[1] |
Koepke T, Dhingra A. 2013. Rootstock scion somatogenetic interactions in perennial composite plants. Plant Cell Reports 32:1321−37 doi: 10.1007/s00299-013-1471-9
|
[2] |
Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, et al. 2016. Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends in plant science 21:418−37 doi: 10.1016/j.tplants.2015.11.008
|
[3] |
Venema JH, Elzenga JTM, Bouwmeester HJ. 2011. Selection and breeding of robust rootstocks as a tool to improve nutrient-use efficiency and abiotic stress tolerance in tomato. Proc. I International Conference on Organic Greenhouse Horticulture 915, 1: 109−15. Bleiswijk, Netherlands: ISHS Acta Horticulturae https://doi.org/10.17660/ActaHortic.2011.915.13
|
[4] |
Haroldsen VM, Chi-Ham CL, Bennett AB. 2012. Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks. Journal of biotechnology 161:349−53 doi: 10.1016/j.jbiotec.2012.06.017
|
[5] |
Davis AR, Perkins-Veazie P, Sakata Y, López-Galarza S, Maroto JV, et al. 2008. Cucurbit grafting. Critical Reviews in Plant Sciences 27:50−74 doi: 10.1080/07352680802053940
|
[6] |
Castle WS. 2010. A career perspective on citrus rootstocks, their development, and commercialization. HortScience 45:11−5 doi: 10.21273/HORTSCI.45.1.11
|
[7] |
Habran A, Commisso M, Helwi P, Hilbert G, Negri S, et al. 2016. Roostocks/scion/nitrogen interactions affect secondary metabolism in the grape berry. Frontiers in Plant Science 7:1134 doi: 10.3389/fpls.2016.01134
|
[8] |
Hayat F, Qiu C, Xu X, Wang Y, Wu T, et al. 2019. Rootstocks Influence Morphological and Biochemical Changes in Young ‘Red Fuji’Apple Plants. INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY 21:1097−105 http://www.fspublishers.org/Issue.php?y=2019&v_no=21&categoryID=888
|
[9] |
Robinson T. 2011. Advances in apple culture worldwide. Revista Brasileira de Fruticultura 33:37−47 doi: 10.1590/S0100-29452011000500006
|
[10] |
Richer RA. 2008. Leaf phenology and carbon dynamics in six leguminous trees. African journal of ecology 46:88−95 doi: 10.1111/j.1365-2028.2007.00819.x
|
[11] |
Albacete A, Martínez-Andújar C, Martínez-Pérez A, Thompson AJ, Dodd IC, et al. 2015. Unravelling rootstock × scion interactions to improve food security. Journal of Experimental Botany 66:2211−26 doi: 10.1093/jxb/erv027
|
[12] |
Webster A. 2004. Vigour mechanisms in dwarfing rootstocks for temperate fruit trees. Proc. I International Symposium on Rootstocks for Deciduous Fruit Tree Species 658, 2: 29−41. Zaragoza, Spain: ISHS Acta Horticulturae https://doi.org/10.17660/ActaHortic.2004.658.1
|
[13] |
Mudge K, Janick J, Scofield S, Goldschmidt EE. 2009. A history of grafting. In Horticultural Reviews, ed. Janick J, 35:546. Hoboken, New Jersey: John Wiley & Sons. pp. 437−93 https://doi.org/10.1002/9780470593776.ch9
|
[14] |
Pérez-Alfocea F, Albacete A, Ghanem ME, Dodd IC. 2010. Hormonal regulation of source–sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signalling in tomato. Functional Plant Biology 37:592−603 doi: 10.1071/FP10012
|
[15] |
Aloni B, Cohen R, Karni L, Aktas H, Edelstein M. 2010. Hormonal signaling in rootstock–scion interactions. Scientia Horticulturae 127:119−26 doi: 10.1016/j.scienta.2010.09.003
|
[16] |
Melnyk CW, Meyerowitz EM. 2015. Plant grafting. Current Biology 25:R183−R188 doi: 10.1016/j.cub.2015.01.029
|
[17] |
