Figures (10)  Tables (3)
    • Figure 1. 

      Chinese fir seedlings from different drought treatments.

    • Figure 2. 

      Hyperspectral imaging system.

    • Figure 3. 

      Flow chart of hyperspectral data extraction from NIR hyperspectral images.

    • Figure 4. 

      ANNs structure.

    • Figure 5. 

      Measured (a) LCC and (b) LWC in Chinese fir seedlings of the five drought treatment groups.

    • Figure 6. 

      (a) Raw reflectance curves and (b) average reflectance curves of Chinese fir seedlings with different LCC and LWC.

    • Figure 7. 

      Comparison of different preprocessing methods for hyperspectral data. (a) Hyperspectral data preprocessed by SG. (b) Hyperspectral data preprocessed by MSC. (c) Hyperspectral data preprocessed by SNV.

    • Figure 8. 

      Result of applying SPA wavelength selection on the SG pre-processed spectrum for predicting LCC and LWC. (a) Variation of RMSE vs the number of wavelengths, and (b) the selected wavelengths for LCC prediction. (c) Variation of RMSE vs the number of wavelengths, and (d) the selected wavelengths for LWC prediction.

    • Figure 9. 

      Process of extracting characteristic wavelength by CARS. (a) Number of preferred characteristic wavelength variables, (b) the root mean square error of cross-validation variation, and (c) regression coefficient path map for LCC. (d) Number of preferred characteristic wavelength variables, (e) the root mean square error of cross-validation variation, and (f) regression coefficient path map for LWC.

    • Figure 10. 

      Correlation analysis between true and prediction values. (a) Prediction accuracy of SPA-ANNs model for LWC; (b) Prediction accuracy of CARS-ANNs model for LCC.

    • Index Preprocessing Calibration set Prediction set
      R2C RMSEC R2P RMSEP
      LCC None 0.8943 0.2835 0. 8198 0.3268
      MSC 0.8140 0.3654 0.7756 0.4405
      SG 0.9166 0.2587 0.8616 0.3547
      SNV 0.8322 0.3491 0.7135 0.5053
      LWC None 0.9023 0.0540 0.8904 0.0771
      MSC 0.8983 0.0694 0.7832 0.1027
      SG 0.9350> 0.0552 0.9048 0.0661
      SNV 0.9120 0.0459 0.8714 0.1073

      Table 1. 

      Influence of different preprocessing methods on LCC and LWC prediction.

    • Selection method Index Number of feature bands Selected wavelengths (nm)
      SPA LCC 10 873.5, 1,387.6, 1,394.2, 1,425.7, 1,577.4, 1,651.4, 1,671.1, 1,689.2, 1,697.4, 1,702.3
      LWC 13 873.5, 895.3, 917, 968.8, 1,289.9, 1,389.3, 1,394.2, 1,575.7, 1,653, 1,689.2, 1,695.8, 1,700.7, 1,702.3
      CARS LCC 53 880.2, 881.9, 883.6, 885.3, 890.3, 953.8, 955.5, 957.1, 958.8, 962.2, 967.2, 1,137.2, 1,138.8, 1,142.2, 1,152.2, 1,153.8, 1,158.8, 1,162.1, 1,213.6, 1,225.3, 1,231.9, 1,233.6, 1,424, 1,430.6, 1,432.3, 1,433.9, 1,435.6, 1,542.8, 1,544.4, 1,546.1, 1,547.7, 1,549.4, 1,552.7, 1,557.6, 1,559.3, 1,560.9, 1,565.9, 1,567.5, 1,574.1, 1,580.7, 1,662.9, 1,664.6, 1,666.2, 1,669.5, 1,671.1, 1,672.8, 1,674.4, 1,676.1, 1,677.7, 1,684.3, 1,699, 1,700.7, 1,702.3
      LWC 29 881.9, 883.6, 885.3, 958.8, 1,213.6, 1,231.9, 1,233.6, 1,427.3, 1,433.9, 1,435.6, 1,440.5, 1,549.4, 1,552.7, 1,554.3, 1,556, 1,557.6, 1,560.9, 1,562.6, 1,565.9, 1,567.5, 1,580.7, 1,664.6, 1,669.5, 1,671.1, 1,672.8, 1,674.4, 1,676.1, 1,700.7, 1,702.3

      Table 2. 

      Characteristic wavelengths selected by SPA and CARS.

    • Index Model Number
      of bands
      Calibration set Prediction set
      R2C RMSEC R2P RMSEP
      LCC Full-PLSR 512 0.797 0.363 0.839 0.359
      SPA-PLSR 10 0.804 0.360 0.842 0.354
      CARS -PLSR 53 0.805 0.358 0.843 0.353
      Full-SVM 512 0.830 0.350 0.820 0.392
      SPA-SVM 10 0.812 0.380 0.770 0.450
      CARS-SVM 53 0.830 0.360 0.820 0.397
      Full-ANNs 512 0.930 0.240 0.870 0.349
      SPA-ANNs 10 0.920 0.267 0.924 0.300
      CARS-ANNs 53 0.932 0.224 0.969 0.157
      LWC Full-PLSR 512 0.856 0.070 0.901 0.082
      SPA-PLSR 13 0.804 0.360 0.842 0.354
      CARS -PLSR 29 0.858 0.072 0.901 0.079
      Full-SVM 512 0.873 0.079 0.930 0.060
      SPA-SVM 13 0.850 0.090 0.920 0.062
      CARS-SVM 29 0.858 0.078 0.929 0.063
      Full-ANNs 512 0.954 0.187 0.873 0.348
      SPA-ANNs 13 0.952 0.049 0.948 0.051
      CARS-ANNs 29 0.952 0.050 0.940 0.058

      Table 3. 

      The prediction results of LCC and LWC by PLSR, SVM and ANNs models full and selected wavelengths.