[1] Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, et al. 2018. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135−59 doi: 10.1007/s13225-018-0401-0
[2] Smith SE, and Read DJ. 2008. Mycorrhizal symbiosis. Amsterdam: Elsevier, Academic Press
[3] Forman RTT. 1998. Pine barrens: ecosystems and landscape. pp xli-601. New Brunswick, NJ: Rutgers University Press. pp. 601
[4] Luo J, Walsh E, Miller S, Blystone D, Dighton J, et al. 2017. Root endophytic fungal communities associated with pitch pine, switchgrass, and rosette grass in the pine barrens ecosystem. Fungal Biol 121:478−87 doi: 10.1016/j.funbio.2017.01.005
[5] Dighton J, Gordon T, Mejia R, and Sobel M. 2013. Mycorrhizal Status of Knieskern's Beaked Sedge (Rhynchospora knieskernii) in the New Jersey Pine Barrens. Bartonia 66:24−27
[6] von Uexküll HR, Mutert E. 1995. Global extent, development and economic impact of acid soils. Plant Soil 171:1−15 doi: 10.1007/BF00009558
[7] Suzuki K, Turgay OC, Akca MO, Harada N, Nonaka M. 2014. Molecular diversity of indigenous arbuscular mycorrhizal fungi in three different agricultural regions of Turkey. Soil Sci. Plant Nutr. 60:367−76 doi: 10.1080/00380768.2014.890916
[8] Fitzsimons MS, Miller RM, Jastrow JD. 2008. Scale-dependent niche axes of arbuscular mycorrhizal fungi. Oecol 158:117−27 doi: 10.1007/s00442-008-1117-8
[9] Stürmer SL, Oliveira LZ, Morton JB. 2018. Gigasporaceae versus Glomeraceae (phylum Glomeromycota): A biogeographic tale of dominance in maritime sand dunes. Fungal Ecol. 32:49−56 doi: 10.1016/j.funeco.2017.11.008
[10] Clark RB, Zobel RW, Zeto SK. 1999. Effects of mycorrhizal fungus isolates on mineral acquisition by Panicum virgatum in acidic soil. Mycorrhiza 9:167−76 doi: 10.1007/s005720050302
[11] Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW. 1998. Ploughing up the wood-wide web? Nature 394:431 doi: 10.1038/28764
[12] Wang C, White PJ, Li C. 2017. Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site. Mycorrhiza 27:369−81 doi: 10.1007/s00572-016-0757-5
[13] Moora M, Davison J, Öpik M, Metsis M, Saks U, et al. 2014. Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol. Ecol. 90:609−21 doi: 10.1111/1574-6941.12420
[14] Sepp SK, Jairus T, Vasar M, Zobel M, Öpik M. 2018. Effects of land use on arbuscular mycorrhizal fungal communities in Estonia. Mycorrhiza 28:259−68 doi: 10.1007/s00572-018-0822-3
[15] Rillig MC, Treseder KK, Allen MF. 2002. Global Change and Mycorrhizal Fungi. In Mycorrhizal cology, ecological studies, 157: 143. Berlin, Heidelberg, Germany: Springer-Verlag. pp. 135−160 https://link.springer.com/chapter/10.1007%2F978-3-540-38364-2_6
[16] Kawahara A, An GH, Miyakawa S, Sonoda J, Ezawa T. 2016. Nestedness in arbuscular mycorrhizal fungal communities along soil pH gradients in early primary succession: acid-tolerant fungi are pH generalists. PLoS One 11:e0165035 doi: 10.1371/journal.pone.0165035
[17] Kivlin SN, Hawkes CV, Treseder KK. 2011. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 43:2294−303 doi: 10.1016/j.soilbio.2011.07.012
[18] Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, et al. 2013. Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411−30 doi: 10.1007/s00572-013-0482-2
[19] Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M. 2009. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol. 184:424−37 doi: 10.1111/j.1469-8137.2009.02920.x
[20] Chaudhary VB, Cuenca G, Johnson NC. 2018. Tropical-temperate comparison of landscape-scale arbuscular mycorrhizal fungal species distributions. Divers. and Distrib. 24:116−28 doi: 10.1111/ddi.12664
[21] Van Geel M, Busschaert P, Honnay O, Lievens B. 2014. Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing. J. Microbiol. Methods 106:93−100 doi: 10.1016/j.mimet.2014.08.006
[22] Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V. 2010. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ. Microbiol. 12:2165−79 doi: 10.1111/j.1462-2920.2009.02099.x
[23] Cui X, Hu J, Wang J, Yang J, Lin X. 2016. Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in Eastern China as revealed by Illumina sequencing. Appl. Soil Ecol. 98:140−9 doi: 10.1016/j.apsoil.2015.10.008
[24] Cao J, Feng Y, Lin X, Wang J, Xie X. 2017. Iron oxide magnetic nanoparticles deteriorate the mutual interaction between arbuscular mycorrhizal fungi and plant. J. Soils Sediments 17:841−51 doi: 10.1007/s11368-016-1561-8
