-
Figure 1.
The proposed interpretable traffic flow forecasting framework.
-
Figure 2.
Local model explanations using decision path plots for different traffic flow instances. Arterial instance at (a) 5:30 am, (b) 6:30 am, (c) 7:30 am. Expressway instance at (d) 5:30 am, (e) 7:30 am, (f) 8:00 am. Freeway instance at (g) 5:30 am, (h) 6:30 am, (i) 7:30 am.
-
Figure 3.
Local model explanations using ICE plots for different traffic flow datasets. (a) Arterial dataset, (b) expressway dataset, (c) freeway dataset.
-
Figure 4.
Local model explanations using beeswarm plots for different traffic flow datasets. (a) Arterial dataset, (b) expressway dataset, (c) freeway dataset.
-
Figure 5.
Local model explanations using waterfall plots for different traffic flow instances. (a) Arterial instance at (a) 5:30 am, (b) 6:30 am, (c) 7:30 am. Expressway instance at (d) 5:30 am, (e) 7:30 am, (f) 8:00 am. Freeway instance at (g) 5:30 am, (h) 6:30 am, (i) 7:30 am.
-
Figure 6.
Global model explanations using global feature importance methods for different traffic flow datasets. (a) MDI / arterial dataset, (b) PI / arterial dataset, (c) SHAP / arterial dataset, (d) MDI / expressway dataset, (e) PI / expressway dataset, (f) SHAP / expressway dataset, (g) MDI / freeway dataset, (h) PI / freeway dataset, (i) SHAP / freeway dataset.
-
Figure 7.
Global model explanations using feature dependence plots for different traffic flow datasets. (a) 1D-PDP / arterial dataset, (b) 1D-PDP / expressway dataset, (c) 1D-PDP / freeway dataset, (d) SHAP dependence plot / arterial dataset, (e) SHAP dependence plot / expressway dataset, (f) SHAP dependence plot / freeway dataset.
-
Figure 8.
Global model explanations using feature interaction effect plots for different traffic flow datasets. (a) 2D-PDP / arterial dataset, (b) SHAP interaction plot-1 / arterial dataset, (c) SHAP interaction plot-2 / arterial dataset, (d) 2D-PDP / expressway dataset, (e) SHAP interaction plot-1 / expressway dataset, (f) SHAP interaction plot-2 / expressway dataset, (g) 2D-PDP / freeway dataset, (h) SHAP interaction plot-1 / freeway dataset, (i) SHAP interaction plot-2 / freeway dataset.
-
City Road type Time interval Total dataset size Training set size Test set size Kunshan Arterial 5-min 8064 6048 2016 Beijing Expressway 2-min 40320 30240 10080 Seattle Freeway 5-min 24192 18144 6048 Table 1.
Collected dataset information for traffic flow forecasting.
-
Model type Models Statistical time series Autoregressive Integrated Moving Average (ARIMA) Shallow learning K-Nearest Neighbors (KNN), Linear Regression (LR), Least Absolute Shrinkage and Selection Operator (LASSO), Ridge Regression (RR), Regression Tree (RT), Extra Tree (ET) Deep learning LSTNET[63], DeepAR[64], NBEATS[65], RNN, Transformer[66] Ensemble learning RF, EF, GBDT, XGBoost, LightGBM Table 2.
Developed traffic flow forecasting models.
-
Model type Model Arterial Expressway Freeway RMSE (veh/5-min) MAPE (%) RMSE (veh/2-min) MAPE (%) RMSE (veh/5-min) MAPE (%) Statistical time series ARIMA 13.54 18.04 6.63 24.02 7.05 10.62 Shallow learning KNN 13.12 16.06 6.91 23.30 6.68 10.58 LR 13.62 17.91 6.53 22.12 6.46 10.30 LASSO 13.65 18.04 6.55 23.54 6.59 10.28 RR 13.62 17.97 6.54 22.12 6.45 10.39 RT 14.31 17.46 7.60 25.70 7.27 10.97 ET 14.37 17.38 6.86 24.59 7.60 13.22 Deep learning LSTNET 13.41 17.01 6.56 21.60 6.95 10.23 DeepAR 13.45 16.24 6.57 21.49 7.00 11.68 NBEATS 13.79 16.18 6.55 21.37 6.12 10.49 RNN 27.74 49.24 6.83 22.80 19.34 48.63 Transformer 13.03 16.73 6.40 22.51 6.25 10.97 Ensemble learning RF 12.42 15.60 6.49 23.29 6.28 9.44 EF 12.35 15.80 6.31 24.06 6.28 9.70 GBDT 12.28 15.81 6.34 22.79 5.94 9.61 XGBoost 12.99 15.97 6.45 22.90 6.05 9.65 LightGBM 12.39 16.06 6.27 22.74 5.96 10.55 Table 3.
Performance comparison of the developed models.
