[1]

Howe GA, Jander G. 2008. Plant Immunity to Insect Herbivores. Annual Review of Plant Biology 59:41−66

doi: 10.1146/annurev.arplant.59.032607.092825
[2]

Raza A, Charagh S, Zahid Z, Mubarik MS, Javed R, et al. 2020. Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. Plant Cell Reports1−29

doi: 10.1007/s00299-020-02614-z
[3]

Fung RWM, Wang CY, Smith DL, Gross KC, Tian M. 2004. MeSA and MeJA increase steady-state transcript levels of alternative oxidase and resistance against chilling injury in sweet peppers (Capsicum annuum L.). Plant Science 166:711−9

doi: 10.1016/j.plantsci.2003.11.009
[4]

Savchenko T, Kolla VA, Wang CQ, Nasafi Z, Hicks DR, et al. 2014. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiology 164:1151−60

doi: 10.1104/pp.113.234310
[5]

Yang J, Fei K, Chen J, Wang Z, Zhang W, et al. 2020. Jasmonates alleviate spikelet-opening impairment caused by high temperature stress during anthesis of photo-thermo-sensitive genic male sterile rice lines. Food and Energy Security 9:e233

doi: 10.1002/fes3.233
[6]

Salimi F, Shekari F, Hamzei J. 2016. Methyl jasmonate improves salinity resistance in German chamomile (Matricaria chamomilla L.) by increasing activity of antioxidant enzymes. Acta Physiologiae Plantarum 38:1

doi: 10.1007/s11738-015-2023-4
[7]

Xu Q, Truong TT, Barrero JM, Jacobsen JV, Hocart CH, et al. 2016. A role for jasmonates in the release of dormancy by cold stratification in wheat. Journal of Experimental Botany 67:3497−508

doi: 10.1093/jxb/erw172
[8]

Wang Z, Liu L, Su H, Guo L, Zhang J, et al. 2020. Jasmonate and aluminum crosstalk in tomato: Identification and expression analysis of WRKYs and ALMTs during JA/Al-regulated root growth. Plant Physiology and Biochemistry 154:409−18

doi: 10.1016/j.plaphy.2020.06.026
[9]

Chen J, Sonobe K, Ogawa N, Masuda S, Nagatani A, et al. 2012. Inhibition of arabidopsis hypocotyl elongation by jasmonates is enhanced under red light in phytochrome B dependent manner. Journal of Plant Research 126:161−8

doi: 10.1007/s10265-012-0509-3
[10]

Qi T, Huang H, Song S, Xie D. 2015. Regulation of Jasmonate-Mediated Stamen Development and Seed Production by a bHLH-MYB Complex in Arabidopsis. The Plant Cell 27:1620−33

doi: 10.1105/tpc.15.00116
[11]

Cai Q, Yuan Z, Chen M, Yin C, Luo Z, et al. 2014. Jasmonic acid regulates spikelet development in rice. Nature Communications 5:3476

doi: 10.1038/ncomms4476
[12]

Gfeller A, Liechti R, Farmer EE. 2010. Arabidopsis jasmonate signaling pathway. Science Signaling 3:cm4

doi: 10.1126/scisignal.3109cm4
[13]

Wasternack C, Strnad M. 2016. Jasmonate signaling in plant stress responses and development – active and inactive compounds. New Biotechnology 33:604−13

doi: 10.1016/j.nbt.2015.11.001
[14]

Chini A, Fonseca S, Chico JM, Fernández-Calvo P, Solano R. 2009. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. The Plant Journal 59:77−87

doi: 10.1111/j.1365-313X.2009.03852.x
[15]

Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G. 2007. The tify family previously known as ZIM. Trends in Plant Science 12:239−44

doi: 10.1016/j.tplants.2007.04.004
[16]

Chini A, Fonseca S, Fernández G, Adie B, Chico JM, et al. 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666−71

doi: 10.1038/nature06006
[17]

Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, et al. 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661−65

doi: 10.1038/nature05960
[18]

Browse J. 2009. Jasmonate Passes Muster: A Receptor and Targets for the Defense Hormone. Annual Review of Plant Biology 60:183−205

doi: 10.1146/annurev.arplant.043008.092007
[19]

Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, et al. 2010. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788−91

doi: 10.1038/nature08854
[20]

Acosta IF, Gasperini D, Chételat A, Stolz S, Santuari L, et al. 2013. Role of NINJA in root jasmonate signaling. Proceedings of the National Academy of Sciences of the United States of America 110:15473−8

doi: 10.1073/pnas.1307910110
[21]

Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, et al. 2013. Global flood risk under climate change. Nature Climate Change 3:816−21

doi: 10.1038/nclimate1911
[22]

Ding J, Liang P, Wu P, Zhu M, Li C, et al. 2020. Effects of waterlogging on grain yield and associated traits of historic wheat cultivars in the middle and lower reaches of the Yangtze River, China. Field Crops Research 246:107695

doi: 10.1016/j.fcr.2019.107695
[23]

Mondal S, Khan MIR, Dixit S, Sta. Cruz PC, Septiningsih EM, Ismail AM. 2020. Growth, productivity and grain quality of AG1 and AG2 QTLs introgression lines under flooding in direct-seeded rice system. Field Crops Research 248:107713

doi: 10.1016/j.fcr.2019.107713
[24]

Xu X, Ji J, Xu Q, Qi X, Weng Y, et al. 2018. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation. The Plant Journal 93:917−30

doi: 10.1111/tpj.13819
[25]

Qi X, Li Q, Shen J, Qian C, Xu X, et al. 2020. Sugar enhances waterlogging-induced adventitious root formation in cucumber by promoting auxin transport and signalling. Plant, Cell & Environment 43:1545−57

doi: 10.1111/pce.13738
[26]

Huang S, Li R, Zhang Z, Li L, Gu X, et al. 2009. The genome of the cucumber, Cucumis sativus L. Nature Genetics 41:1275−81

doi: 10.1038/ng.475
[27]

Ye H, Du H, Tang N, Li X, Xiong L. 2009. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Molecular Biology 71:291−305

doi: 10.1007/s11103-009-9524-8
[28]

Zhang Y, Gao M, Singer SD, Fei Z, Wang H, Wang X. 2012. Genome-wide identification and analysis of the TIFY gene family in grape. Plos One 7:e44465

doi: 10.1371/journal.pone.0044465
[29]

Zhu D, Cai H, Luo X, Bai X, Deyholos MK, et al. 2012. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance. Biochemical and Biophysical Research Communications 426:273−9

doi: 10.1016/j.bbrc.2012.08.086
[30]

Xia W, Yu H, Cao P, Luo J, Wang N. 2017. Identification of TIFY Family Genes and Analysis of Their Expression Profiles in Response to Phytohormone Treatments and Melampsora larici-populina Infection in Poplar. Frontiers in Plant Science 8:493

doi: 10.3389/fpls.2017.00493
[31]

Shen J, Zou Z, Xing H, Duan Y, Zhu X, et al. 2020. Genome-Wide Analysis Reveals Stress and Hormone Responsive Patterns of JAZ Family Genes in Camellia Sinensis. International Journal of Molecular Sciences 21:2433

doi: 10.3390/ijms21072433
[32]

Hu R, Qi G, Kong Y, Kong D, Gao Q, et al. 2010. Comprehensive Analysis of NAC Domain Transcription Factor Gene Family in Populus trichocarpa. BMC Plant Biology 10:145

doi: 10.1186/1471-2229-10-145
[33]

Baillo EH, Kimotho RN, Zhang Z, Xu P. 2019. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement. Genes 10:771

doi: 10.3390/genes10100771
[34]

Liberatore KL, Dukowic-Schulze S, Miller ME, Chen C, Kianian SF. 2016. The role of mitochondria in plant development and stress tolerance. Free Radical Biology and Medicine 100:238−56

doi: 10.1016/j.freeradbiomed.2016.03.033
[35]

Bai Y, Meng Y, Huang D, Qi Y, Chen M. 2011. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family. Genomics 98:128−36

doi: 10.1016/j.ygeno.2011.05.002
[36]

Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, et al. 2007. A downstream mediator in the growth repression limb of the jasmonate pathway. The Plant Cell 19:2470−83

doi: 10.1105/tpc.107.050708
[37]

