils are known, and the coupling coefficient k can be determined
from the center spacing. Using (11), the image resistance over the
inner 16 coils of the chain is approximately 8.4Ω. In order to
match the source and load coil impedance to this low image
impedance, the 2nd and 2nd-to-last gaps increase to provide
the appropriate inductive transformation to 50Ω.

Perturbed convex optimization

As outlined in section “Optimization methodology”, the per-
turbed convex optimization can be performed by optimizing the
fully cross-coupled system using the spacing from the convex
optimization as a starting point. Figures 4 and 5 depict the opti-
mal spacing of a system with Q = 150 at a transmission distance of
0.6 m using this two-step optimization. As can be seen in Fig. 4,
the largest spaces between coils occur near the center of the chain
for systems with low N. As the number of coils in the system
increases, the spacing between all internal coils becomes more
uniform. For systems with larger values of N, the position of
the largest spaces changes to lie between the 2nd and 3rd coils
from each end of the system, as visible in the 20-coil system in
Fig. 4. This transition is consistent with the observations of the
characteristic spacing made from the direct coupling optimized
system in section “Convex optimization”. The most notable differ-
ence from the optimal spacing of the convex approximation in
Fig. 3(b) is the light clustering of coils along the resonator chain.

Figure 5 compares the spacing results from the convex optimiza-
tion (solid-line) with the spacing results from the perturbed convex
optimization (dashed-line). At a distance of 0.6 m, it is seen that

(a)

(b)

Fig. 3. (Color online) (a) A sample model of a five-coil WPT system with a total trans-
mission distance, D, and individual coil spaces, dn,n+1. The midpoint between each
pair of coils is marked on the horizontal line below the coils to provide a reference
position for the space between each pair of coils. These positions can be expressed in
terms of the distances as xn,n+1 = 0.5 dn,n+1 +

∑n−1
i=1 di,i+1. (b) The optimal spacing

for multi-coil systems at a transmission distance of 0.6 m assuming direct coupling
only. The black dotted line indicates the minimum spacing constraint used in the
optimization.

Table 1. Parameter values for the N-coil cascaded resonator systems studied in
sections “Comparison of convex and perturbed convex optimization” and
“Cascaded multi-coil optimization studies”

Element name(s) Element value Units

Rn

0.648 for Q = 50

0.216 for Q = 150 Ω

0.0925 for Q = 350

Ln 0.380 μH

Cn 0.363 nF

RS, RL 50 Ω

fo 13.56 MHz

Loop major radius 0.1 m

Loop minor radius 0.005 m
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systems with nine or fewer coils have optimal spacing configura-
tions in close agreement. However, in systems with N ≥ 10, as
observed with the 14- and 20-coil systems in Fig. 5, the coils
optimized using the perturbed convex model begin to form light
clusters. This is clearly visible in Fig. 5, with the 20-coil system con-
taining denser packing at the 0.2 and 0.4 m positions. While there
are deviations between the two optimization results for systems
with more coils, it can be seen that the trend of tightly-packed
end coils and moderately-spaced relay coils is present in both opti-
mizations. That is, the characteristic spacing of an optimized chain
of cascaded multi-coil WPT is observable from both the convex
optimization and the perturbed convex optimization.

Accuracy of the convex model

To determine the limitations of the convex model on accurately
representing cascaded multi-coil systems, we compare the effi-
ciency determined by the convex and perturbed convex (two-step)
optimizations. We then compare the calculated efficiencies from
the equivalent circuit model to the efficiencies simulated using
MBC, our full-wave moment method solver. All three efficiencies
are compared in Fig. 6(a) for cascaded WPT systems of up to 20
coils over four transmission distances. The convex optimization
efficiency as formulated in section “Convex formulation of system
efficiency” is plotted with circle markers, the perturbed convex
optimization efficiency as formulated in section “Cross-coupling
perturbation” is plotted with cross-markers, and the efficiency
determined by MBC is plotted with plus markers.

In Fig. 6(b), we plot the efficiency curves from the perturbed
convex optimization alongside the efficiency curves generated
from a much slower quasi-global optimization method. A genetic
algorithm (GA) was chosen with a population of 250 optimized
over 2500 generations. The efficiency from the perturbed convex
optimization never fell below the result from the GA, verifying
that our method appears to converge to the global optimum. A
discrepancy of up to 2% can be observed between optimization
solutions, with the GA efficiency curves lacking the smoothness
of the perturbed convex optimization curves. We have verified
that applying a local optimization as a second step following
the completion of the GA (not shown) does result in the exact
solution of the perturbed convex method.