-
Model type Model Test time (s) Arterial Expressway Freeway Statistical time series ARIMA 0.12 0.13 0.11 Shallow learning KNN 0.04 0.57 0.26 LR 0.01 0.03 0.02 LASSO 0.01 0.03 0.02 RR 0.01 0.03 0.02 RT 0.01 0.02 0.01 ET 0.00 0.02 0.01 Deep Learning LSTNET 37.84 187.67 151.25 DeepAR 102.89 538.55 426.07 NBEATS 42.70 217.81 175.83 RNN 36.25 189.02 147.03 Transformer 43.06 266.79 181.91 Ensemble Learning RF 0.02 0.07 0.08 EF 0.03 0.07 0.06 GBDT 0.02 0.03 0.03 XGBoost 0.01 0.02 0.02 LightGBM 0.01 0.02 0.02 Table 4.
Test time of the developed models.
-
Developed models Arterial Expressway Freeway RMSE
(veh/5-min)Trend MAPE
(%)Trend RMSE
(veh/2-min)Trend MAPE
(%)Trend RMSE
(veh/5-min)Trend MAPE
(%)Trend RF 12.40 ↓ 15.55 ↓ 6.49 → 22.70 ↓ 6.04 ↓ 9.18 ↓ EF 12.03 ↓ 15.29 ↓ 6.23 ↓ 22.19 ↓ 5.95 ↓ 9.25 ↓ GBDT 12.33 ↑ 15.56 ↓ 6.32 ↓ 22.43 ↓ 5.92 ↓ 9.56 ↓ XGBoost 12.96 ↓ 15.86 ↓ 6.48 ↑ 22.91 ↑ 6.02 ↓ 9.52 ↓ LightGBM 12.36 ↓ 15.77 ↓ 6.25 ↓ 22.25 ↓ 5.94 ↓ 10.41 ↓ Table 5.
Performance comparison of the developed tree-ensemble models using the bias correction strategy.
-
Model Feature
selection measureArterial Expressway Freeway RMSE
(veh/5-min)Trend MAPE
(%)Trend RMSE
(veh/2-min)Trend MAPE
(%)Trend RMSE
(veh/5-min)Trend MAPE
(%)Trend RF MDI 12.73 ↑ 16.02 ↑ 6.49 → 23.30 ↑ 6.75 ↑ 10.36 ↑ PI 12.67 ↑ 16.01 ↑ 6.49 → 23.30 ↑ 6.77 ↑ 10.37 ↑ EF MDI 12.49 ↑ 15.90 ↑ 6.38 ↑ 24.31 ↑ 6.50 ↑ 10.35 ↑ PI 12.45 ↑ 15.88 ↑ 6.44 ↑ 24.11 ↑ 6.73 ↑ 10.18 ↑ GBDT MDI 12.40 ↑ 15.91 ↑ 6.44 ↑ 23.20 ↑ 6.46 ↑ 9.96 ↑ PI 12.22 ↓ 15.89 ↑ 6.66 ↑ 23.93 ↑ 6.13 ↑ 9.33 ↓ XGBoost MDI 12.76 ↓ 15.87 ↓ 6.43 ↓ 22.88 ↓ 6.43 ↑ 10.11 ↑ PI 12.70 ↓ 16.01 ↑ 6.71 ↑ 22.80 ↓ 6.67 ↑ 10.17 ↑ LightGBM MDI 12.25 ↓ 15.74 ↓ 6.29 ↑ 22.55 ↓ 5.98 ↑ 10.26 ↓ PI 12.57 ↑ 16.07 ↑ 6.47 ↑ 23.69 ↑ 6.71 ↑ 10.50 ↓ Table 6.
Performance comparison of different tree-ensemble models using the feature selection strategy.
-
Model Feature
selection measureArterial Expressway Freeway RMSE
(veh/5-min)Trend MAPE
(%)Trend RMSE
(veh/2-min)Trend MAPE
(%)Trend RMSE
(veh/5-min)Trend MAPE
(%)Trend RF MDI_BC 12.58 ↑ 15.94 ↑ 6.49 → 23.24 ↓ 6.72 ↑ 10.42 ↑ PI_BC 12.58 ↑ 15.95 ↑ 6.49 → 23.24 ↓ 6.75 ↑ 10.41 ↑ EF MDI_BC 12.19 ↓ 15.46 ↓ 6.36 ↑ 23.20 ↓ 6.47 ↑ 10.16 ↑ PI_BC 12.18 ↓ 15.29 ↓ 6.40 ↑ 22.97 ↓ 6.67 ↑ 10.09 ↑ GBDT MDI_BC 12.37 ↑ 15.70 ↓ 6.43 ↑ 22.76 ↑ 6.43 ↑ 9.84 ↑ PI_BC 12.22 ↓ 15.57 ↓ 6.65 ↑ 23.11 ↑ 6.11 ↑ 9.18 ↓ XGBoost MDI_BC 13.01 ↑ 15.93 ↓ 6.48 ↑ 22.92 ↑ 6.45 ↑ 10.14 ↑ PI_BC 12.22 ↓ 16.01 ↑ 6.75 ↑ 22.90 → 6.68 ↑ 10.15 ↑ LightGBM MDI_BC 12.29 ↓ 15.51 ↓ 6.27 → 22.14 ↓ 5.96 → 10.09 ↓ PI_BC 12.58 ↑ 15.89 ↓ 6.47 ↑ 23.20 ↑ 6.71 ↑ 10.29 ↓ Table 7.
Performance comparison of different tree-ensemble models using the bias correction and feature selection strategies.
Figures
(8)
Tables
(7)