[1] Xu L, Geelen D. 2018. Developing biostimulants from agro-food and industrial by-products. Frontiers in Plant Science 9:1567 doi: 10.3389/fpls.2018.01567
[2] White JF, Kingsley KL, Zhang Q, Verma R, Obi N, et al. 2019. Review: Endophytic microbes and their potential applications in crop management. Pest Management Science 75:2558−65 doi: 10.1002/ps.5527
[3] Shah I. 1993. Tales of the Dervishes. New York, NY: E.P. Dutton & Co., Inc., ISBN10:0140193588. 225 pp
[4] Waugh FW. 1916. Iroquois Foods and Food Preparation, Canada Department of Mines Memoir 86, Ottawa Government Printing Bureau, No. 1612. 266 pp. https://archive.org/details/cu31924101546921/page/n31/mode/2up
[5] Verma SK, White JF. 2018. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.). Journal of Applied Microbiology 124:764−78 doi: 10.1111/jam.13673
[6] Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, et al. 2015. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc. Natl. Acad. Sci. U. S. A 112:E5013−E5020 doi: 10.1073/pnas.1505765112
[7] Chen Q, Meyer WA, Zhang Q, White JF. 2020. 16S rRNA metagenomic analysis of the bacterial community associated with turf grass seeds from low moisture and high moisture climates. PeerJ 8:e8417 doi: 10.7717/peerj.8417
[8] Irizarry I, White JF. 2017. Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton. Journal Applied Microbiology 122:1110−20 doi: 10.1111/jam.13414
[9] White JF, Kingsley KL, Verma SK, Kowalski KP. 2018. Rhizophagy cycle: An oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms 6:95 doi: 10.3390/microorganisms6030095
[10] Chang X, Kingsley KL, White JF. 2021. Chemical interactions at the interface of plant root hair cells and intracellular bacteria. Microorganisms. 9:1041 doi: 10.3390/microorganisms9051041
[11] Johnston-Monje D, Arévalo AL, Bolaños AC. 2021. Friends in low places: Soil derived microbial inoculants for biostimulation and biocontrol in crop production. In Microbiome Stimulants for Crops: Mechanisms and Applications, eds. White JF, Kumar A, Droby S. UK: Woodhead Publishing, Elsevier. pp. 15−31 https://doi.org/10.1016/B978-0-12-822122-8.00020-0 2021/06/04 15:02
[12] Döbereiner J, Baldani VLD, Reis VM. 1995. Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In Azospirillum VI and Related Microorganisms. NATO ASI Series (Series G: Ecological Sciences), eds. Fendrik I, del Gallo M, Vanderleyden J, de Zamaroczy M, vol 37. Berlin, Heidelberg: Springer. pp. 3−14 https://doi.org/10.1007/978-3-642-79906-8_1
[13] Khan Z, Guelich G, Redman R, Doty S. 2012. Bacterial and yeast endophytes from poplar and willow promote growth in crop plants and grasses. ISRN Agronomy 2012:890280 doi: 10.5402/2012/890280
[14] Cocking E, Dent D. 2019. The prospect of N2-fixing crops galore! The Biochemist 41:14−17 doi: 10.1042/BIO04104014
[15] Ohyama T, Momose A, Ohtake N, Sueyoshi K, Sato T, et al. 2014. Nitrogen fixation in sugarcan. In Advances in Biology and Ecology of Nitrogen Fixation, ed Ohyama T. Tokyo: InTech. pp. 50–70. http://doi.org/10.5772/56993
[16] Dent D, Cocking E. 2017. Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: The Greener Nitrogen Revolution. Agriculture & Food Security 6:7 doi: 10.1186/s40066-016-0084-2
[17] White JF, Chen Q, Torres MS, Mattera R, Irizarry I, et al. 2015. Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils. AoB PLANTS 7:plu093 doi: 10.1093/aobpla/plu093
[18] Rosenblueth M, Ormeño-Orrillo E, López-López A, Rogel MA, Reyes-Hernández BJ, et al. 2018. Nitrogen fixation in cereals. Frontiers in Microbiology 9:1794 doi: 10.3389/fmicb.2018.01794
[19] Bomgardner MM. 2019. Ginkgo, Bayer venture taps NewLeaf for plant microbes. Chemical & Engineering News. Available from: https://cen.acs.org/business/agriculture/Ginkgo-Bayer-venture-taps-NewLeaf/97/web/2019/07.
