[1] |
Holton TA, Cornish EC. 1995. Genetics and Biochemistry of Anthocyanin Biosynthesis. The Plant Cell 7:1071−83 doi: 10.2307/3870058
|
[2] |
Harborne JB. 1967. Comparative Biochemistry of the Flavonoids-IV.: Correlations between chemistry, pollen morphology and systematics in the family plumbaginaceae. Phytochemistry 6:1415−28 doi: 10.1016/S0031-9422(00)82884-8
|
[3] |
Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126:485−93 doi: 10.1104/pp.126.2.485
|
[4] |
Kähkönen MP, Heinonen M. 2003. Antioxidant activity of anthocyanins and their aglycons. Journal of Agricultural and Food Chemistry 51:628−33 doi: 10.1021/jf025551i
|
[5] |
Feng K, Xu Z, Liu J, Li J, Wang F, et al. 2018. Isolation, purification, and characterization of AgUCGalT1, a galactosyltransferase involved in anthocyanin galactosylation in purple celery (Apium graveolens L.). Planta 247:1363−75 doi: 10.1007/s00425-018-2870-5
|
[6] |
Hedin PA, Waage SK. 1986. Roles of flavonoids in plant resistance to insects. Progress in Clinical and Biological Research 213:87−100
|
[7] |
Koes R, Verweij W, Quattrocchio F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10:236−42 doi: 10.1016/j.tplants.2005.03.002
|
[8] |
Petroni K, Tonelli C. 2011. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science 181:219−29 doi: 10.1016/j.plantsci.2011.05.009
|
[9] |
Ahmed NU, Park JI, Jung HJ, Hur Y, Nou IS. 2015. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa. Functional & Integrative Genomics 15:383−94 doi: 10.1007/s10142-014-0427-7
|
[10] |
Bassolino L, Zhang Y, Schoonbeek HJ, Kiferle C, Perata P, et al. 2013. Accumulation of anthocyanins in tomato skin extends shelf life. The New Phytologist 200:650−5 doi: 10.1111/nph.12524
|
[11] |
Gould KS. 2004. Nature's Swiss Army Knife: The Diverse Protective Roles of Anthocyanins in Leaves. Journal of Biomedicine and Biotechnology 2004:314−20 doi: 10.1155/S1110724304406147
|
[12] |
Roldan MVG, Engel B, de Vos RCH, Vereijken P, Astola L, et al. 2014. Metabolomics reveals organ-specific metabolic rearrangements during early tomato seedling development. Metabolomics 10:958−74 doi: 10.1007/s11306-014-0625-2
|
[13] |
Bąkowska-Barczak A. 2005. Acylated anthocyanins as stable, natural food colorants − A Review. Polish Journal of Food and Nutrition Sciences 55:107−16
|
[14] |
Reed J. 2002. Cranberry flavonoids, atherosclerosis and cardiovascular health. Critical Reviews in Food Science and Nutrition 42:301−16 doi: 10.1080/10408390209351919
|
[15] |
Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D. 2007. Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition and Food Research 51:675−83 doi: 10.1002/mnfr.200700002
|
[16] |
He J, Giusti MM. 2010. Anthocyanins: natural colorants with health-promoting properties. Annual Review of Food Science and Technology 1:163−87 doi: 10.1146/annurev.food.080708.100754
|
[17] |
Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, et al. 2005. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. The Plant Journal 42:218−35 doi: 10.1111/j.1365-313X.2005.02371.x
|
[18] |
Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, et al. 2006. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiology 140:499−511 doi: 10.1104/pp.105.067231
|
[19] |
Xu Z, Huang Y, Wang F, Song X, Wang G, et al. 2014. Transcript profiling of structural genes involved in cyanidin-based anthocyanin biosynthesis between purple and non-purple carrot (Daucus carota L.) cultivars reveals distinct patterns. BMC Plant Biology 14:262 doi: 10.1186/s12870-014-0262-y
|
[20] |
Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science 20:176−85 doi: 10.1016/j.tplants.2014.12.001
|
[21] |
Gao Y, Liu J, Chen Y, Tang H, Wang Y, et al. 2018. Tomato SlAN11 regulates flavonoid biosynthesis and seed dormancy by interaction with bHLH proteins but not with MYB proteins. Horticulture Research 5:27 doi: 10.1038/s41438-018-0032-3
|
[22] |
Feyissa DN, Løvdal T, Olsen KM, Slimestad R, Lillo C. 2009. The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves. Planta 230:747−754 doi: 10.1007/s00425-009-0978-3
|
[23] |
Xu WJ, Grain D, Le Gourrierec J, Harscoet E, Berger A, et al. 2013. Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT8 expression, in Arabidopsis. New Phytologist 198:59−70 doi: 10.1111/nph.12142
|
[24] |
Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 53:814−27 doi: 10.1111/j.1365-313X.2007.03373.x
|
[25] |