Lliso I, Forner JB, Talón M. 2004. The dwarfing mechanism of citrus rootstocks F&A 418 and #23 is related to competition between vegetative and reproductive growth. Tree Physiology 24:225−32 doi: 10.1093/treephys/24.2.225
|
[18] |
Hudina M, Fajt N, Ătampar F. 2006. Influence of rootstock on orchard productivity and fruit quality in peach cv. 'Redhaven'. The Journal of Horticultural Science and Biotechnology 81:1064−8 doi: 10.1080/14620316.2006.11512172
|
[19] |
Van Hooijdonk B, Woolley D, Warrington I, Tustin S. 2011. Rootstocks modify scion architecture, endogenous hormones, and root growth of newly grafted 'Royal Gala' apple trees. Journal of the American Society for Horticultural Science 136:93−102 doi: 10.21273/JASHS.136.2.93
|
[20] |
Karlidağ H, Aslantaş R, Eşitken A. 2014. Effects of interstock (M9) length grafted onto MM106 rootstock on sylleptic shoot formation, growth and yield in some apple cultivars. Journal of Agricultural Sciences 20:331−36 doi: 10.1501/tarimbil_0000001291
|
[21] |
Gjamovski V, Kiprijanovski M. 2011. Influence of nine dwarfing apple rootstocks on vigour and productivity of apple cultivar 'Granny Smith'. Scientia Horticulturae 129:742−46 doi: 10.1016/j.scienta.2011.05.032
|
[22] |
Zhou Y, Underhill SJR. 2020. Expression of gibberellin metabolism genes and signalling components in dwarf phenotype of breadfruit (Artocarpus altilis) plants growing on marang (Artocarpus odoratissimus) rootstocks. Plants 9:634 doi: 10.3390/plants9050634
|
[23] |
Sitarek M, Bartosiewicz B. 2011. Influence of a few seedling rootstocks on the growth, yield and fruit quality of apricot trees. Journal of Fruit and Ornamental Plant Research 19:81−6
|
[24] |
Amiri ME, Fallahi E, Safi-Songhorabad M. 2014. Influence of rootstock on mineral uptake and scion growth of 'golden delicious' and 'royal gala' apples. Journal of Plant Nutrition 37:16−29 doi: 10.1080/01904167.2013.792838
|
[25] |
Tworkoski T, Fazio G. 2015. Effects of size-controlling apple rootstocks on growth, abscisic acid, and hydraulic conductivity of scion of different vigor. International Journal of Fruit Science 15:369−81 doi: 10.1080/15538362.2015.1009973
|
[26] |
Zhou Y, Hayat F, Yao J, Tian X, Wang Y, et al. 2021. Size-controlling interstocks affect growth vigour by downregulating photosynthesis in eight-year-old 'Red Fuji' apple trees. European Journal Of Horticultural Science 86:146−55 doi: 10.17660/eJHS.2021/86.2.5
|
[27] |
Hayat F, Asghar S, Yanmin Z, Xue T, Nawaz MA, et al. 2020. Rootstock Induced Vigour is Associated with Physiological, Biochemical and Molecular Changes in ‘Red Fuji’Apple. International Journal of Agriculture and Biology 24:1823−34 http://www.fspublishers.org/published_papers/2595_doi%2015.1627%20IJAB-20-0178%20(12).pdf
|
[28] |
Gregory PJ, Atkinson CJ, Bengough AG, Else MA, Fernández-Fernández F, et al. 2013. Contributions of roots and rootstocks to sustainable, intensified crop production. Journal of experimental botany 64:1209−22 doi: 10.1093/jxb/ers385
|
[29] |
Atkinson CJ, Else MA, Taylor L, Dover CJ. 2003. Root and stem hydraulic conductivity as determinants of growth potential in grafted trees of apple (Malus pumila Mill.). Journal of Experimental Botany 54:1221−29 doi: 10.1093/jxb/erg132
|
[30] |
