[1] |
UN. 2017. The impact of population momentum on future population growth. Population Facts No. 2017/4. United Nations Department of Economic and Social Affairs Population Division. pp. 2. Available from: https://www.un.org/
|
[2] |
Alexandratos N, Bruinsma J. 2012. World agriculture towards 2030/2050: the 2012 revision. ESA Working Papers 12-03, Food and Agriculture Organization of the United Nations, Rome. pp. 147 https://doi.org/10.22004/ag.econ.288998
|
[3] |
O’Mara FP. 2012. The role of grasslands in food security and climate change. Ann. Bot. 110:1263−70 doi: 10.1093/aob/mcs209
|
[4] |
Godfray HCJ, Garnett T. 2014. Food security and sustainable intensification. Philos. Trans. R. Soc. B. 369:20120273 doi: 10.1098/rstb.2012.0273
|
[5] |
Thornton PK, Herrero M. 2015. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nat. Clim. Chang. 5:830−6 doi: 10.1038/nclimate2754
|
[6] |
Herrero M, Thornton PK, Notenbaert AM, Wood S, Msangi S, et al. 2010. Smart investments in sustainable food production: Revisiting mixed crop-livestock systems. Science 327:822−5 doi: 10.1126/science.1183725
|
[7] |
Herrero M, Havlík P, Valin H, Notenbaert AM, Rufino M, et al. 2013. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. 110:20888−93 doi: 10.1073/pnas.1308149110
|
[8] |
Hou FJ, Nan ZB, Xie YZ, Li XL, Lin HL, et al. 2008. Integrated crop-livestock production systems in China. Rangel. J. 30:221−31 doi: 10.1071/RJ08018
|
[9] |
Kremen C, Miles A. 2012. Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalitites, and Trade-Offs. Ecol. Soc. 17:40 doi: 10.5751/ES-05035-170440
|
[10] |
Bryan E, Ringler C, Okoba B, Koo J, Herrero M, et al. 2013. Can agriculture support climate change adaptation, greenhouse gas mitigation and rural livelihoods? insights from Kenya Clim. Change 118:151−65 doi: 10.1007/s10584-012-0640-0
|
[11] |
Palm C., Blanco-Canqui H., DeClerck F, Gatere L, Grace P. 2014. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 187:87−105 doi: 10.1016/j.agee.2013.10.010
|
[12] |
Lacombe G, Bolliger AM, Harrisson RD, To Thi Thu Ha. 2016. Integrated tree, crop and livestock technologies to conserve soil and water, and sustain smallholder farmers’ livelihoods in Southeast Asian uplands. In Integrated Systems Research for Sustainable Smallholder Agriculture in the Central Mekong: Achievements and challenges of implementing integrated systems research, ed. L Hiwasaki, A Bolliger, G Lacombe, J Raneri, M Schut, et al., Chapter 3. Hanoi, Viet Nam: World Agroforestry Centre. pp. 41−64 https://hdl.handle.net/10568/78362
|
[13] |
Ranjitkar S, Bu D, Van Wijk M, Ma Y, Ma L, et al. 2020. Will heat stress take its toll on milk production in China? Clim. Change 161:637−52 doi: 10.1007/s10584-020-02688-4
|
[14] |
Djanibekov U, Villamor GB, Dzhakypbekova K, Chamberlain J, Xu J. 2016. Adoption of sustainable land uses in post-soviet central Asia: The case for agroforestry. Sustain. 8:1030 doi: 10.3390/su8101030
|
[15] |
Rudel T, Kwon O-J, Paul B, Boval M, Rao I, et al. 2016. Do Smallholder, Mixed Crop-Livestock Livelihoods Encourage Sustainable Agricultural Practices? A Meta-Analysis. Land 5:6 doi: 10.3390/land5010006
|
[16] |
Toop TA, Ward S, Oldfield T, Hull M, Kirby ME, et al. 2017. AgroCycle – Developing a circular economy in agriculture. Energy Procedia 123:76−80 doi: 10.1016/j.egypro.2017.07.269
|
[17] |
Luedeling E, Kindt R, Huth NI, Koenig K. 2014. Agroforestry systems in a changing climate – challenges in projecting future performance. Curr. Opin. Environ. Sustain. 6:1−7 doi: 10.1016/j.cosust.2013.07.013
|
[18] |
Marris E. 2009. Planting the forest of the future. Nature 459:906−8 doi: 10.1038/459906a
|
[19] |
Gray LK, Hamann A. 2013. Tracking suitable habitat for tree populations under climate change in western North America. Clim. Change 117:289−303 doi: 10.1007/s10584-012-0548-8
|
[20] |
Elith J, Leathwick JR. 2009. Species Distribution Models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40:677−97 doi: 10.1146/annurev.ecolsys.110308.120159
|
[21] |
Berhanu B, Seleshi Y, Demisse SS, Melesse AM. 2016. Bias correction and characterization of climate forecast system re-analysis daily precipitation in Ethiopia using fuzzy overlay. Meteorol. Appl. 23:230−43 doi: 10.1002/met.1549