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science 15:573−81 doi: 10.1016/j.tplants.2010.06.005
|
[26] |
Feller A, Machemer K, Braun EL, Grotewold E. 2011. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal 66:94−116 doi: 10.1111/j.1365-313X.2010.04459.x
|
[27] |
Kwon SJ, Choi EY, Seo JB, Park OK. 2007. Isolation of the Arabidopsis phosphoproteome using a biotin - tagging approach. Molecules and Cells 24:268−75
|
[28] |
Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW. 2011. Negative Regulation of Anthocyanin Biosynthesis in Arabidopsis by a miR156-Targeted SPL Transcription Factor. The Plant Cell 23:1512−22 doi: 10.1105/tpc.111.084525
|
[29] |
Baudry A, Caboche M, Lepiniec L. 2006. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. The Plant Journal 46:768−79 doi: 10.1111/j.1365-313X.2006.02733.x
|
[30] |
Rowan DD, Cao MS, Lin-Wang K, Cooney JM, Jensen DJ, et al. 2009. Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana. New Phytologist 182:102−15 doi: 10.1111/j.1469-8137.2008.02737.x
|
[31] |
Hsu CC, Chen YY, Tsai WC, Chen WH, Chen HH. 2015. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. Plant Physiology 168:175−91 doi: 10.1104/pp.114.254599
|
[32] |
Li M, Hou X, Wang F, Tan G, Xu Z, et al. 2018. Advances in the research of celery, an important Apiaceae vegetable crop. Critical Reviews in Biotechnology 38:172−83 doi: 10.1080/07388551.2017.1312275
|
[33] |
Nagella P, Ahmad A, Kim SJ, Chung IM. 2012. Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens. Immunopharmacology and immunotoxicology 34:205−9 doi: 10.3109/08923973.2011.592534
|
[34] |
Dianat M, Veisi A, Ahangarpour A, Fathi Moghaddam H. 2015. The effect of hydro-alcoholic celery (Apium graveolens) leaf extract on cardiovascular parameters and lipid profile in animal model of hypertension induced by fructose. Avicenna journal of phytomedicine 5:203−9
|
[35] |
Huang W, Wang G, Li H, Wang F, Xu Z, et al. 2016. Transcriptional profiling of genes involved in ascorbic acid biosynthesis, recycling, and degradation during three leaf developmental stages in celery. Molecular Genetics and Genomics 291:2131−43 doi: 10.1007/s00438-016-1247-3
|
[36] |
Feng K, Liu J, Duan A, Li T, Yang Q, et al. 2018. AgMYB2 transcription factor is involved in the regulation of anthocyanin biosynthesis in purple celery (Apium graveolens L.). Planta 248:1249−61 doi: 10.1007/s00425-018-2977-8
|
[37] |
Feng K, Hou X, Li M, Jiang Q, Xu Z, et al. 2018. CeleryDB: a genomic database for celery. Database 2018:bay070 doi: 10.1093/database/bay070
|
[38] |
Li M, Feng K, Hou X, Jiang Q, Xu Z, et al. 2020. The genome sequence of celery (Apium graveolens L.), an important leaf vegetable crop rich in apigenin in the Apiaceae family. Horticulture Research 7:9 doi: 10.1038/s41438-019-0235-2
|
[39] |
Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, et al. 2003. The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Research 31:224−8 doi: 10.1093/nar/gkg076
|
[40] |
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28:2731−9 doi: 10.1093/molbev/msr121
|
[41] |
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947−8 doi: 10.1093/bioinformatics/btm404
|
[42] |
Tian J, Peng Z, Zhang J, Song T, Wan H, et al. 2015. McMYB10 regulates coloration via activating McF3'H and later structural genes in ever-red leaf crabapple. Plant Biotechnology Journal 13:948−61 doi: 10.1111/pbi.12331
|
[43] |
Lim SH, Song JH, Kim DH, Kim JK, Lee JY, et al. 2016. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1. Plant Cell Reports 35:641−53 doi: 10.1007/s00299-015-1909-3
|
[44] |
Xu Z, Feng K, Que F, Wang F, Xiong A. 2017. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots. Scientific Reports 7:45324 doi: 10.1038/srep45324
|
[45] |
Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nature protocols 3:1101−8 doi: 10.1038/nprot.2008.73
|
[46] |
Li M, Wang F, Jiang Q, Wang G, Tian C, et al. 2016. Validation and Comparison of Reference Genes for qPCR Normalization of Celery (Apium graveolens) at Different Development Stages. Frontiers in Plant Science 7:313 doi: 10.3389/fpls.2016.00313
|
[47] |
Sparkes IA, Runions J, Kearns A, Hawes C. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols 1:2019−25 doi: 10.1038/nprot.2006.286
|
[48] |
Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, et al. 2007. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal 49:414−27 doi: 10.1111/j.1365-313X.2006.02964.x
|
[49] |