Basile B, Marsal J, Solari LI, Tyree MT, Bryla DR, et al. 2003. Hydraulic conductance of peach trees grafted on rootstocks with differing size-controlling potentials. The Journal of Horticultural Science and Biotechnology 78:768−74 doi: 10.1080/14620316.2003.11511697
|
[31] |
Solari LI, DeJong TM. 2006. The effect of root pressurization on water relations, shoot growth, and leaf gas exchange of peach (Prunus persica) trees on rootstocks with differing growth potential and hydraulic conductance. Journal of Experimental Botany 57:1981−89 doi: 10.1093/jxb/erj145
|
[32] |
Tombesi S, Johnson RS, Day KR, DeJong TM. 2010. Interactions between rootstock, inter-stem and scion xylem vessel characteristics of peach trees growing on rootstocks with contrasting size-controlling characteristics. AoB PLANTS 2010:plq013 doi: 10.1093/aobpla/plq013
|
[33] |
Chen B, Wang C, Tian Y, Chu Q, Hu C. 2015. Anatomical characteristics of young stems and mature leaves of dwarf pear. Scientia Horticulturae 186:172−79 doi: 10.1016/j.scienta.2015.02.025
|
[34] |
Saeed M, Dodd P, Sohail L. 2010. Anatomical studies of stems, roots and leaves of selected citrus rootstock varieties in relation to their vigour. Journal of Horticulture and Forestry 2:87−94
|
[35] |
Zorić L, Ljubojević M, Merkulov L, Luković J, Ognjanov V. 2012. Anatomical characteristics of cherry rootstocks as possible preselecting tools for prediction of tree vigor. Journal of Plant Growth Regulation 31:320−31 doi: 10.1007/s00344-011-9243-7
|
[36] |
Martínez-Alcántara B, Rodriguez-Gamir J, Martínez-Cuenca MR, Iglesias DJ, Primo-Millo E, et al. 2013. Relationship between hydraulic conductance and citrus dwarfing by the Flying Dragon rootstock (Poncirus trifoliata L. Raft var. monstruosa). Trees 27:629−38 doi: 10.1007/s00468-012-0817-1
|
[37] |
Zhou Y, Tian X, Yao J, Zhang Z, Wang Y, et al. 2020. Morphological and photosynthetic responses differ among eight apple scion-rootstock combinations. Scientia Horticulturae 261:108981 doi: 10.1016/j.scienta.2019.108981
|
[38] |
Sauer M, Robert S, Kleine-Vehn J. 2013. Auxin: simply complicated. Journal of experimental botany 64:2565−77 doi: 10.1093/jxb/ert139
|
[39] |
Foster TM, McAtee PA, Waite CN, Boldingh HL, McGhie TK. 2017. Apple dwarfing rootstocks exhibit an imbalance in carbohydrate allocation and reduced cell growth and metabolism. Horticulture research 4:17009 doi: 10.1038/hortres.2017.9
|
[40] |
Kviklys D, Samuolienė G. 2020. Relationships among the rootstock, crop load, and sugar hormone signaling of apple tree, and their effects on biennial bearing. Frontiers in Plant Science 11:1213 doi: 10.3389/fpls.2020.01213
|
[41] |
Baron D, Amaro ACE, Pina A, Ferreira G. 2019. An overview of grafting re-establishment in woody fruit species. Scientia horticulturae 243:84−91 doi: 10.1016/j.scienta.2018.08.012
|
[42] |
Lochard RG, Schneider GW. 1981. Stock and scion growth relationships and the dwarfing mechanism in apple. In Horticultural Reviews, ed. Janick J, 3:483. Westport Connecticut: AVI Publishing Company. pp. 315−75 https://doi.org/10.1002/9781118060766.ch7
|
[43] |
Soumelidou K, Battey NH, John P, Barnett JR. 1994. The anatomy of the developing bud union and its relationship to dwarfing in apple. Annals of Botany 74:605−11 doi: 10.1006/anbo.1994.1161
|
[44] |
Kamboj JS, Browning G, Quinlan JD, Blake PS, Baker DA. 1997. Polar transport of [3H]-IAA in apical shoot segments of different apple rootstocks. Journal of Horticultural Science 72:773−80 doi: 10.1080/14620316.1997.11515570
