Figures (13)  Tables (10)
    • Figure 1. 

      Effect of three speed limit changes on the frequency of fatal accidents on French highways[39,54].

    • Figure 2. 

      Fatalities per vehicle and vehicles per capita (Smeed's 1938 data in S-5 sample).

    • Figure 3. 

      Fatalities per vehicle and vehicles per capita (Smeed‘s 1931; S-5 and S-6 samples).

    • Figure 4. 

      Fatalities per 10,000 vehicles and vehicles per 1,000 inhabitants over time in 26 countries.

    • Figure 5. 

      Secular fatality intensity of road traffic in France (1845−2005) and the USA (1900−2012). (a) Index of the fatality intensity of total road traffic. Deaths caused by horses, horse-drawn carriages and automobiles in France, 1845−2005 (mostly quintannual) (Source: [45], Figure 4.F, p. 14). (b) Logarithm of motor vehicle road deaths per 100 million vehicle-miles in the USA, 1900−2012 (yearly) (Source: [46], Figure 11-6, p. 386).

    • Figure 6. 

      Meadow-shaped evolutions of yearly road fatalities in the 18 OCDE lustrum countries. (a) Fatality indices, 1965−1998: Norway, Japan, Australia, Luxemburg (1970 = 1.00), Israel (1974 = 1.00). (b) Fatality indices, 1965−1998: France, Italy, Ireland, Netherlands, USA (1972 = 1.00). (c) Fatality indices, 1965−1998: Austria, Belgium, Finland, West Germany (1972 = 1.00). (d) Fatality indices, 1965−1998: Denmark & Switzerland (1971 = 1.00), Canada & New Zealand (1973 = 1.00). Source: Gaudry[51], except the series for Israel from www.cbs.gov.il/publications16/acci15_1643/pdf/gr01_e.pdf.

    • Figure 7. 

      Lustrum country injury peaks simultaneous to, or preceding, their own fatality peaks. (a) Injury peaks synchronized with death peaks, 1965−1998: Denmark, Switzerland (1971 = 1.00); France, Austria (1972 = 1.00); New Zealand (1973 = 1.00). (b) Injury peaks occurring earlier than 1972 death peaks, 1965−1998: Belgium, Finland, West Germany (1970 = 1.00); Netherlands (1971 = 1.00). Source: all series are from the MAYNARD-DRAG database[50].

    • Figure 8. 

      Measures of national transport intensity of GDP (in constant national currencies). Upper pannel, Fatality (1972 = 1) and Road traffic intensity of GDP indices (1972 = 1) for the USA, 1946−2012. (a) [Fatalities () and] Mile intensity of GDP (). (b) [Fatalities () and] Gallon intensity of GDP (). Lower pannel, Norwegian GDP and all-mode transport intensities, 1946, 1952, 1960, 1965 and 1970−2015. (c) Domestic travel-km & freight-km and GDP in Norway. (d) Travel & freight transport intensities of GDP in Norway. Sources: [69] for the Mile and Gallon intensities of GDP (); NHTSA Safety Facts (Various years) for Fatalities (). Lower pannel source: Lasse Fridstrøm. Produced on 22nd October, 2017.

    • Figure 9. 

      Road fuel and Vehicle-km indices of road use intensity of GDP (defined over 1965−1998). Source: all series are extracted or derived from the MAYNARD-DRAG database[41] except for the GDP series for France, which is from INSEE. The traffic intensity indices are defined over the period 1965−1998.

    • Figure 10. 

      Global maxima of fatalities (at 1.00) and local maxima of road traffic intensities of GDP.

    • Figure 11. 

      Indices of road use, GDP per capita, and killed or injured victims in our sample. * The 12 OECD countries selected in Table 4 (1965−1998 data).

    • Figure 12. 

      Ratio of initial to enriched residuals wt during the five lustrum Matterhorn years 1970−1974. (a) Accident equation, 65 observations for the Matterhorn period, 13 regions per year for 5 years (1970−1974)*. (b) Injured equation, 65 observations for the Matterhorn period, 13 regions per year for 5 years (1970−1974)**. (c) Killed equation, 65 observations for the Matterhorn period, 13 regions per year for 5 years (1970−1974)***. [* The average ratio of initial to enriched Accident errors values for the full estimation sample period (1967−1999) is 0.96. ** The average ratio of initial to enriched Injured errors values for the full estimation sample period (1967−1999) is 1.14. *** The average ratio of initial to enriched Killed errors values for the full estimation sample period (1967−1999) is 0.32.]

