Figures (3)  Tables (10)
    • Figure 1. 

      Model construction process.

    • Figure 2. 

      Airline passenger volumes from 2003 to 2012.

    • Figure 3. 

      The panel model and the multivariate regression model for the airline passenger volume projection (2003−2012).

    • Data name Symbol
      Airline passenger volume Vol
      Geo-economic factors
      Population Pop
      GDP GDP
      Per capita GDP PGDP
      Total retail sales of consumer goods of departure city DT
      Total retail sales of consumer goods of arrival city AT
      Proportion of tertiary industry PT
      Distance Dist
      Service-related factors
      Railway passenger traffic volume R
      Highway passenger traffic volume H

      Table 1. 

      Summary of data used.

    • Data symbol Units Mean Median Maximum Minimum Std. dev.
      Vol Ten thousand 1.749 × 106 1.341 × 106 6.800 × 106 2.239 × 105 1.390 × 106
      Pop Ten thousand 1,448.009 1,638.500 2,945.000 220.285 831.751
      GDP Hundred million 9,938.198 9,192.937 20,181.720 2,555.720 466.054
      PGDP One hundred million yuan per ten
      thousand people
      12.620 6.742 51.212 0.912 13.120
      DT Hundred million 3,902.157 3,335.250 8,123.500 934.671 1,939.569
      AT Hundred million 2,145.732 1,680.000 7,840.400 207.472 1,805.989
      PT % 49.871 49.400 63.580 40.500 5.465
      Dist Kilometer 1,201.950 1,213.250 1,945.320 464.550 629.753
      R Ten thousand × ten thousand 1.847 × 107 1.009 × 107 1.100 × 108 3.013 × 105 2.170 × 107
      H Ten thousand × ten thousand 3.194 × 109 4.521 × 108 2.731 × 1010 6.824 × 106 6.184 × 109

      Table 2. 

      Descriptive statistics of data.

    • Principal component (PC) Eigenvalue Contribution rate Accumulative contribution rate
      PC 1 5.982 58.93% 58.93%
      PC 2 2.033 20.03% 78.96%
      PC 3 1.473 14.51% 93.47%
      PC 4 0.444 4.38% 97.85%
      PC 5 0.163 1.60% 99.45%
      PC 6 0.047 0.46% 99.92%
      PC 7 0.006 0.05% 99.97%
      PC 8 0.003 0.03% 100.00%
      PC 9 0.000 0.00% 100.00%

      Table 3. 

      Eigenvalue of variance and contribution rate.

    • Factors PC 1 PC 2 PC 3 PC 4
      Pop 0.025 −0.223 0.683 0.261
      GDP 0.076 0.093 0.088 0.606
      PGDP 0.051 0.316 −0.595 0.345
      DT 0.104 0.118 0.099 0.606
      PT 0.017 0.035 0.030 0.018
      AT 0.283 0.394 0.227 −0.242
      R 0.365 0.679 0.197 −0.130
      H 0.872 −0.453 −0.178 −0.016
      Dist 0.075 0.074 0.197 −0.046

      Table 4. 

      Load matrixes of factors.

    • Factors Importance coefficient
      H 0.397
      R 0.374
      AT 0.268
      DT 0.126
      GDP 0.103
      Dist 0.085
      Pop 0.081
      PT 0.023
      PGDP 0.022

      Table 5. 

      The importance coefficient of factors

    • Variables H R AT DT
      VIF 1.339 5.623 5.391 1.480

      Table 6. 

      Result of multicollinearity test.

    • VariablesPanel data model
      coefficients
      Multivariate regression
      model coefficients
      C3.256*** (3.274)6.957*** (14.671)
      H−0.120*** (−10.981)−0.165*** (−12.109)
      R−0.081*** (4.010)0.075 (1.622)
      AT0.754*** (17.138)0.606*** (9.769)
      DT1.107*** (8.305)0.588*** (9.567)
      R20.9120.881
      Adj-R20.9020.877
      F−statistic84.991212
      Prob (F−statistic)0.0000.000
      MAPE (%)1.3421.608
      RMSE0.2350.288
      *, **, and *** indicate that the explanatory variable is significant at the 0.10, 0.05, and 0.01 significance level, respectively. t-statistics are printed in parentheses.

      Table 7. 

      Estimation results and statistical test results of model

    • Time point Disturbance value
      2003 −0.092
      2004 0.083
      2005 0.215
      2006 0.330
      2007 0.507
      2008 0.713
      2009 0.826
      2010 1.011
      2011 1.232
      2012 1.354

      Table 8. 

      Time point disturbance term.

    • Year H R AT DT
      2003 18.554 15.704 7.785 6.840
      2004 18.826 16.073 7.885 6.974
      2005 18.772 15.479 8.000 7.113
      2006 18.903 15.638 8.124 7.266
      2007 19.165 16.158 8.262 7.445
      2008 19.523 16.396 8.429 7.672
      2009 19.614 16.413 8.559 7.830
      2010 19.911 16.602 8.730 8.023
      2011 19.975 16.716 8.880 8.238
      2012 20.162 16.838 8.967 8.390

      Table 9. 

      Variables values of airline from Chongqing to Shanghai.

    • YearActual
      value
      Panel modelMultivariate
      regression model
      Predicted valuePrecisionPredicted valuePrecision
      200312.81113.55294.21%13.81392.17%
      200413.14113.84894.62%13.93593.96%
      200513.4714.04595.73%14.05195.69%
      200613.5913.99896.99%14.20795.46%
      200713.60514.14196.05%14.39194.22%
      200813.69814.40494.84%14.58493.53%
      200914.02614.57696.08%14.74294.89%
      201014.18514.73596.12%14.92594.78%
      201114.28114.90795.62%15.14093.99%
      201214.4314.97296.25%15.26094.25%

      Table 10. 

      Comparison of predicted value and actual value.