Figures (18)  Tables (7)
    • Figure 1. 

      Schematic of AUV wireless power transfer.

    • Figure 2. 

      The WPT system with LCC-S compensation network.

    • Figure 3. 

      The equivalent circuit of the system.

    • Figure 4. 

      Output power and efficiency.

    • Figure 5. 

      Positional relation of AUV WPT system coupling mechanism.

    • Figure 6. 

      Mutual inductance M vs (a) misalignment distance, (b) rotational angle.

    • Figure 7. 

      Neural network architecture.

    • Figure 8. 

      Comparison between predicted and real mutual inductance values in the testing dataset.

    • Figure 9. 

      Convergence process of the surrogate model.

    • Figure 10. 

      Genetic algorithm optimization flow chart.

    • Figure 11. 

      Comparison of the mutual inductance of the system before and after optimization.

    • Figure 12. 

      Test set global optimization convergence process.

    • Figure 13. 

      Electromagnetic field simulation for each test point within the working range.

    • Figure 14. 

      Improvement of mutual inductance outside of the stable range by the optimization algorithm.

    • Figure 15. 

      Experimental prototype. (a) Coil alignment. (b) 30% misalignment. (c) 50% misalignment.

    • Figure 16. 

      Comparison curve for mutual inductance M.

    • Figure 17. 

      Experimental waveforms for different misalignment cases with the proposed algorithm adopted.

    • Figure 18. 

      Comparison curve for output power Pout.

    • SymbolParameterValue
      UinInput voltage200 V
      fFrequency150 kHz
      LfPrimary compensation inductor13 µH
      CfPrimary compensation capacitor86.6 nF
      CpPrimary resonance capacitor10.46 nF
      LpPrimary side coil120.6 µH
      LsSecondary side coil121.2 µH
      CsSecondary resonance capacitor9.29 nF
      RpParasitic resistance of Lp0.48 Ω
      RsParasitic resistance of Ls0.51 Ω
      RoResistance20 Ω

      Table 1. 

      Coupler parameters.

    • Design parametersOuter diameterInner diameterNo. of turnsNo. of layersWire diameter
      Primary coil100 cm60 cm1013.9 mm
      Secondary coil100 cm60 cm1013.9 mm

      Table 2. 

      Design parameters for coupling mechanisms in AUV UWPT systems.

    • Coupling parametersx (cm)y (cm)z (cm)α (°)β (°)γ (°)
      Data range[−50.00, 50.00][−50.00, 50.00][50.00, 100.00][−90°, 90°][−90°, 90°][−90°, 90°]

      Table 3. 

      Range of variation in coupling parameters of AUV UWPT systems.

    • HyperparameterSearch range
      Number of hidden layers2, 3, 4
      Number of neurons in the hidden layer16, 32, 64, 128
      Batch size4, 8, 16, 32

      Table 4. 

      Search ranges of hyperparameters.

    • HLNNNBSR2HLNNNBSR2HLNNNBSR2
      21640.955231640.939641640.9665
      21680.888731680.958441680.9191
      216160.9519316160.9484416160.9247
      216320.9354316320.9492416320.9471
      23240.969333240.945043240.9395
      23280.942933280.962143280.9227
      232160.9256332160.8998432160.7922
      232320.9606332320.9060432320.8342
      26440.937236440.958046440.9365
      26480.937336480.964546480.9394
      264160.8674364160.8492464160.8663
      264320.9180364320.7726464320.7899
      212840.9581312840.9444412840.8855
      212880.8882312880.9446412880.9105
      2128160.80453128160.90184128160.9630
      2128320.84113128320.95504128320.9328

      Table 5. 

      R2 values of surrogate models of different hyperparameter groups.

    • Regression algorithmsR2
      Polynomial regression0.76
      Support vector machine regression0.65
      K nearest neighbor regression0.58
      Random forest0.74
      BP neural network0.93

      Table 6. 

      Comparison of accuracies of common regression algorithms for model building.

    • Misalignment distance (cm)Rotation angle p (around x-axis)Rotation angle q (around y-axis)Rotation angle r (around z-axis)Mutual inductance without optimization algorithm (µH)Mutual inductance with optimization algorithm (µH)Optimized target of mutual inductance (µH)Error (µH)
      –5086.44–84.27–85.644.66867.56629.82652.2603
      –45–89.4249.989.835.40528.17619.82651.6504
      –4060.22–59.56–56.966.14738.62049.82651.2061
      –3573.1845.05–89.476.87469.20459.82650.622
      –3060.15–35.85–85.097.56579.55809.82650.2685
      –2533.10–52.27–51.118.19929.86589.8265–0.0393
      –20–39.71–36.5816.728.75369.85179.8265–0.0252
      –15–27.41–31.49–5.619.20869.87739.8265–0.0508
      –10–33.45–11.05–6.709.54729.88959.8265–0.063
      –524.6930.02–1.259.75589.86369.8265–0.0371
      00009.82659.82659.82650
      517.83–42.3149.789.75599.82139.82650.0052
      1047.24–10.6120.019.54729.74039.82650.0862
      15–8.2359.41–49.739.20869.89099.8265–0.0644
      200.6550.41–34.488.75349.85029.8265–0.0237
      25–3.6760.82–31.318.19949.75249.82650.0741
      30–58.2535.81–87.477.56589.47679.82650.3498
      3577.8229.2684.016.87459.29019.82650.5364
      4085.8248.1688.636.1478.66339.82651.1632
      4589.9941.0289.995.40558.16479.82651.6618
      5089.9948.8589.994.66877.57069.82652.2559

      Table 7. 

      Optimization results for each test point and error from the original data.