[25] Öpik M, Davison J, Moora M, Pärtel, M, Zobel M. 2016. Response to Comment on "Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism". Science 351:826 doi: 10.1126/science.aad5495
[26] Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, et al. 2019. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 17:95−109 doi: 10.1038/s41579-018-0116-y
[27] Oehl F, Schneider D, Sieverding E, Burga CA. 2011. Succession of arbuscular mycorrhizal communities in the foreland of the retreating Morteratsch glacier in the Central Alps. Pedobiologia 54:321−31 doi: 10.1016/j.pedobi.2011.07.006
[28] Young JL, Davis EA, Rose SL. 1985. Endomycorrhizal Fungi in breeder wheats and triticale cultivars field-grown on fertile soil. Agron. J. 77:219−24 doi: 10.2134/agronj1985.00021962007700020011x
[29] Nicolson TH, Schenck NC. 1979. Endogonaceous mycorrhizal endophytes in Florida. Mycologia 71:178−98 doi: 10.1080/00275514.1979.12020997
[30] Castillo CG, Borie F, Godoy R, Rubio R, Sieverding E. 2006. Diversity of mycorrhizal plant species and arbuscular mycorrhizal fungi in evergreen forest, deciduous forest and grassland ecosystems of Southern Chile. J. Appl. Bot. Food Qual.80:40−7 https://ojs.openagrar.de/index.php/JABFQ/article/view/2189
[31] Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, et al. 2004. Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574−83 doi: 10.1007/s00442-003-1458-2
[32] French KE, Tkacz A, Turnbull LA. 2017. Conversion of grassland to arable decreases microbial diversity and alters community composition. Appl. Soil Ecol. 110:43−52 doi: 10.1016/j.apsoil.2016.10.015
[33] Clark RB. 1997. Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant and Soil 192:15−22 doi: 10.1023/A:1004218915413
[34] Vályi K, Rillig MC, Hempel S. 2015. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants. New Phytol. 205:1577−86 doi: 10.1111/nph.13236
[35] van der Gast CJ, Gosling P, Tiwari B, Bending GD. 2011. Spatial scaling of arbuscular mycorrhizal fungal diversity is affected by farming practice. Environ. Microbiol. 13:241−9 doi: 10.1111/j.1462-2920.2010.02326.x
[36] Hijri I, Sykorova Z, Oehl F, Ineichen K, Mäder P, et al. 2006. Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol. Ecol. 15:2277−89 doi: 10.1111/j.1365-294X.2006.02921.x
[37] García de León D, Davison J, Moora M, Öpik M, Feng H, et al. 2018. Anthropogenic disturbance equalizes diversity levels in arbuscular mycorrhizal fungal communities. Glob. Chang. Biol. 24:2649−59 doi: 10.1111/gcb.14131
[38] Zhao H, Li X, Zhang Z, Zhao Y, Yang J, et al. 2017. Species diversity and drivers of arbuscular mycorrhizal fungal communities in a semi-arid mountain in China. PeerJ 5:e4155 doi: 10.7717/peerj.4155
[39] Johansen RB, Johnston P, Mieczkowski P, Perry GLW, Robeson MS, et al. 2016. A native and an invasive dune grass share similar, patchily distributed, root-associated fungal communities. Fungal Ecol. 23:141−55 doi: 10.1016/j.funeco.2016.08.003
[40] Ban Y, Jiang Y, Li M, Zhang X, Zhang S, et al. 2017. Homogenous stands of a wetland grass living in heavy metal polluted wetlands harbor diverse consortia of arbuscular mycorrhizal fungi. Chemosphere 181:699−709 doi: 10.1016/j.chemosphere.2017.04.135
[41] Varela-Cervero S, Vasar M, Davison J, Barea JM, Öpik M, et al. 2015. The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species. Environ. Microbiol. 17:2882−95 doi: 10.1111/1462-2920.12810
[42] Schwarzott D, Walker C, Schüßler A. 2001. Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol. Phylogenet. Evol. 21:190−7 doi: 10.1006/mpev.2001.1007
[43] Ji B, Gehring CA, Wilson GWT, Miller RM, Flores-Renteria L, et al. 2013. Patterns of diversity and adaptation in Glomeromycota from three prairie grasslands. Mol. Ecol. 22:2573−87 doi: 10.1111/mec.12268
[44] Johnson NC, Wilson GWT, Bowker MA, Wilson JA, Miller RM. 2010. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc. Natl. Acad. Sci. U. S. A. 107:2093−8 doi: 10.1073/pnas.0906710107
[45] Öpik M, Moora M, Liira J, Zobel M. 2006. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94:778−90 doi: 10.1111/j.1365-2745.2006.01136.x
[46] Oehl F, Laczko E, Oberholzer HR, Jansa J, Egli S. 2017. Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biol. Fertil. Soils 53:777−97 doi: 10.1007/s00374-017-1217-x