It is clear from these figures that formulating the efficiency of
cascaded multi-coil WPT systems as a convex function of spacing

allows for reliable optimization. Firstly, by comparing the efficiency
results of the convex model and the perturbed convex model in
Fig. 6(a), it is seen that the optimal efficiencies are within 1.0%
for systems with up to 20 coils packed into 30 cm. The maximum
spacing error of the convex optimization with respect to the per-
turbed convex optimization is quantified in Fig. 6(c) as a percent
of the total transmission distance. Overall, the convex optimization
yields a spacing which only deviates from the optimal spacing of
the fully cross-coupled system by 2.5% at a transmission distance
of 30 cm, and for more loosely spaced systems (such as the 90
and 120 cm transmission distances), this deviation remains below
0.7%. Secondly, by comparing the perturbed convex solution to
the simulated efficiencies in Fig. 6(a), we see that they agree to
within 0.5% of each other. This validates the accuracy of the equiva-
lent circuit model and demonstrates the effectiveness of the per-
turbed convex optimization in providing an optimal coil spacing.
Thirdly, since the perturbed convex solution is always greater
than or equal to the GA solution plotted in Fig. 6(b), the quasi-
global nature of the method is validated.

Cascaded multi-coil optimization studies

Using the two-step perturbed convex optimization technique pre-
sented in the section “Cross-coupling perturbation”, we now maxi-
mize the efficiency of large multi-coil systems. In this section, the
perturbed convex optimization is applied to two types of WPT sys-
tems containing up to 20 coils. The first study focuses on the change
in efficiency as the number of coils increases over a fixed distance.
The second study considers the optimal spacing for systems contain-
ing coils with a combination of high- and low-quality factor coils.

Optimal N for a fixed distance

The first study compares systems of N identical resonators over
various transmission distances. Three different types of systems
are considered: one with Q = 50 coils, one with Q = 150 coils,
and one with Q = 350 coils. The peak achievable efficiencies of
these systems can then be directly compared to view the impact
of Q on efficiency. At each transmission distance, the number
of coils in the system is swept from 4 to 20. Comparing the effi-
ciency achieved by each system at a given distance allows for an
optimal number of coils to be determined.

Fig. 4. (Color online) Optimal spacing from the perturbed convex optimization for an
N = 5 to N = 20 coil system at a transmission distance of 0.6 m.

Fig. 5. (Color online) Optimal spacing for an N = 8, N = 14, and an N = 20 coil system at
a transmission distance of 0.6 m. The direct coupling optimized results are displayed
with solid lines, while the cross-coupling full optimization results are displayed with
dashed lines.
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Figure 7 illustrates the peak achievable efficiency for transmis-
sion distances from 0.3 to 1.0 m for systems with (a) Q = 50, (b)
Q = 150, and (c) Q = 350. The quality factors of these systems
were modified by changing the losses of the coils through Rn

(see Table 1 for a list of all parameters used). We can see from
the figure that the efficiency of a four-coil WPT system can be sig-
nificantly improved by adding relay coils between the source and
load. Efficiency is improved for all cascaded resonator systems
tested, regardless of quality factor. That being said, we do observe
an interesting feature in the efficiency response as more coils are
placed in the system. The efficiency does not increase monoton-
ically with an increasing number of coils. Instead, it increases to
a peak value, before slowly beginning to decrease with the

addition of each subsequent coil. It turns out that the drop in effi-
ciency with increasing N is a consequence of using coils with
identical loading as well as the requirement that the coils be
matched to a fixed system impedance. For example, consider

(a)

(b)

(c)

Fig. 6. (Color online) (a) Optimal efficiency from the direct coupling convex model
(circle markers), the optimal efficiency from the perturbed convex model (cross-
markers), and the simulated efficiency from the MBC solver using the optimal spacing
of the perturbed convex system (plus markers) for transmission distances of 0.3–1.2
m. The convex solution and the perturbed convex solution agree within 1.0%. (b)
Optimal efficiency from the perturbed convex model (circle markers), the optimal
efficiency from a quasi-global genetic algorithm with a population of 250 over
2500 generations (cross-markers) for transmission distances from 0.3 to 1.2 m. (c)
The maximum spacing error of the convex optimization solution from the perturbed
convex solution, as a percent of the total transmission distance.

(a) Q = 50 

(b) Q = 150 

(c) Q = 350 

Fig. 7. (Color online) Optimal system efficiency as a function of an increasing number
of coils over transmission distances from 0.3 to 1.0 m. The systems contain coils with
quality factor (a) Q = 50, (b) Q = 150, and (c) Q = 350. The maximum efficiency for a
fixed distance is marked with a solid black circle.
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that as the number of coils increases, the average spacing between
coils decreases. This increases the coupling between coil pairs for
a higher potential power transfer rate; however, it also degrades
the impedance transformation at the source and load. When
the number of coils is low, each additional coil improves the effi-
ciency by increasing the coupling between coils. Once the number
of coils surpasses the optimal number, however, the additional
mismatch at the source and load outweigh the tighter coupling
between relay coils and the efficiency begins to drop.