|
[22] |
Ranjitkar S, Sujakhu NM, Lu Y, Wang Q, Wang M, et al. 2016. Climate modelling for agroforestry species selection in Yunnan Province, China. Environ. Model. Softw. 75:263−72 doi: 10.1016/j.envsoft.2015.10.027
|
[23] |
Hattab T, Ben Rais Lasram F, Albouy C, Sammari C, Romdhane MS, et al. 2013. The Use of a Predictive Habitat Model and a Fuzzy Logic Approach for Marine Management and Planning. PLoS ONE 8(10):e76430 doi: 10.1371/journal.pone.0076430
|
[24] |
Barbosa AM, Real R. 2012. Applying fuzzy logic to comparative distribution modelling: A case study with two sympatric amphibians. Sci. World J. 2012:428206 doi: 10.1100/2012/428206
|
[25] |
Santos NR, Katz JVE, Moyle PB, Viers JH. 2014. A programmable information system for management and analysis of aquatic species range data in California. Environ. Model. Softw. 53:13−26 doi: 10.1016/j.envsoft.2013.10.024
|
[26] |
Haile KK, Tirivayi N, Tesfaye W. 2019. Farmers’ willingness to accept payments for ecosystem services on agricultural land: The case of climate-smart agroforestry in Ethiopia. Ecosyst. Serv. 39:100964 doi: 10.1016/j.ecoser.2019.100964
|
[27] |
Evans JM, Fletcher RJ, Alavalapati J. 2010. Using species distribution models to identify suitable areas for biofuel feedstock production. GCB Bioenergy 2:63−78 doi: 10.1111/j.1757-1707.2010.01040.x
|
[28] |
Kim H, Hyun SW, Hoogenboom G, Porter CH, Kim KS. 2018. Fuzzy union to assess climate suitability of annual ryegrass (Lolium multiflorum), alfalfa (Medicago sativa) and sorghum (Sorghum bicolor). Sci. Rep. 8:10220 doi: 10.1038/s41598-018-28291-3
|
[29] |
Qiu F, Chastain B, Zhou Y, Zhang C, Sridharan H. 2014. Modeling land suitability/capability using fuzzy evaluation. GeoJournal 79:167−82 doi: 10.1007/s10708-013-9503-0
|
[30] |
Sujakhu NM, Ranjitkar S, Niraula RR, Pokharel BK, Schmidt-Vogt D, et al. 2016. Farmers' perceptions of and adaptations to changing climate in the Melamchi Valley of Nepal. Mt. Res. Dev. 36:15−30 doi: 10.1659/MRD-JOURNAL-D-15-00032.1
|
[31] |
de Roest K, Ferrari P, Knickel K. 2018. Specialisation and economies of scale or diversification and economies of scope? Assessing different agricultural development pathways J. Rural Stud. 59:222−31 doi: 10.1016/j.jrurstud.2017.04.013
|
[32] |
Bos J. 2002. Comparing specialised and mixed farming systems in the clay areas of the Netherlands under future policy scenarios: an optimisation approach. Thesis. Wageningen University, The Netherlands.
|
[33] |
Garnett T. 2009. Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environ. Sci. Policy 12:491−503 doi: 10.1016/j.envsci.2009.01.006
|
[34] |
Tang K, Hailu A, Kragt ME, Ma C. 2018. The response of broadacre mixed crop-livestock farmers to agricultural greenhouse gas abatement incentives. Agric. Syst. 160:11−20 doi: 10.1016/j.agsy.2017.11.001
|
[35] |
Marton SMRR, Zimmermann A, Kreuzer M, Gaillard G. 2016. Comparing the environmental performance of mixed and specialised dairy farms: The role of the system level analysed. J. Clean. Prod. 124:73−83 doi: 10.1016/j.jclepro.2016.02.074
|
[36] |
Sanou J, Bayala J, Teklehaimanot Z, Bazié P. 2012. Effect of shading by baobab (Adansonia digitata) and néré (Parkia biglobosa) on yields of millet (Pennisetum glaucum) and taro (Colocasia esculenta) in parkland systems in Burkina Faso, West Africa. Agrofor. Syst. 85:431−41 doi: 10.1007/s10457-011-9405-4
|
[37] |
Bayala J, Balesdent J, Marol C, Zapata F, Teklehaimanot Z, et al. 2006. Relative contribution of trees and crops to soil carbon content in a parkland system in Burkina Faso using variations in natural 13C abundance. Nutr. Cycl. Agroecosys. 76:193−201
|
[38] |
Schiere H, Kater L. 2001. Mixed Crop Livestock Farming: A Review of Traditional Technologies based on Literature and Field Experiences. Report, In FAO Animal production and health paper 152, FAO, Rome, Italy
|
[39] |
Kahane R, Hodgkin T, Jaenicke H, Hoogendoorn C, Hermann M, et al. 2013. Agrobiodiversity for food security, health and income. Agron. Sustain. Dev. 33:671−93 doi: 10.1007/s13593-013-0147-8
|
[40] |