[47] Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, et al. 2003. Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol. Appl. 13:1164−76 doi: 10.1890/1051-0761(2003)13[1164:STATCS]2.0.CO;2
[48] Walker C, Gollotte A, Redecker D. 2018. A new genus, Planticonsortium (Mucoromycotina), and new combination (P. tenue), for the fine root endophyte, Glomus tenue (basionym Rhizophagus tenuis). Mycorrhiza 28:213−9 doi: 10.1007/s00572-017-0815-7
[49] Orchard S, Hilton S, Bending GD, Dickie IA, Standish RJ, et al. 2017. Fine endophytes (Glomus tenue) are related to Mucoromycotina, not Glomeromycota. New Phytol. 213:481−6 doi: 10.1111/nph.14268
[50] Dirks AC, Jackson RD. 2020. Community structure of arbuscular mycorrhizal fungi in soils of switchgrass harvested for bioenergy. Appl. Environ. Microbiol. 86:e00880−20 doi: 10.1128/AEM.00880-20
[51] Rocha LA, Aleixo A, Allen G, Almeda F, Baldwin CC, et al. 2014. Specimen collection: An essential tool. Science 344:814−5 doi: 10.1126/science.344.6186.814
[52] Kleczewski NM, Bauer JT, Bever JD, Clay K, and Reynolds HL. 2012. A survey of endophytic fungi of switchgrass (Panicum virgatum) in the Midwest, and their putative roles in plant growth. Fungal Ecol. 5(5):521−529 doi: 10.1016/j.funeco.2011.12.006
[53] Grace C, Stribley DP. 1991. A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol. Res. 95:1160−2 doi: 10.1016/S0953-7562(09)80005-1
[54] Dimitrov MR, Veraart AJ, de Hollander M, Smidt H, van Veen JA, et al. 2017. Successive DNA extractions improve characterization of soil microbial communities. PeerJ 5:e2915 doi: 10.7717/peerj.2915
[55] Sato K, Suyama Y, Saito M, Sugawara K. 2005. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassl. Sci. 51:179−81 doi: 10.1111/j.1744-697X.2005.00023.x
[56] Schmidt P-A, Bálint M, Greshake B, Bandow C, Römbke J, et al. 2013. Illumina metabarcoding of a soil fungal community. Soil Biol. Biochem. 65:128−32 doi: 10.1016/j.soilbio.2013.05.014
[57] 2017. CLC Genomics Workbench. https://digitalinsights.qiagen.com
[58] Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460−1 doi: 10.1093/bioinformatics/btq461
[59] Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, et al. 2010. 454 pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol. 188:291−301 doi: 10.1111/j.1469-8137.2010.03373.x
[60] Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, et al. 2010. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 188:223−41 doi: 10.1111/j.1469-8137.2010.03334.x
[61] Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194−200 doi: 10.1093/bioinformatics/btr381
[62] Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, et al. 2016. MEGAN community edition - interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12:e1004957 doi: 10.1371/journal.pcbi.1004957
[63] Schlaeppi K, Bender SF, Mascher F, Russo G, Patrignani A, et al. 2016. High-resolution community profiling of arbuscular mycorrhizal fungi. New Phytol. 212:780−91 doi: 10.1111/nph.14070
[64] Yang H, Zhang Q, Koide RT, Hoeksema JD, Tang J, et al. 2017. Taxonomic resolution is a determinant of biodiversity effects in arbuscular mycorrhizal fungal communities. J. Ecol. 105:219−28 doi: 10.1111/1365-2745.12655
[65] Harris JK, Sahl JW, Castoe TA, Wagner BD, Pollock DD, et al. 2010. Comparison of normalization methods for construction of large, multiplex amplicon pools for next-generation sequencing. Appl. Environ. Microbiol. 76:3863−8 doi: 10.1128/AEM.02585-09
[66] de Cárcer DA, Denman SE, McSweeney C, Morrison M. 2011. Evaluation of subsampling-based normalization strategies for tagged high-throughput sequencing data sets from gut microbiomes. Appl. Environ. Microbiol. 77:8795−8 doi: 10.1128/AEM.05491-11
[67] Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, et al. 2017. vegan: community ecology package. R package version 2.4−4 https://cran.r-project.org/web/packages/vegan/index.html
[68] Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, et al. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84:45−67 doi: 10.1890/13-0133.1
[69] RStudio T. 2016. RStudio: Integrated development environment for R. ed. I RStudio. Boston, MA https://rstudio.com/products/rstudio/
[70] Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792−7 doi: 10.1093/nar/gkh340
[71] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30:2725−9 doi: 10.1093/molbev/mst197
[72] Tamura K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 9:678−87 doi: 10.1093/oxfordjournals.molbev.a040752