In each plot in Fig. 7, the system with peak efficiency for a given
transmission distance is indicated by a solid black circle. For
example, the Q = 150 system (Fig. 7(b)) achieves a peak efficiency
with nine coils when transmitting power over a distance of 30 cm,
while at 40 cm, this peak occurs with 11 coils. Note that the optimal
number of coils is mostly independent of the quality factor, appear-
ing at the same positions for all three quality factors. For the systems
with lower coil counts (i.e. N = 4, 5, 6), a large increase in efficiency
can be observed from including a single additional coil to the system.
Beyond this, each additional coil produces a decreasing marginal
improvement. It is therefore worthwhile to note that a six-coil system
sufficiently outperforms many of the four-coil systems and might
provide a practical compromise between system complexity and effi-
ciency. For example, by adding two relay coils to the four-coil, Q =
150 system at 40 cm, efficiency can be improved by 23.0%, whereas
the four additional coils needed to reach the optimal 11-coil config-
uration only improve the efficiency by another 4.6%.

Optimal placement of high-Q coils

In this section, we investigate the capability of the perturbed con-
vex optimization method to determine the optimal spacing and
the optimal placement of resonators when coils of various quality
factor are used. In this experiment, we characterize a system con-
taining two high-Q coils with Q = 350 within a cascaded chain of
low-Q coils with Q = 150. By substituting a select number of
high-Q coils into the system, one can improve the efficiency of
the system without incurring the cost of replacing every coil in
the system with high-Q coils.

To investigate the optimal placement of high-Q coils, we intro-
duce an outer loop into the optimization which moves the high-Q

coils through every possible combination of positions in the sys-
tem, and selects the peak efficiency from across those permuta-
tions. Because of the convex optimization’s robustness and
speed, these optimizations can be performed quickly and effi-
ciently. The optimal coil placements and efficiencies are plotted
in Fig. 8 for systems spanning a distance of 60 cm. For five of
the nine systems presented, the optimal efficiency occurs when
the high-Q coils are placed in the middle of each relay chain on
either side of the large central gap. In the remaining four systems,
the high-Q coils bookend the largest gap as it moves away from
the center position. In all configurations, the optimal positions
of the high-Q coils are adjacent to each other. This placement
is consistent with our understanding of MRC power transfer,
where the largest spaces between coils correspond to the smallest
coupling coefficients and act like bottlenecks to limit the power
transfer. Placing high-Q coils on either side of these spaces
enables large resonant currents that generate strong magnetic
fields to couple power across the gap. This placement mitigates
the largest drop in power along the relay chain and therefore pro-
vides the greatest improvement to the efficiency of the system.

The benefits to the efficiency with the addition of just two
high-Q coils is illustrated by comparing the efficiencies of the six-
coil systems in Figs 7 and 8 for a transmission distance of 60 cm.
Replacing two of the Q = 150 coils with Q = 350 coils boosts the
efficiency by 12.9%, compared with a 20.8% improvement from
replacing all six coils in the system. These results illustrate the
effectiveness of perturbed convex optimization in determining
the optimal spacing of cascaded multi-coil WPT systems and
determining the optimal spacing with resonators of different Q
factors.

Conclusion

In this paper, we applied convex optimization to the design of
maximum-efficiency cascaded multi-coil WPT systems by opti-
mizing the spacing of a chain of identical relay coils. We showed
that the efficiency of a multi-coil system can be formulated as a
convex function provided that the coupling between coils is
assumed to be between adjacent coils only. The cross-coupling
terms can then be modeled as a perturbation to the directly-
coupled system by performing a local optimization of the cross-
coupled system using the solution of the convex optimization as
a starting point. This two-step optimization converges to the glo-
bal optimum when the cross-coupling terms are small and the
convex solution is local to the global optimum. By comparing
this perturbed convex solution to the results of a full-wave simu-
lation as well as to the solution from a quasi-global genetic opti-
mization, we show that the convex solution provides a very good
approximation to the fully cross-coupled solution and that the
perturbed convex formulation is a reliable method for ensuring
convergence to the global optimum.

We then apply the convex optimization to systems of identical
relay coils and show that when spacing alone is optimized, there
exist an optimal number of coils to maximize efficiency. This
optimal number is dependent on the transmission distance and
the quality factor of the coils. From a practical standpoint, adding
two or three relay coils to a four-coil system tended to provide the
highest efficiency gains per added coil, with gains of around 25%.
Finally, we showed that the convex optimization can provide a
foundation for the optimization of other system parameters,
such as determining the optimal placement of a select number
of high-Q coils within a larger system.

Fig. 8. (Color online) Optimal efficiency and spacing of multi-coil systems containing
two high-Q coils and transmitting power over a distance of 60 cm. The optimal Q =
350 coil placements are indicated by an “x”, while the optimal placements of the
remaining Q = 150 coils are indicated with dots. The efficiency of each system is dis-
played above its respective position diagram.
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In summary, we used convex optimization to design maximum
efficiency cascaded multi-coil systems and used our results to pre-
sent practical design strategies. These findings can be used to
select the number of coils and locations of select high-Q coils
in multi-coil systems assembled from a set of identical resonators.
Furthermore, this work provides insights into the relationship
between coupling and spacing in cross-coupled systems, and pro-
vides a detailed analysis of the characteristic spacing seen in opti-
mized systems. Optimally spaced systems can be implemented
using identical resonators and therefore provide a practical alter-
native to loading relay coils with individualized reactances.
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