[20] Holland MA. 1997. Methylobacterium and plants. Recent Dev. Res. Plant Physiology 1:207−213
[21] Iansiti M, Toffel M, Snively S. 2016. Indigo Agriculture. Harvard Business School Case 617−020
[22] Pukalchik M, Kydralieva K, Yakimenko O, Fedoseeva E, Terekhova V. 2019. Outlining the potential role of humic products in modifying biological properties of the soil—A review. Frontiers in Environmental Science 7:80 doi: 10.3389/fenvs.2019.00080
[23] Lamar RT. 2020. Possible role for electron shuttling capacity in elicitation of PB activity of humic substances on plant growth enhancement. In The Chemical Biology of Plant Biostimulants, eds. Geelen D, Xu L. Hoboken, New Jersey, USA: Wiley. pp. 98−121
[24] Canellas LP, Olivares FL. 2014. Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture 1:3 doi: 10.1186/2196-5641-1-3
[25] Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, et al . 2011. ROS signaling: the new wave? Trends in Plant Science. 16:300−309 doi: 10.1016/j.tplants.2011.03.007
[26] Shah ZH, Rehman HM, Akhtar T, Alsamadany H, Hamooh BT, et al. 2018. Humic substances: Determining potential molecular regulatory processes in plants. Frontiers in Plant Science 9:263 doi: 10.3389/fpls.2018.00263
[27] Burketova L, Trda L, Ott PG, Valentova O. 2015. Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances 33:994−1004 doi: 10.1016/j.biotechadv.2015.01.004
[28] Amirkhani M, Netravali AN, Huang W, Taylor AG. 2016. Investigation of soy protein–based biostimulant seed coating for broccoli seedling and plant growth enhancement. HortScience 51:1121−26 doi: 10.21273/HORTSCI10913-16
[29] Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, et al. 2017. Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. Frontiers in Plant Science 8:2202 doi: 10.3389/fpls.2017.02202
[30] del Carmen Molina M, White JF, Kingsley KL, González-Benítez N. 2019. Seed endophytes of Jasione montana: Arsenic detoxification workers in an eco-friendly factory. In Seed Endophytes, eds. Verma S, White J. Cham: Springer-Nature. pp. 365−84 https://doi.org/10.1007/978-3-030-10504-4_17
[31] Mandal U, Singh P, Kundu AK, Chatterjee D, Nriagu J, et al. 2019. Arsenic retention in cooked rice: Effects of rice type, cooking water, and indigenous cooking methods in West Bengal, India. Science of the Total Environment 648:720−27 doi: 10.1016/j.scitotenv.2018.08.172
[32] Carlin DJ, Naujokas MF, Bradham KD, Cowden J, Heacock M, et al. 2016. Arsenic and environmental health: State of the science and future research opportunities. Environ. Health Perspect. 124:7 doi: 10.1289/ehp.1510209
[33] Emenike CU, Jayanthi B, Agamuthu P, Fauziah SH. 2018. Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environmental Reviews 26:156−68 doi: 10.1139/er-2017-0045
[34] Althobiti RA, Sadiq NW, Beauchemin D. 2018. Realistic risk assessment of arsenic in rice. Food Chemistry 257:230−36 doi: 10.1016/j.foodchem.2018.03.015
[35] Upadhyay MK, Shukla A, Yadav P, Srivastava S. 2019. A review of arsenic in crops, vegetables, animals and food products. Food Chemistry 276:608−18 doi: 10.1016/j.foodchem.2018.10.069
[36] Mesa V, Navazas A, González-Gil R, Gonzales A, Weyens N, et al. 2017. Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Applied and Environmental Microbiology 83:e03411-16 doi: 10.1128/AEM.03411-16
[37] Plewniak F, Crognale S, Rossetti S, Bertin PN. 2018. A genomic outlook on bioremediation: the case of arsenic removal. Frontiers in Microbiology 9:820 doi: 10.3389/fmicb.2018.00820
[38] Dolphen R, Thiravetyan P. 2019. Reducing arsenic in rice grains by Leonardite and arsenic–resistant endophytic bacteria. Chemosphere 223:448−54 doi: 10.1016/j.chemosphere.2019.02.054
[39] Verma S, Verma PK, Chakrabarty D. 2019. Arsenic bio-volatilization by engineered yeast promotes rice growth and reduces arsenic accumulation in grains. International Journal of Environmental Research 13:475−85 doi: 10.1007/s41742-019-00188-7
[40] García-Casillas D, García-Salgado S, Quijano MA. 2014. Accuracy evaluation of ultrasound probe sonication and microwave-assisted extraction systems for rapid single extraction of metals in soils. Analytical Methods 6:8403−12 doi: 10.1039/C4AY01788A
[41] García-Salgado S, García-Casillas D, Quijano-Nieto MA, Bonilla-Simon MM. 2012. Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water, Air, & Soil Pollution 223:559−72 doi: 10.1007/s11270-011-0882-x
[42] Benson LM, Porter EK, Peterson PJ. 1981. Arsenic accumulation, tolerance and genotypic variation in plants on arsenical mine wastes in SW England. Journal of Plant Nutrition 3:655−66 doi: 10.1080/01904168109362868