Figures (13)  Tables (12)
    • Figure 1. 

      Line map of Ningbo Rail Transit Line 1, Line 2 and Line 3.

    • Figure 2. 

      Data analysis flow chart.

    • Figure 3. 

      Five-day total passenger flow histogram of rail transit through Ningbo.

    • Figure 4. 

      Characteristic diagram of passenger flow.

    • Figure 5. 

      Influencing factors of rail transit passenger flow.

    • Figure 6. 

      SPSS analysis flow chart.

    • Figure 7. 

      Hourly weight setting diagram.

    • Figure 8. 

      Improved model structure.

    • Figure 9. 

      Model training process.

    • Figure 10. 

      K-fold cross-validation schematic diagram.

    • Figure 11. 

      Prediction results of each model.

    • Figure 12. 

      Comparison chart of prediction results of the BILSTM model.

    • Figure 13. 

      Comparison of prediction results of different models considering time factors.

    • AuthorYearModelConsidering factorsAnalyzing influencing factors
      Zhu et al.[21]2018AdamNoNo
      Ling et al.[22]2018DBSCANNoNo
      Zhang et al.[9]2019CB-LSTMNoNo
      Zhu et al.[23]2019DBN-SVMNoNo
      Guo et al. [24]2019SVR-LSTMNoNo
      Guo et al.[25]2019KRR and GPRNoNo
      Li et al.[26]2020STLSTMNoNo
      Zhang & Kabuka[14]2020LSTMYesNo
      Xue et al.[27]2020SVRYesNo
      Liu et al.[28]2021MPDNoNo
      Jing et al.[29]2021LGB-LSTM-DRSNoNo
      Liu et al.[30]2022DRNNNoNo
      He et al.[31]2022MGC-RNNNoNo
      This paper2022BILSTMYesYes

      Table 1. 

      Literature on passenger flow forecast of rail transit.

    • Card noTimeSwipe typeBuslineFeeStop no
      1057471b906d1eb72019-09-16 08:16:32011.9115
      c5360d16cf44a6002019-09-16 08:12:11110125
      04b0dbf510ce4d682019-09-16 08:14:33110119
      8e043c1fcd22c4142019-09-16 08:17:25110119
      987b102a48b2cb3a2019-09-16 08:16:08012.85115
      The first column of the form 'Card no' is the IC card number for rail transit, The second column 'Time' is the card swipe time; and the third column 'Swipe type' is the type of card swipe; The fourth column 'Busline' is the rail transit line; The fifth column 'Fee' is the rail transit fee; and the last column 'Stop no' is the rail transit stop number.

      Table 2. 

      Data sample table of rail transit ID cards from Ningbo rail transit.

    • ScaleMeaning
      1Indicates that the two factors are of equal importance
      3Indicates that one factor is obviously more important than the other
      5Indicates that one factor is strongly more important than the other
      2 and 4The median value of the above two adjacent judgments

      Table 3. 

      Impact classification table[32].

    • ABCDEFGH
      A13544454
      B1/3141/31/31/323
      C1/51/411/21/31/311
      D1/43211233
      E1/43311143
      F1/4331/21132
      G1/51/211/31/41/311/2
      H1/41/311/31/31/221

      Table 4. 

      Expert scoring table.

    • ABCDEFGH
      A13432255
      B1/31411/21/233
      C1/41/411/21/31/311
      D1/31211/2133
      E1/42321154
      F1/32311153
      G1/51/311/31/51/511
      H1/51/311/31/41/311

      Table 5. 

      Expert scoring table.

    • ABCDEFGH
      A14433243
      B1/4131/21/31/254
      C1/41/311/31/31/311
      D1/32311/2143
      E1/33321144
      F1/22311144
      G1/41/511/41/41/411
      H1/31/411/31/41/411

      Table 6. 

      Expert scoring table.

    • Result 1Result 2Result 3Average value
      Commuting travel0.3454380.2828820.2799560.3027
      Entertainment travel0.0907720.1178530.1095880.1061
      Family income0.0466120.0502540.0479590.0483
      Weather conditions0.1500390.1155450.1369940.1342
      Road congestion0.1456800.1829690.1828560.1705
      Distance from OD to subway station0.1257660.1632700.1587600.1493
      Publicity policies0.0417810.0417230.0413900.0416
      Preferential ticket policies0.0539110.0455040.0424970.0473
      Maximum eigenvalue8.5726228.1755128.2967448.3483
      Consistency index0.0818030.0250730.0423920.0497
      Consistency ratio0.0580160.0177820.0300650.0353

      Table 7. 

      AHP analysis results table.

    • Sum of squaresDegrees
      of freedom
      Mean squareFSig
      Within groups243071341223390252218.9199.6850.000
      Between groups50808048.00964441782.306
      Total2481521460119

      Table 8. 

      ANOVA analysis results table.

    • GroupNumber of casesAverage value of
      passenger flow
      Intra-group significance
      00:0050.000.930
      01:0050.00
      02:0050.00
      03:0050.00
      04:0050.00
      05:0056.20
      23:00547.80
      22:0051781.401.000
      06:0052741.401.000
      21:0054496.000.688
      11:0054863.20
      20:0054889.20
      12:0054939.60
      10:0055333.60
      14:0055387.20
      13:0055514.80
      19:0055808.00
      15:0056490.600.237
      09:0057002.60
      16:0057577.40
      7:00510478.801.000
      17:00512819.200.208
      18:00513402.00
      8:00515960.601.000

      Table 9. 

      Hourly passenger flow grouping.

    • ParameterValue
      Number of hidden layers2
      Number of each hidden layer neurons15
      Training times50
      Activation function of hidden recurrent layerstanh
      Learning rate0.02
      Backstep24

      Table 10. 

      Detailed description of parameters.

    • MetricFormula
      RMSE${\rm{RMSE}}=\sqrt {\dfrac{1}{n}\displaystyle\sum\limits^n_{i=1}(y_p-y)^2} $
      MAE${\rm{MAE}}=\dfrac{1}{n}\displaystyle\sum\limits^n_1\left|y_p-y\right| $
      R2 score${\rm{R2}}=1-\dfrac{\displaystyle \sum\nolimits^{n-1}_{i=0}\left(y_p-y\right)^2}{\displaystyle\sum\nolimits^{n-1}_{i=0}\left(y-\bar Y\right)} $
      $ n $ represents the number of data sample, $ y_{p} $ is the value of forecast data, $ y $ is the actual value.

      Table 11. 

      Predictive evaluation index formula.

    • RNNGRULSTMBILSTMGCNBILSTM+
      RMSE168.382146.560113.06290.894152.30862.503
      170.353141.397119.89291.684148.96560.165
      165.936139.872110.67487.541146.58963.847
      175.364149.681107.98591.983151.86265.734
      169.872150.219115.62189.548145.96262.476
      Average169.981145.546113.44790.330149.13762.945
      MAE137.713120.51394.71676.353130.11241.621
      138.761115.56199.06177.872128.96239.592
      134.823113.87291.69174.184131.62141.932
      143.652123.64189.54977.297127.92343.291
      138.982124.03496.08275.832125.98241.095
      Average138.786119.52494.22076.308128.92041.506
      R20.7720.8270.8970.9130.7890.969
      0.7690.8150.8810.9100.8020.973
      0.7800.8110.9020.9150.7930.968
      0.7860.8320.9090.9080.8100.961
      0.7740.8330.8850.9120.7930.970
      Average0.7760.8240.8950.9120.7970.968

      Table 12. 

      Model evaluation index value.