Zhang X, Henriques R, Lin SS, Niu Q, Chua NH. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols 1:641−6 doi: 10.1038/nprot.2006.97
|
[50] |
Jefferson RA, Kavanagh TA, Bevan MW. 1987. Gus Fusions: Beta-Glucuronidase as a Sensitive And Versatile Gene Fusion Marker In Higher-Plants. The EMBO Journal 6:3901−7 doi: 10.1002/j.1460-2075.1987.tb02730.x
|
[51] |
Lee HS, Wicker L. 1991. Anthocyanin Pigments In the Skin Of Lychee Fruit. Journal of Food Science 56:466−8 doi: 10.1111/j.1365-2621.1991.tb05305.x
|
[52] |
Li Y, Mao K, Zhao C, Zhao X, Zhang H, et al. 2012. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiology 160:1011−22 doi: 10.1104/pp.112.199703
|
[53] |
Feng K, Xu Z, Que F, Liu J, Wang F, et al. 2018. An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica. Planta 247:301−15 doi: 10.1007/s00425-017-2783-8
|
[54] |
Gietz RD, Schiestl RH. 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols 2:31−4 doi: 10.1038/nprot.2007.13
|
[55] |
Benzie IFF, Szeto YT. 1999. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry 47:633−6 doi: 10.1021/jf9807768
|
[56] |
Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C. 2000. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. The Plant Cell 12:2383−94 doi: 10.1105/tpc.12.12.2383
|
[57] |
Clotault J, Peltier D, Berruyer R, Thomas M, Briard M, et al. 2008. Expression of carotenoid biosynthesis genes during carrot root development. Journal of Experimental Botany 59:3563−73 doi: 10.1093/jxb/ern210
|
[58] |
Hatlestad GJ, Sunnadeniya RM, Akhavan NA, Gonzalez A, Goldman IL, et al. 2012. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nature Genetics 44:816−20 doi: 10.1038/ng.2297
|
[59] |
Jin W, Wang H, Li M, Wang J, Yang Y, et al. 2016. The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.). Plant Biotechnology Journal 14:2120−33 doi: 10.1111/pbi.12568
|
[60] |
Tan GF, Wang F, Ma J, Zhang X, Xiong A. 2017. Analysis of anthocyanin and apigenin contents and the expression profiles of biosynthesis-related genes in the purple and non-purple varieties of celery. Acta Horticulturae Sinica 44:1327−34 doi: 10.16420/j.issn.0513-353x.2017-0221
|
[61] |
Appelhagen I, Jahns O, Bartelniewoehner L, Sagasser M, Weisshaar B, et al. 2011. Leucoanthocyanidin Dioxygenase in Arabidopsis thaliana: characterization of mutant alleles and regulation by MYB-BHLH-TTG1 transcription factor complexes. Gene 484:61−8 doi: 10.1016/j.gene.2011.05.031
|
[62] |
Sapir M, Oren-Shamir M, Ovadia R, Reuveni M, Evenor D, et al. 2008. Molecular aspects of Anthocyanin fruit tomato in relation to high pigment-1. Journal of Heredity 99:292−303 doi: 10.1093/jhered/esm128
|
[63] |
Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology 4:447−56 doi: 10.1016/S1369-5266(00)00199-0
|
[64] |
Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF. 2004. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. The Plant Journal 40:22−34 doi: 10.1111/j.1365-313X.2004.02183.x
|
[65] |
Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, et al. 2010. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology 10:50 doi: 10.1186/1471-2229-10-50
|
[66] |
Vogt T, Jones P. 2000. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends in Plant Science 5:380−6 doi: 10.1016/S1360-1385(00)01720-9
|
[67] |
Outchkourov NS, Karlova R, Hölscher M, Schrama X, Blilou I, et al. 2018. Transcription Factor-Mediated Control of Anthocyanin Biosynthesis in Vegetative Tissues. Plant Physiology 176:1862−78 doi: 10.1104/pp.17.01662
|
[68] |
Chun OK, Kim DO, Lee CY. 2003. Superoxide radical scavenging activity of the major polyphenols in fresh plums. Journal of Agricultural and Food Chemistry 51:8067−72 doi: 10.1021/jf034740d
|
[69] |
Butelli E, Titta L, Giorgio M, Mock HP, Matros A, et al. 2008. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology 26:1301−8 doi: 10.1038/nbt.1506
|
[70] |
Cavagnaro PF, Iorizzo M, Yildiz M, Senalik D, Parsons J, et al. 2014. A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation. BMC Genomics 15:1118 doi: 10.1186/1471-2164-15-1118
|
[71] |
Iorizzo M, Cavagnaro PF, Bostan H, Zhao Y, Zhang J, et al. 2018. A Cluster of MYB Transcription Factors Regulates Anthocyanin Biosynthesis in Carrot (Daucus carota L.) Root and Petiole. Frontiers in Plant Science 9:1927 doi: 10.3389/fpls.2018.01927
|
[72] |
Xu Z, Yang Q, Feng K, Xiong A. 2019. Changing Carrot Color: Insertions in DcMYB7 Alter the Regulation of Anthocyanin Biosynthesis and Modification. Plant Physiology 181:195−207 doi: 10.1104/pp.19.00523
|