    • Figure 13. 

      Road flow and vehicle intensities of GDP (ton-km & pass-km), France 1845−2005. Source: Gaudry[24] (Fig. 2, p. 6), where the transformation from flows in B to vehicles in G is described in detail.

    • Demand for road use (DR) by gasoline and diesel vehiclesCrash frequency (A) & severity (G)
      Gasoline road use demand:
      elasticity of veh-km with respect to
      Diesel road use demand:
      elasticity of veh-km with respect to
      Effect of DR and trip purpose demand mix, i.e. of each (activity level/DR), on A or G
      Work0.40Manufacturing: deliveries0.80Work/DRYes
      Shopping0.24Shopping/DRYes
      Vacation and summer fairs0.05Vacation/DRYes
      Home deliveries0.05Home deliveries0.04
      Forestry output0.14Forestry output/DRYes
      Residential construction input0.02Large dam construction inputs0.03Residential construction input/DRYes
      Engineering works: deliveries0.02
      Agricultural output0.05Agricultural output0.02DRYes
      Sum of gasoline elasticities evaluated at sample means:0.81Sum of diesel elasticities evaluated at sample means:1.05Each such trip purpose ratio indicator is significant relatively to reference (other).
      Source: Appendix 1. Detailed Model Outputs, § 1.2, Fournier & Simard[29]. Ch. 15, p. 347, Gaudry & Lassarre[30].

      Table 1. 

      Recurrent intermediate and/or final activities present in the DRAG-2 model (1956−1993).

    • Smeed’s original equationYearsn. obs.R2
      S-1(Killed/Vehicles) =k (Vehicles/Population)–2/3
      S-2(Killed) =k (Vehicles)1/3 / (Population)2/3
      S-3(Killed) =k (Vehicles)1/3 / (Population)2/3
      S-4Ln (Killed) =Ln (k) + 0,333 Ln (Vehicles) + 0,667 Ln (Population)193820
      Our estimates with Smeed’s own equation with more recent data
      S-5Ln (Killed) =Ln (k) + 0,408 Ln (Vehicles) + 0,699 Ln (Population)
      (16,31) (20,41)
      1938*
      to 1946
      2100,98
      S-6Ln (Killed) =Ln (k) – 0,058 Ln (Vehicles) +
      1,100 Ln (Population)
      (-3,36) (55,92)
      1965
      to 1998
      9180,88
      Note 1. Ln denotes natural logarithm and (t-statistics) are provided in parentheses.
      Note 2. Sample S-5 is from Smeed (1949) and sample S-6 is from MAYNARD-DRAG.
      * The 17 countries for
      1938 in sample S-5 are:
      PortugalFinlandSouth AfricaCanadaAustraliaUSA
      IrelandNorwayNew ZealandItalyNetherlandsFrance
      Northern IrelandSwedenDenmarkGreat BritainSwitzerland

      Table 2. 

      Smeed's original country set data base, specification and results with various samples.

    • PPriceMinimum gasoline price
      MMotorizationProportion of cars in total vehicle fleet
      CongestionPercentage of urban population in total population
      NNetworkLegalHighway speed limit (km/h)
      Seatbelt regulation (dummy)
      ClimateTemperature (yearly average)
      Total yearly precipitation (mm)
      YDriverAgePercentage of 18-24 years old in total population
      Percentage of 65 years old or older in total population
      AFinal economic outputGDP per capita
      Total/Final economic outputRoad traffic intensity of GDP (Vehicle-km/GDP) index I
      ETC.Leap year, Dummy by region relative to that of reference region r

      Table 3. 

      Regressors in MnM-2 model of accident frequency, their severity and victims by category.