|
[45] |
Li H, Zhang H, Yu C, Ma L, Wang Y, et al. 2012. Possible roles of auxin and zeatin for initiating the dwarfing effect of M9 used as apple rootstock or interstock. Acta physiologiae plantarum 34:235−44 doi: 10.1007/s11738-011-0822-9
|
[46] |
Song C, Zhang D, Zhang J, Zheng L, Zhao C, et al. 2016. Expression analysis of key auxin synthesis, transport, and metabolism genes in different young dwarfing apple trees. Acta Physiologiae Plantarum 38:43 doi: 10.1007/s11738-016-2065-2
|
[47] |
Van Hooijdonk B, Woolley DJ, Warrington IJ, Tustin DS. 2010. Initial alteration of scion architecture by dwarfing apple rootstocks may involve shoot-root-shoot signalling by auxin, gibberellin, and cytokinin. The Journal of Horticultural Science and Biotechnology 85:59−65 doi: 10.1080/14620316.2010.11512631
|
[48] |
Kamboj JS, Blake PS, Quinlan JD, Baker DA. 1999. Identification and quantitation by GC-MS of zeatin and zeatin riboside in xylem sap from rootstock and scion of grafted apple trees. Plant Growth Regulation 28:199−205 doi: 10.1023/A:1006292309765
|
[49] |
Saidha T, Goldschmidt EE, Monselise SP. 1985. Endogenous cytokinins from developing 'Shamouti' orange fruits derived from leafy and leafless inflorescences. Scientia horticulturae 26:35−41 doi: 10.1016/0304-4238(85)90099-8
|
[50] |
Sorce C, Massai R, Picciarelli P, Lorenzi R. 2002. Hormonal relationships in xylem sap of grafted and ungrafted Prunus rootstocks. Scientia Horticulturae 93:333−42 doi: 10.1016/S0304-4238(01)00338-7
|
[51] |
Tan M, Li G, Qi S, Liu X, Chen X, et al. 2018. Identification and expression analysis of the IPT and CKX gene families during axillary bud outgrowth in apple (Malus domestica Borkh.). Gene 651:106−17 doi: 10.1016/j.gene.2018.01.101
|
[52] |
Feng Y, Zhang X, Wu T, Xu X, Han Z, Wang Y. 2017. Methylation effect on IPT5b gene expression determines cytokinin biosynthesis in apple rootstock. Biochemical and Biophysical Research Communications 482:604−9 doi: 10.1016/j.bbrc.2016.11.080
|
[53] |
Peng P, Yan Z, Zhu Y, Li J. 2008. Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 through proteasome-mediated protein degradation. Molecular Plant 1:338−46 doi: 10.1093/mp/ssn001
|
[54] |
Olszewski N, Sun T, Gubler F. 2002. Gibberellin signaling: biosynthesis, catabolism, and response pathways. The Plant Cell 14:S61−S80 doi: 10.1105/tpc.010476
|
[55] |
Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Annual Review of Plant Biology 59:225−51 doi: 10.1146/annurev.arplant.59.032607.092804
|
[56] |
Bulley SM, Wilson FM, Hedden P, Phillips AL, Croker SJ, et al. 2005. Modification of gibberellin biosynthesis in the grafted apple scion allows control of tree height independent of the rootstock. Plant Biotechnology Journal 3:215−23 doi: 10.1111/j.1467-7652.2005.00119.x
|
[57] |
Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JAD, Amasino RM. 2003. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. The Plant Cell 15:151−63 doi: 10.1105/tpc.005975
|
[58] |
Tworkoski T, Fazio G. 2016. Hormone and growth interactions of scions and size-controlling rootstocks of young apple trees. Plant growth regulation 78:105−19 doi: 10.1007/s10725-015-0078-2
|
[59] |