Oh Y, Baldwin IT, Galis I. 2013. A jasmonate ZIM-domain protein NaJAZd regulates floral jasmonic acid levels and counteracts flower abscission in Nicotiana attenuata plants. PLoS One 8:e57868

doi: 10.1371/journal.pone.0057868
[38]

Zhou X, Yan S, Sun C, Li S, Li J, et al. 2015. A maize jasmonate Zim-domain protein, ZmJAZ14, associates with the JA, ABA, and GA signaling pathways in transgenic Arabidopsis. PLoS One 10:e121824

doi: 10.1371/journal.pone.0121824
[39]

Liu F, Sun T, Wang L, Su W, Gao S, et al. 2017. Plant jasmonate ZIM domain genes: shedding light on structure and expression patterns of JAZ gene family in sugarcane. Bmc Genomics 18:771

doi: 10.1186/s12864-017-4142-3
[40]

Wang P, Yu S, Han X, Xu J, He Q, et al. 2020. Identification, molecular characterization and expression of JAZ genes in Lycoris aurea. PloS One 15:e0230177

doi: 10.1371/journal.pone.0230177
[41]

Cai Z, Chen Y, Liao J, Wang D. 2020. Genome-wide identification and expression analysis of jasmonate ZIM domain gene family in tuber mustard (Brassica juncea var. tumida). PloS One 15:e0234738

doi: 10.1371/journal.pone.0234738
[42]

Taniguchi S, Hosokawa-Shinonaga Y, Tamaoki D, Yamada S, Akimitsu K, et al. 2014. Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice. Plant, Cell & Environment 37:451−61

doi: 10.1111/pce.12169
[43]

Yamada S, Kano A, Tamaoki D, Miyamoto A, Shishido H, et al. 2012. Involvement of OsJAZ8 in jasmonate−induced resistance to bacterial blight in rice. Plant and Cell Physiology 53:2060−72

doi: 10.1093/pcp/pcs145
[44]

Peethambaran PK, Glenz R, Höninger S, Shahinul Islam SM, Hummel S, et al. 2018. Salt-inducible expression of OsJAZ8 improves resilience against salt-stress. BMC Plant Biology 18:311

doi: 10.1186/s12870-018-1521-0
[45]

Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, et al. 2000. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. The Plant Cell 12:1041−61

doi: 10.1105/tpc.12.7.1041
[46]

von Malek B, van der Graaff E, Schneitz K, Keller B. 2002. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta 216:187−92

doi: 10.1007/s00425-002-0906-2
[47]

Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, et al. 2012. Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis. The Plant Cell 24:2515−27

doi: 10.1105/tpc.112.099119
[48]

Xu X, Ji J, Ma X, Xu Q, Qi X, et al. 2016. Comparative Proteomic Analysis Provides Insight into the Key Proteins Involved in Cucumber (Cucumis sativus L.) Adventitious Root Emergence under Waterlogging Stress. Frontiers in plant science 7:e1515

doi: 10.3389/fpls.2016.01515
[49]

Zhao C, Pan X, Yu Y, Zhu Y, Kong F, et al. 2020. Overexpression of a TIFY family gene, GsJAZ2, exhibits enhanced tolerance to alkaline stress in soybean. Molecular Breeding 40:33

doi: 10.1007/s11032-020-01113-z
[50]

An X, Hao Y, Li E, Xu K, Cheng C. 2017. Functional identification of apple MdJAZ2 in Arabidopsis with reduced JA-sensitivity and increased stress tolerance. Plant Cell Reports 36:255−65

doi: 10.1007/s00299-016-2077-9
[51]

Sun H, Chen L, Li J, Hu M, Ullah A, et al. 2017. The JASMONATE ZIM-Domain Gene Family Mediates JA Signaling and Stress Response in Cotton. Plant and Cell Physiology 58:2139−54

doi: 10.1093/pcp/pcx148
[52]

Jing Y, Liu J, Liu P, Ming D, Sun J. 2019. Overexpression of TaJAZ1 increases powdery mildew resistance through promoting reactive oxygen species accumulation in bread wheat. Scientific Reports 9:5691

doi: 10.1038/s41598-019-42177-y
[53]