    • Appendix 2 values:Fatalities per 10,000 inhabitantsInjuries per 10,000 inhabitants
      13 regions included
      in MnM model sample
      In 1998
      (Rank 1-26)
      % change
      1972−1998
      Speed rank
      (1−26)
      In 1998
      Unranked
      % change
      1972−1998
      Speed rank
      (1−26)
      Australia0.940 (10)−63.795711.114−83.6861
      1. Austria1.192 (15)−70.423363.230−36.7378
      2. Belgium1.470 (21)−53.9751469.345−34.8939
      11. Canada0.966 (11)−65.849671.503−27.09412
      3. Denmark0.856 (9)−61.690816.767−66.2082
      Finland0.776 (4)−68.843417.654−48.7566
      4. France1.515 (23)−56.7431128.640−61.8743
      Germany (East)1.417 (20)0.7552563.181123.16625
      5. Germany (West)0.842 (7)−72.476160.013−30.16511
      6. Great Britain (UK)0.594 (1)−58.2371055.917−13.35513
      Greece2.117 (25)64.7792631.78010.67021
      Hungary1.356 (19)−22.0712126.0950.97419
      Iceland0.985 (12)−10.4572351.022−10.76515
      Ireland1.236 (16)−41.5911734.47516.41822
      Italy1.098 (14)−50.0701551.0243.62220
      Japan0.855 ( 8)−55.7241378.244−5.68117
      Luxembourg1.336 (18)−56.5191236.545−51.2465
      7. Netherlands0.679 (3)−72.269231.560−39.9757
      New Zealand1.324 (17)−46.1211632.730−57.4354
      8. Norway0.794 (5)−36.2511927.347−4.95418
      Portugal2.133 (26)−16.4772269.16373.75924
      13.Quebec(0.987) (12−13)(−69.774)(3−4)(64.194)(−22.418)(12−13)
      12.Spain1.513 (22)−9.9652435.90930.49023
      9. Sweden0.600 (2)−59.194924.126−7.81316
      10.Switzerland0.840 (6)−67.879539.108−32.70910
      Turkey1.011 (13)−26.1922018.201223.30426
      USA1.534 (24)−41.00718118.091−11.30414
      Portugal / Great Britain3.6 ≡ Max / Min26/11.224/13
      USA / Australia1.618/710.6 ≡ Max / Min26/1
      (1.06; 1.15) ≡ (Median; Mean) of 2636.23; 44.72 ≡ (Median; Mean) of 26
      Source: all series are from the MAYNARD-DRAG database[50].

      Table 4. 

      Evolution of per capita fatalities and injuries in 26 countries and Quebec, 1972−1998.

    • YearnThe 26 countries of Appendix 1
      (plus Israel, minus Turkey)*
      1965−19662Great Britain, Sweden
      19704Australia, Luxemburg, Norway, Japan
      19712Denmark, Switzerland
      19729Austria, Belgium, France, Finland, Germany (W), Ireland, Italy, Netherlands, USA
      19732Canada, New Zealand
      19741Israel
      19751Portugal
      1977(1/2)Germany (E) before reunification
      19881Iceland
      19891Spain
      19901Hungary,
      1991(1/2)Germany (E) after reunification
      19981Greece
      * Note: to define a global national maximum, WWII years are excluded for Great Britain which really peaked in 1940−1941.

      Table 5. 

      Year of the global maximum of road fatalities in 26 countries, 1965-1998.

    • CASE${\beta _{Q1}}$$ {\beta _{Q2}} $${\lambda _{Q1}} - {\lambda _{Q2}}$$ {\beta _{Q1}}({\lambda _{Q1}} - {\lambda _{Q2}})$
      or $ {\beta _{Q2}}({\lambda _{Q2}} - {\lambda _{Q1}})$
      Maximum 1+
      $\cup $Minimum 1+++
      Maximum 2++
      $\cup $Minimum 2++
      Source: [66].

      Table 6. 

      Sign conditions for a maximum or a minimum with two BCT on a repeated variable.

    • Year of maximum deaths (and fatality rate) and corresponding per capita GDP (1985 US dollars)
      1965Sweden12,2911972Austria13,2191972USA*14,649
      1966UK8,306Belgium13,2711973Canada10,638
      1970Australia9,988Finland12,107New Zealand10,591
      Luxembourg15,550France13,4341975Portugal4,715
      Japan15,200Germany (West)11,5811988Iceland19,752
      Norway11,824Italy8,5411989Spain9,825
      1971Denmark16,5791972Ireland6,0011998Greece9,218
      Switzerland28,670Netherlands13,356
      MEAN: 16,526STANDARD ERROR: 6,409COEFFICIENT OF VARIATION: 0,39
      * MAYNARD-DRAG database values in 1995 dollars have been adjusted by 0,761 from the US GDP deflator.