Hu F, Chen Z, Zhao J, Wang X, Su W, et al. 2018. Differential gene expression between the vigorous and dwarf litchi cultivars based on RNA-Seq transcriptome analysis. PloS one 13:e0208771 doi: 10.1371/journal.pone.0208771
|
[60] |
Foster T, Kirk C, Jones WT, Allan AC, Espley R, et al. 2007. Characterisation of the DELLA subfamily in apple (Malus × domestica Borkh.). Tree Genetics & Genomes 3:187−97 doi: 10.1007/s11295-006-0047-z
|
[61] |
Shen Y, Zhuang W, Tu X, Gao Z, Xiong A, et al. 2019. Transcriptomic analysis of interstock-induced dwarfism in Sweet Persimmon (Diospyros kaki Thunb.). Horticulture research 6:51 doi: 10.1038/s41438-019-0133-7
|
[62] |
El-Sharkawy I, El Kayal W, Prasath D, Fernández H, Bouzayen M, et al. 2012. Identification and genetic characterization of a gibberellin 2-oxidase gene that controls tree stature and reproductive growth in plum. Journal of Experimental Botany 63:1225−39 doi: 10.1093/jxb/err345
|
[63] |
Davies PJ. 2010. The plant hormones: their nature, occurrence, and functions. In Plant hormones, ed. Davies PJ. 3rd edition:XIV, 802. Dordrecht: Springer. pp. 1−15 https://doi.org/10.1007/978-1-4020-2686-7
|
[64] |
Luo X, Chen Z, Gao J, Gong Z. 2014. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. The Plant Journal 79:44−55 doi: 10.1111/tpj.12534
|
[65] |
Lombardo MC, Lamattina L. 2018. Abscisic acid and nitric oxide modulate cytoskeleton organization, root hair growth and ectopic hair formation in Arabidopsis. Nitric Oxide 80:89−97 doi: 10.1016/j.niox.2018.09.002
|
[66] |
Sharp RE, LeNoble ME. 2002. ABA, ethylene and the control of shoot and root growth under water stress. Journal of Experimental Botany 53:33−7 doi: 10.1093/jexbot/53.366.33
|
[67] |
Jindal KK, Dalbro S, Andersen AS, Poll L. 1974. Endogenous growth substances in normal and dwarf mutants of cortland and golden delicious apple shoots. Physiologia Plantarum 32:71−7 doi: 10.1111/j.1399-3054.1974.tb03729.x
|
[68] |
Noda K, Okuda H, Iwagaki I. 2000. Indole acetic acid and abscisic acid levels in new shoots and fibrous roots of citrus scion-rootstock combinations. Scientia horticulturae 84:245−54 doi: 10.1016/S0304-4238(99)00080-1
|
[69] |
Tworkoski T, Miller S. 2007. Rootstock effect on growth of apple scions with different growth habits. Scientia horticulturae 111:335−43 doi: 10.1016/j.scienta.2006.10.034
|
[70] |
Moghadam EG, Shabani Z. 2014. The relation of endogenous abscisic acid and indole acetic acid on vigor of some selected dwarf mahaleb (Prunus mahaleb L.) genotypes. Journal of Horticulture and Forestry 6:107−11 doi: 10.5897/JHF2014.0366
|
[71] |
Ghanem ME, Albacete A, Smigocki AC, Frébort I, Pospíšilová H, et al. 2011. Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany 62:125−40 doi: 10.1093/jxb/erq266
|
[72] |
Kviklys D, Lanauskas J, Uselis N, Viškelis J, Viškelienė A, et al. 2017. Rootstock vigour and leaf colour affect apple tree nutrition. Zemdirbyste-Agriculture 104:185−90 doi: 10.13080/z-a.2017.104.024
|
[73] |
Al-Hinai YK, Roper TR. 2004. Rootstock effects on growth and quality of 'Gala' apples. HortScience 39:1231−3 doi: 10.21273/HORTSCI.39.6.1231
|
[74] |
