Figures (6)  Tables (3)
    • Figure 1. 

      Morphology of Vatica mangachapoi. (a) An individual tree, (b) flowers, (c) fruits.

    • Figure 2. 

      Geographic distribution of the coastal V. mangachapoi-dominated forest and the locations of the three sampled V. mangachapoi populations. Gene flow among them was estimated, with the width of lines being proportional to the intensity of gene flow.

    • Figure 3. 

      Allele frequency distribution of the three V. mangachapoi populations.

    • Figure 4. 

      Results of STRUCTURE analysis. (a) Best K determined using the delta K method. (b) Log probabilities and delta K values for K from two to ten. (c) The results of individual assignment at K = 2, 3 and 5. Each vertical bar represents an individual, and the proportion of the colors corresponds to the posterior probability of genetic clusters assigned to each individual.

    • Figure 5. 

      Principal co-ordinate analysis (PCoA) based on Nei & Chessers[30] genetic distance among individual samples of V. mangachapoi.

    • Figure 6. 

      Fine-scale genetic structure of V. mangachapoi in Shimei Bay. The solid line represents the mean Kinship coefficient F (Loiselle et al.[41]), and the dashed lines represent the 95% confidence intervals of the mean Kinship coefficient F.

    • PopulationLocationNNaNeHoHeFis
      SM110.26691° E, 18.66671° N9183.6470.5470.6900.207
      RY110.17952° E, 18.59768° N3973.7040.6050.7000.142
      TT110.24941° E, 18.67744° N587.53.6940.5660.6920.167
      Average7.53.6820.5720.6940.172

      Table 1. 

      Genetic diversity indices of the three V. mangachapoi populations based on 12 SSR markers.

    • LociPrimer sequences (5’-3’)Repeat
      motif
      Allele sizeGenAlexPowerMarker
      NaNeHoHePIC
      VM1F:GAACCCTTATTGGCCTGCCTAC(AT)11166−1847.3334.2310.7400.7630.7430
      R:GGGACCAAATGACTTGAGTAATCT
      VM2F:ACCCTAACAATTCTCTTTGTTTCCT(TAA)11152−1959.6674.1200.5130.7550.7364
      R:CCCCAATCTCAGTAAGGACTCA
      VM3F:CTTGTGTCGAGCATGCATGTAT(AT)11175−1918.3334.8570.7610.7930.7659
      R:TGCTGGCCTTTTATGTTAGGGT
      VM4F:ATAGCAGGCACTTCGGAAGTAC(TA)8261−2778.6674.6130.3700.7810.7533
      R:CCTGAGAAACAAAGCAACGCAT
      VM5F:GCACTAGCACTAGCACTAGCTT(CT)11218−2264.6672.9080.6290.6510.6026
      R:GGCTTTTCCAATTTCCATGGCT
      VM6F:AGTTAAGGGACCAAATTTAGCGT(TA)7259−2695.0002.7940.5930.6360.5902
      R:GTGTTTGTCAACTGGGCTTCAA
      VM7F:CCCATGTGCTAGGCTAATGCTA(AT)6229−2395.0002.3940.3030.5820.5409
      R:AAATCAGCATGAAACTTCTCCATT
      VM8F:CACCACCACAGGCTTGAGTATA(TA)7168−1825.6671.7220.3740.4150.4044
      R:GAAGGCCAACTAATCAAGCTGC
      VM9F:TCATTTCTGTCTCACTCGACCC(TTC)10148−1685.6673.0100.6390.6660.6097
      R:TCATCGACGAATCACTGTTCGA
      VM10F:ACGGATAAGTTAACGGACTAGACA(TA)10215−2279.3334.7130.5680.7760.7997
      R:AGATTTTCCCCCAGTCATCGAC
      VM11F:GCTGGCACTTAGGATGCCTTAA(ATT)11138−15011.0003.5640.6100.7020.6657
      R:AGCAACCAATTAGCTCAAATCAA
      VM12F:GGGCAGCCTCGTAAATCAATTAC(ATT)13225−2499.6675.2530.7690.8080.7958
      R:ATTACCTGGCACAACCTTAGCC

      Table 2. 

      Primer sequences, allele size and genetic diversity indices of the 12 SSR markers.

    • Direction of
      gene flow
      Migration
      rate (M)
      Effective population
      size (θ)
      Gene flow (Nm)
      SM→RY129.615θSM = 0.097903.172327
      SM→TT179.8394.401560
      RY→SM63.241θRY = 0.096861.531380
      RY→TT117.4902.845020
      TT→SM115.412θTT = 0.097462.812013
      TT→RY134.0623.266421

      Table 3. 

      Mutation-scaled migration rate, effective population size and gene flow estimated by program MIGRATE.