      Table 7. 

      Actual per capita GDP of countries at the observed turning point of their road fatalities.

    • Column12345
      I. Sample elasticity (conditional t-statistic)Variant =acc7mbe7mte7ble7tue7
      Version =234464
      DEP. VAR. =Accidents Morbidity Mortality Injured Killed
      P - Price
      Minimum price per li of ordinary gazolinePrixEss−0.0520.0010.071−0.087−0.088
      (−2.98)0.081.73(−3.83)(−2.81)
      M - Motorization
      Percentage of cars in the total of vehiclesPctAuto0.114−0.1180.8070.1660.274
      −0.75(−2.58)3.661.001.34
      Urban population (% of total population)PctUrban1.0440.1030.5481.8471.055
      (1.17)(1.42)(2.05)(2.09)(0.99)
      N-L - Network-Regulations
      Highway speed limitHwySpeed−0.023−0.014−0.241−0.018−0.069
      (−0.86)(−0.57)(−2.68)(−0.63)(−1.64)
      SeatBelt regulationsSeatBelt−0.0290.000−0.101−0.036−0.043
      ===(−2.19)(0.00)(−3.64)(−2.85)(−2.00)
      Y - Socio-economic
      Percentage of the population 65 and olderPop650.192−0.052−0.6610.2400.529
      (0.62)(−3.28)(−6.71)(0.63)(1.09)
      Proportion of the population 18-24 years oldPopYoung0.305−0.0820.4440.1370.342
      (3.61)(−7.35)(5.97)(0.96)(1.84)
      A - Economic activity
      GDP per capitaPibCapit0.310−0.029−0.4210.4780.501
      (3.78)(−3.53)(−8.70)(4.61)(3.83)
      ETC.- Other Leap yearAnneeBis0.002−0.001−0.001−0.0010.001
      ===(0.75)(−0.31)(−0.05)(−0.31)(0.11)
      CS – Country-specific and ClimateSee Appendix 4
      Regression ConstantCONSTANT
      (0.44)(1.54)(0.16)(−0.53)(−0.97)
      DELTA coefficient in Heteroskedasticity structure
      Vehicle-KilometerVehKm−0.000−0.002−0.019
      (−5.97)(−10.96)(−3.08)
      II. Parameters
      Heteroskedasticity Structure
      BOX-COX Transformations: Unconditional [t-statistic = 0] and [t-statistic = 1]
      LAMBDA(Z)VehKm7.469−0.0613.729
      [t = 0][4.37][−0.27][2.23]
      [t = 1][3.79][−4.75][1.63]
      Autocorrelation
      Order 1RHO 10.9530.9670.974
      (86.09)(75.98)(116.80)
      III. General Statistics
      LOG-Likelihood−3970.60867.9811624.209−4146.47−2794.25
      PSEUDO-R2 :
      - (E)0.9970.8470.8700.9960.992
      - (L)0.9990.8850.9160.9990.999
      - (E) Adjusted for D. F.0.9970.8370.8630.9960.992
      - (L) Adjusted for D. F.0.9990.8780.9110.9990.998
      Average Probability (Y = limit observation)0.0000.0000.0000.0000.000
      SAMPLE
      - Number of observations429429429429429
      - First observation2727272727
      - Last observation455455455455455
      Number of estimated parameters
      - Fixed Part :
      BETAS2424242424
      BOX-COX00000
      Associated dummies00000
      - Autocorrelation10011
      - Heteroskedasticity
      Deltas11001
      BOX-COX11001

      Table 8. 

      Initial MnM-2 model for 12 countries and Quebec, 1965−1999, 455 observations.