Rosati A, DeJong T, Southwick S. 1997. Comparison of leaf mineral content, carbon assimilation and stem water potential of two apricot (Prunus armeniaca) cultivars grafted on 'Citation' and 'Marianna 2624' rootstocks. Proc. VI International Symposium on Integrated Canopy, Rootstock, Environmental Physiology in Orchard Systems 451, 2:263−68. Wenatchee, Washington and Penticton, British Columbia, USA and Canada: ISHS Acta Horticulturae. https://doi.org/10.17660/ActaHortic.1997.451.29
|
[75] |
Moreno MA, Adrada R, Aparicio J, BetráN S. 2001. Performance of 'Sunburst' sweet cherry grafted on different rootstocks. The Journal of Horticultural Science and Biotechnology 76:167−73 doi: 10.1080/14620316.2001.11511345
|
[76] |
Zarrouk O, Gogorcena Y, Gómez-Aparisi J, Betrán JA, Moreno MA. 2005. Influence of almond × peach hybrids rootstocks on flower and leaf mineral concentration, yield and vigour of two peach cultivars. Scientia Horticulturae 106:502−14 doi: 10.1016/j.scienta.2005.04.011
|
[77] |
Thorp TG, Boyd LM, Barnett AM, Lowe RG, Hofstee BJ, et al. 2007. Effect of inter-specific rootstocks on inorganic nutrient concentrations and fruit quality of 'Hort16A' kiwifruit (Actinidia chinensis Planch. var. chinensis). The Journal of Horticultural Science and Biotechnology 82:829−38 doi: 10.1080/14620316.2007.11512314
|
[78] |
Fazio G, Wan Y, Kviklys D, Romero L, Adams R, et al. 2014. Dw2, a new dwarfing locus in apple rootstocks and its relationship to induction of early bearing in apple scions. Journal of the American Society for Horticultural Science 139:87−98 doi: 10.21273/JASHS.139.2.87
|
[79] |
Hirst PM, Ferree DC. 1995. Rootstock effects on shoot morphology and spur quality of 'Delicious' apple and relationships with precocity and productivity. Journal of the American Society for Horticultural Science 120:622−34 doi: 10.21273/JASHS.120.4.622
|
[80] |
Aguirre PB, Al-Hinai YK, Roper TR, Krueger AR. 2001. Apple tree rootstock and fertilizer application timing affect nitrogen uptake. HortScience 36:1202−5 doi: 10.21273/HORTSCI.36.7.1202
|
[81] |
Sotiropoulos TE. 2008. Performance of the apple (Malus domestica Borkh) cultivar Imperial Double Red Delicious grafted on five rootstocks. Horticultural Science 35:7−11 doi: 10.17221/645-hortsci
|
[82] |
Chang C, Li C, Li C, Kang X, Zou Y. 2014. Differences in the efficiency of potassium (K) uptake and use in five apple rootstock genotypes. Journal of Integrative Agriculture 13:1934−42 doi: 10.1016/S2095-3119(14)60839-X
|
[83] |
Mestre L, Reig G, Betrán JA, Pinochet J, Moreno MÁ. 2015. Influence of peach–almond hybrids and plum-based rootstocks on mineral nutrition and yield characteristics of 'Big Top' nectarine in replant and heavy-calcareous soil conditions. Scientia Horticulturae 192:475−81 doi: 10.1016/j.scienta.2015.05.020
|
[84] |
Atkinson CJ, Policarpo M, Webster AD, Kuden AM. 1999. Drought tolerance of apple rootstocks: production and partitioning of dry matter. Plant and Soil 206:223−35 doi: 10.1023/A:1004415817237
|
[85] |
Hussein IA, McFarland MJ. 1994. Rootstock-induced differences in sap flow accumulation of 'Granny Smith' apple. HortScience 29:1120−23 doi: 10.21273/HORTSCI.29.10.1120
|
[86] |
Higgs KH, Jones HG. 1991. Water relations and cropping of apple cultivars on a dwarfing rootstock in response to imposed drought. Journal of Horticultural Science 66:367−79 doi: 10.1080/00221589.1991.11516164
|
[87] |
Kalaji MH, Pietkiewicz S. 2004. Some physiological indices to be exploited as a crucial tool in plant breeding. Plant Breeding and Seed Science 49:19−39
|