Franzel S, Carsan S, Lukuyu B, Sinja J, Wambugu C. 2014. Fodder trees for improving livestock productivity and smallholder livelihoods in Africa. Curr. Opin. Environ. Sustain. 6:98−103 doi: 10.1016/j.cosust.2013.11.008
|
[41] |
Saito K, Linquist B, Keobualapha B, Shiraiwa T, Horie T. 2009. Broussonetia papyrifera (paper mulberry): Its growth, yield and potential as a fallow crop in slash-and-burn upland rice system of northern Laos. Agrofor. Syst. 76:525−32 doi: 10.1007/s10457-009-9206-1
|
[42] |
Amatya SM, Cedamon E, Nuberg I. 2018. Agroforestry systems and practices in Nepal. Rampur, Nepal: Faculty of forestry, Agriculture and Forestry University (AFU). 108pp. Download from: https://www.iufro.org/download/file/29095/1317/Agroforestry_Systems_and_Practices__in_Nepal__2018__pdf/
|
[43] |
Ma Y-h, Fu S-l, Zhang X-p, Zhao K, Chen HYH. 2017. Intercropping improves soil nutrient availability, soil enzyme activity and tea quantity and quality. Appl. Soil Ecol. 119:171−8 doi: 10.1016/j.apsoil.2017.06.028
|
[44] |
Zeng DH, Mao R, Chang SX, Li LJ, Yang D. 2010. Carbon mineralization of tree leaf litter and crop residues from poplar-based agroforestry systems in Northeast China: A laboratory study. Appl. Soil Ecol. 44:133−7 doi: 10.1016/j.apsoil.2009.11.002
|
[45] |
Quinn LD, Gordon DR, Glaser A, Lieurance D, Flory SL. 2015. Bioenergy Feedstocks at Low Risk for Invasion in the USA: a “White List” Approach. Bioenergy Res. 8:471−81 doi: 10.1007/s12155-014-9503-z
|
[46] |
Gordon AM, Newman SM, Coleman B. (Eds.). 2018. Temperate Agroforestry Systems. Second. Oxfordshire, UK: CABI. pp. 325
|
[47] |
Rahman SA, Sunderland T, Kshatriya M, Roshetko JM, Pagella T, et al. 2016. Towards productive landscapes: Trade-offs in tree-cover and income across a matrix of smallholder agricultural land-use systems. Land Use Policy 58:152−64 doi: 10.1016/j.landusepol.2016.07.003
|
[48] |
Luedeling E, Smethurst PJ, Baudron F, Bayala J, Huth NI, et al. 2016. Field-scale modeling of tree-crop interactions: Challenges and development needs. Agric. Syst. 142:51−69 doi: 10.1016/j.agsy.2015.11.005
|
[49] |
Basavaraju T, Gururaja Pao MR. 2000. Tree-crop interactions in agroforestry systems: a brief review. Indian For. 126:51−69 http://www.indianforester.co.in/index.php/indianforester/article/view/3308
|
[50] |
Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B. 2011. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manage. 261:1654−63 doi: 10.1016/j.foreco.2010.09.027
|
[51] |
Broom DM, Galindo FA, Murgueitio E. 2013. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. Biol. Sci. 280:20132025 doi: 10.1098/rspb.2013.2025
|
[52] |
Broxton PD, Zeng X, Sulla-Menashe D, Troch PA. 2014. A Global Land Cover Climatology Using MODIS Data. J. Appl. Meteorol. Climatol. 53:1593−605 doi: 10.1175/JAMC-D-13-0270.1
|
[53] |
Fang J, Wang Z, Tang Z. 2011. Atlas of Woody Plants in China. Beijing and Springer-Verlag Berlin Heidelberg: Higher Education Press
|
[54] |
Robinson TP, William Wint GR, Conchedda G, Van Boeckel TP, Ercoli V, et al. 2014. Mapping the global distribution of livestock. PLoS ONE 9:e96084 doi: 10.1371/journal.pone.0096084
|
[55] |
Kriticos DJ, Webber BL, Leriche A, Ota N, Macadam I, et al. 2012. CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3:53−64 doi: 10.1111/j.2041-210X.2011.00134.x
|
[56] |
Hijmans RJ. 2012. Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93:679−88 doi: 10.1890/11-0826.1
|
[57] |
Ranjitkar S, Kindt R, Sujakhu NM, Hart R, Guo W, et al. 2014. Separation of the bioclimatic spaces of Himalayan tree rhododendron species predicted by ensemble suitability models. Glob. Ecol. Conserv. 1:2−12 doi: 10.1016/j.gecco.2014.07.001
|
[58] |
Kindt R. 2018. Ensemble species distribution modelling with transformed suitability values. Environ. Model. Softw. 100:136−45 doi: 10.1016/j.envsoft.2017.11.009
|
[59] |
Rogerson PA. 2001. Statistical methods for geography. pp. 320. London: Sage Publications.
|
[60] |
Ramirez-Villegas J, Jarvis A, Läderach P. 2013. Empirical approaches for assessing impacts of climate change on agriculture: The EcoCrop model and a case study with grain sorghum. Agric. For. Meteorol. 170:67−78 doi: 10.1016/j.agrformet.2011.09.005
|