    • Column12345
      I. Sample elasticity (conditional t-statistic)Variant =acc7mbe7mte7ble7tue7
      Version =223353
      DEP. VAR. =Accidents Morbidity Mortality Injured Killed
      P - Price
      Minimum price per li ordinary gasolinePrixEss−0.0490.0080.069−0.073−0.079
      (−2.58)(1.02)(1.65)(−2.85)(−2.46)
      M - Motorization
      Percentage of cars in PctAuto the total of vehiclesPctAuto0.106−0.0690.8050.1220.112
      (0.74)(−1.60)(3.65)(0.77)(0.56)
      Urban population (% of total population)PctUrban1.0200.0940.5471.7070.132
      (1.10)(1.25)(2.04)(1.90)(0.12)
      N-L - Network-Regulations
      Highway speed limitHwySpeed−0.0090.009−0.246−0.002−0.006
      (−0.33)(0.37)(−2.70)(−0.07)(−0.16)
      SeatBelt regulationsSeatBelt-0.027-0.004-0.100-0.033-0.039
      ===(−1.95)(−0.92)(−3.55)(−2.59)(−1.79)
      Y - Socio-economic
      Percentage of the population 65 and olderPop650.207−0.134−0.6320.1610.645
      (0.65)(−5.35)(−4.82)(0.42)(1.46)
      Proportion of the population 8−24 years old PopYoung 0.323−0.0640.4380.1950.297
      (3.89)(−5.36)(5.71)(1.33)(1.65)
      A - Economic activity
      GDP per capitaPibCapit0.571−0.010−0.4250.7181.718
      (5.99)(−1.07)(−8.56)(6.67)(7.19)
      Road traffic intensity of GDPRtiGDP0.2720.042−0.0180.3001.290
      (6.13)(4.40)(−0.34)(6.33)(5.94)
      ETC. - Other
      Leap yearAnneeBis0.002−0.001−0.001−0.0010.002
      (0.86)(−0.52)(−0.05)(−0.24)(0.31)
      CS – Country-specific and ClimateSee Appendix 5
      Regression constantCONSTANT
      (0.44)(1.54)(0.16)(−0.53)(−0.97)
      DELTA coefficient in Heteroskedasticity structure
      Vehicle-KilometerVehKm−0.0010.027−0.708
      (−6.50)(−11.15)(−4.91)
      II. Parameters
      Heteroskedasticity structure
      BOX-COX transformations: unconditional [t-statistic = 0] and [t-statistic = 1]
      LAMBDA(Z)VehKm6.7640.0330.723
      [t = 0][4.70][0.15][2.14]
      [t = 1][4.01][−4.37][−0.82]
      Autocorrelation
      Order 1RHO 10.9580.9700.991
      (111.70)(93.74)(369.51)
      III. General statistics
      LOG-likelihood−3963.48879.2881624.269−4138.26−2766.18
      PSEUDO-R2
      - (E)0.9970.8540.8700.9960.993
      - (L)0.9990.8910.9160.9990.999
      - (E) Adjusted for D.F.0.9970.8450.8620.9960.993
      - (L) Adjusted for D.F.0.9990.8840.9110.9990.999
      Average probability (Y = limit observation)0.0000.0000.0000.0000.000
      Sample
      - Number of observations429429429429429
      - First observation2727272727
      - Last observation455455455455455
      Number of estimated parameters
      - Fixed part
      · BETAS2525252525
      · BOX-COX10000
      · Associated dummies00000
      - Autocorrelation10011
      - Heteroskedasticity
      · DELTAS11001
      · BOX-COX11001

      Table 9. 

      Enriched MnM-2 model for 12 countries and Quebec, 1965−1999, 455 observations.

    • (All values are drawn from Tables 8 & 9)AccidentsMorbidityMortalityInjuredKilled
      LL of reference model (Table 8)3,970.60867.9811,624.2094,146.472,794.25
      LL of enriched model (Table 9)3,963.48879.2881,624.2694,138.262,766.18
      Gain in LL (one degree of freedom)7.1211.300.068.2128.07
      Elasticity with respect to GDP per capita (Table 8)0.310−0.029−0.4210.4780.501
      (t-statistic)(3.78)(−3.53)(−8.70)(4.61)(3.83)
      Elasticity with respect to GDP per capita (Table 9)0.571−0.010−0.4250.7181.718
      (t-statistic)(5.99)(−1.07)(−8.56)(6.67)(7.19)
      Gain in t-statistic (of GDP per capita)2.21−2.48−0.142.063.36
      Elasticity with respect to Road traffic intensity of GDP (Table 9)0.2720.042−0.0180.3001.290
      (t-statistic)(6.13)(4.40)(−0.34)(6.33)(5.94)
      Column12345

      Table 10. 

      Impact of adding the I variable on the Log-Likelihood and on the GDP per capita elasticity.