[88] |
Kalaji HM, Bosa K, Kościelniak J, Żuk-Gołaszewska K. 2011. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany 73:64−72 doi: 10.1016/j.envexpbot.2010.10.009
|
[89] |
Pérez C, Val J, Monge E. 1997. Photosynthetic changes of 'Prunus avium L.' grafted on different rootstocks in relation to mineral deficiencies. Proc. III International Symposium on Mineral Nutrition of Deciduous Fruit Trees 448, 1: 81−5. Zaragoza, Spain: ISHS Acta Horticulturae https://doi.org/10.17660/ActaHortic.1997.448.8
|
[90] |
Liu B, Cheng L, Liang D, Zou Y, Ma F. 2012. Growth, gas exchange, water-use efficiency, and carbon isotope composition of 'Gale Gala' apple trees grafted onto 9 wild Chinese rootstocks in response to drought stress. Photosynthetica 50:401−10 doi: 10.1007/s11099-012-0048-0
|
[91] |
Fallahi E, Colt WM, Fallahi B, Chun I-J. 2002. The importance of apple rootstocks on tree growth, yield, fruit quality, leaf nutrition, and photosynthesis with an emphasis on 'Fuji'. HortTechnology 12:38−44 doi: 10.21273/HORTTECH.12.1.38
|
[92] |
Basile B, DeJong TM. 2018. Control of fruit tree vigor induced by dwarfing rootstocks. In Horticultural Reviews, ed. Warrington I, 46:xvi, 473. Hoboken, NJ: John Wiley & Sons. pp. 39−97
|
[93] |
Šabajevienė G, Kviklys D, Kviklienė N, Kasiulevičiūtė A, Duchovskis P. 2006. Rootstock effect on photosynthetic pigment system formation in apple tree leaves. Sodininkystė ir daržininkystė 25:79−87
|
[94] |
Baugher TA, Singha S, Leach DW, Walter SP. 1994. Growth, productivity, spur quality, light transmission and net photosynthesis of 'Golden Delicious' apple trees on four rootstocks in three training systems. Fruit varieties journal 48:251−55
|
[95] |
Fallahi E, Chun I-J, Neilsen GH, Colt WM. 2001. Effects of three rootstocks on photosynthesis, leaf mineral nutrition, and vegetative growth of “BC-2 Fuji” apple trees. Journal of Plant Nutrition 24:827−34 doi: 10.1081/PLN-100103776
|
[96] |
Schechter I, Elfving D, Proctor J. 1991. Canopy development, photosynthesis, and vegetative growth as affected by apple rootstocks. Fruit varieties journal 45:229−37
|
[97] |
Koc A, Akbulut M, Orhan E, Celik Z, Bilgener S, et al. 2009. Identification of Turkish and standard apple rootstocks by morphological and molecular markers. Genetics and Molecular Research 8:420−25 doi: 10.4238/vol8-2gmr600
|
[98] |
Foster TM, Celton J-M, Chagné D, Tustin DS, Gardiner SE. 2015. Two quantitative trait loci, Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple. Horticulture research 2:15001 doi: 10.1038/hortres.2015.1
|
[99] |
Pilcher RLR, Celton J-M, Gardiner SE, Tustin DS. 2008. Genetic markers linked to the dwarfing trait of apple rootstock 'Malling 9'. Journal of the American Society for Horticultural Science 133:100−6 doi: 10.21273/JASHS.133.1.100
|
[100] |
Knäbel M, Friend AP, Palmer JW, Diack R, Wiedow C, et al. 2015. Genetic control of pear rootstock-induced dwarfing and precocity is linked to a chromosomal region syntenic to the apple Dw1 loci. BMC plant biology 15:230 doi: 10.1186/s12870-015-0620-4
|
[101] |
Harrison N, Harrison RJ, Barber-Perez N, Cascant-Lopez E, Cobo-Medina M, et al. 2016. A new three-locus model for rootstock-induced dwarfing in apple revealed by genetic mapping of root bark percentage. Journal of experimental botany 67:1871−81 doi: 10.1093/jxb/erw001
|