Wang Y, Qiao L, Bai J, Wang P, Duan W, et al. 2017. Genome-wide characterization of JASMONATE-ZIM DOMAIN transcription repressors in wheat (Triticum aestivum L.). BMC Genomics 18:152

doi: 10.1186/s12864-017-3582-0
[54]

Hong H, Xiao H, Yuan H, Zhai J, Huang X. 2015. Cloning and characterisation of JAZ gene family in Hevea brasiliensis. Plant Biology (Stuttgart, Germany) 17:618−24

doi: 10.1111/plb.12288
[55]

Miransari M, Smith DL. 2014. Plant hormones and seed germination. Environmental and Experimental Botany 99:110−21

doi: 10.1016/j.envexpbot.2013.11.005
[56]

Zou L, Pan C, Wang M, Cui L, Han B. 2020. Progress on the mechanism of hormones regulating plant flower formation. Hereditas (Beijing) 42:739−51

doi: 10.16288/j.yczz.20-014
[57]

Zhu Z, An F, Feng Y, Li P, Xue L, et al. 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 108:12539−44

doi: 10.1073/pnas.1103959108
[58]

Yang D, Yao J, Mei C, Tong X, Zeng L, et al. 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences of the United States of America 109:E1192−E1200

doi: 10.1073/pnas.1201616109
[59]

Chung HS, Howe GA. 2009. A Critical Role for the TIFY Motif in Repression of Jasmonate Signaling by a Stabilized Splice Variant of the JASMONATE ZIM-Domain Protein JAZ10 in Arabidopsis. The Plant Cell 21:131−45

doi: 10.1105/tpc.108.064097
[60]

Fu J, Wu H, Ma S, Xiang D, Liu R, et al. 2017. OsJAZ1 Attenuates Drought Resistance by Regulating JA and ABA Signaling in Rice. Frontiers in Plant Science 8:2108

doi: 10.3389/fpls.2017.02108
[61]

Pauwels L, Goossens A. 2011. The JAZ proteins: a crucial interface in the jasmonate signaling cascade. The Plant Cell 23:3089−100

doi: 10.1105/tpc.111.089300
[62]

Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, et al. 2006. Pfam: clans, web tools and services. Nucleic Acids Research 34:D247−D251

doi: 10.1093/nar/gkj149
[63]

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. 2003. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 31:3784−8

doi: 10.1093/nar/gkg563
[64]

Tamura T, Akutsu T. 2007. Subcellular location prediction of proteins using support vector machines with alignment of block sequences utilizing amino acid composition. BMC Bioinformatics 8:466

doi: 10.1186/1471-2105-8-466
[65]

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673−80

doi: 10.1093/nar/22.22.4673
[66]

Zhang C, Zhang H, Zhao Y, Jiang H, Zhu S, et al. 2013. Genome-wide analysis of the CCCH zinc finger gene family in Medicago truncatula. Plant Cell Reports 32:1543−55

doi: 10.1007/s00299-013-1466-6
[67]

Bailey TL, Elkan C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings. International Conference on Intelligent Systems for Molecular Biology 2:28−36

[68]

Voorrips RE. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 93:77−8

doi: 10.1093/jhered/93.1.77
[69]

Wang Y, Li J, Paterson AH. 2013. MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics 29:1458−60

doi: 10.1093/bioinformatics/btt150
[70]

Akhunov ED, Sehgal S, Liang H, Wang S, Akhunova AR, et al. 2013. Comparative Analysis of Syntenic Genes in Grass Genomes Reveals Accelerated Rates of Gene Structure and Coding Sequence Evolution in Polyploid Wheat. Plant Physiology 161:252−65

doi: 10.1104/pp.112.205161
[71]

Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−7

doi: 10.1093/nar/30.1.325
[72]

Xu X, Chen M, Ji J, Xu Q, Qi X, et al. 2017. Comparative RNA-seq based transcriptome profiling of waterlogging response in cucumber hypocotyls reveals novel insights into the de novo adventitious root primordia initiation. BMC Plant Biology 17:129

doi: 10.1186/s12870-017-1081-8
[73]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[74]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[75]

Sparkes IA, Runions J, Kearns A, Hawes C. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols 1:2019−25

doi: 10.1038/nprot.2006.286