[1] Feng L, Chen C, Sheng L, Liu P, Tao J, et al. 2010. Comparative Analysis of Headspace Volatiles of Chinese Rosa rugosa. Molecules 15:8390−99 doi: 10.3390/molecules15118390
[2] Sui X, Zhao M, Xu Z, Zhao L, Han X. 2018. RrGT2, A Key Gene Associated with Anthocyanin Biosynthesis in Rosa rugosa, Was Identified Via Virus-Induced Gene Silencing and Overexpression. International Journal of Molecular Sciences 19:4054 doi: 10.3390/ijms19124057
[3] Sui X, Zhao M, Han X, Zhao L, Xu Z. 2019. RrGT1, a key gene associated with anthocyanin biosynthesis, was isolated from Rosa rugosa and identified via overexpression and VIGS. Plant Physiology and Biochemistry 135:19−29 doi: 10.1016/j.plaphy.2018.11.022
[4] Koes R, Verweij W, Quattrocchio F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10:236−42 doi: 10.1016/j.tplants.2005.03.002
[5] Singh B, Kumar A, Malik AK. 2017. Flavonoids biosynthesis in plants and its further analysis by capillary electrophoresis. Electrophoresis 38:820−32 doi: 10.1002/elps.201600334
[6] Ogata J, Kanno Y, Itoh Y, Tsugawa H, Suzuki M. 2005. Anthocyanin biosynthesis in roses. Nature 435:757−58 doi: 10.1038/nature435757a
[7] Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176−85 doi: 10.1016/j.tplants.2014.12.001
[8] Wang Z, Yu Q, Shen W, El Mohtar C, Zhao X, et al. 2018. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids. BMC Plant Biology 18:189 doi: 10.1186/s12870-018-1418-y
[9] Chen M, Zhu WJ, You X, Liu YD, Kaleri GM, et al. 2015. Isolation and characterization of a chalcone isomerase gene promoter from potato cultivars. Genetics and Molecular Research 14:18872−85 doi: 10.4238/2015.December.28.37
[10] Naing AH, Kim CK. 2018. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants. Plant Molecular Biology 98:1−18 doi: 10.1007/s11103-018-0771-4
[11] Sun C, Deng L, Du M, Zhao J, Chen Q, et al. 2020. A Transcriptional Network Promotes Anthocyanin Biosynthesis in Tomato Flesh. Molecular Plant 13:42−58 doi: 10.1016/j.molp.2019.10.010
[12] Morita Y, Takagi K, Fukuchi-Mizutani M, Ishiguro K, Tanaka Y, et al. 2014. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation. The Plant Journal 78:294−304 doi: 10.1111/tpj.12469
[13] Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, et al. 2007. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant and Cell Physiology 48:1589−600 doi: 10.1093/pcp/pcm131
[14] Li Z, Zhao M, Jin J, Zhao L, Xu Z. 2018. Anthocyanins and their biosynthetic genes in three novel-colored Rosa rugosa cultivars and their parents. Plant Physiology and Biochemistry 129:421−28 doi: 10.1016/j.plaphy.2018.06.028
[15] Shen Y, Sun T, Pan Q, Anupol N, Chen H, et al. 2019. RrMYB5-and RrMYB10-regulated flavonoid biosynthesis plays a pivotal role in feedback loop responding to wounding and oxidation in Rosa rugosa. Plant Biotechnology Journal 17:2078−95 doi: 10.1111/pbi.13123
[16] Luo P, Ning G, Wang Z, Shen Y, Jin H, et al. 2016. Disequilibrium of Flavonol Synthase and Dihydroflavonol-4-Reductase Expression Associated Tightly to White vs. Red Color Flower Formation in Plants. Frontiers in Plant Science 6:1257 doi: 10.3389/fpls.2015.01257
[17] Hoballah ME, Gübitz T, Stuurman J, Broger L, Barone M, et al. 2007. Single gene-mediated shift in pollinator attraction in Petunia. Plant Cell 19:779−90 doi: 10.1105/tpc.106.048694
[18] Yauk YK, Souleyre EJF, Matich AJ, Chen X, Wang MY, et al. 2017. Alcohol acyl transferase 1 links two distinct volatile pathways that produce esters and phenylpropenes in apple fruit. The Plant Journal 91:292−305 doi: 10.1111/tpj.13564
[19] Guterman I, Shalit M, Menda N, Piestun D, Dafny-Yelin M, et al. 2002. Rose scent: Genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14:2325−38 doi: 10.1105/tpc.005207
[20] Boronat A, Rodríguez-Concepción M. 2014. Terpenoid Biosynthesis in Prokaryotes. In Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology, eds. Schrader J, Bohlmann J, vol 148. Switzerland: Springer, Cham. pp. 3−18 https://doi.org/10.1007/10_2014_285
[21] Sun P, Schuurink RC, Caissard JC, Hugueney P, Baudino S. 2016. My Way: Noncanonical Biosynthesis Pathways for Plant Volatiles. Trends in Plant Science 21:884−94 doi: 10.1016/j.tplants.2016.07.007
[22] Tholl D. 2015. Biosynthesis and Biological Functions of Terpenoids in Plants. In Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology, eds. Schrader J, Bohlmann J, vol 148. Switzerland: Springer, Cham. pp. 63−106 https://doi.org/10.1007/10_2014_295
[23] Schuurink RC, Haring MA, Clark DG. 2006. Regulation of volatile benzenoid biosynthesis in petunia flowers. Trends in Plant Science 11:20−5 doi: 10.1016/j.tplants.2005.09.009
[24] Nagegowda DA, Gupta P. 2020. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Science 294:110457 doi: 10.1016/j.plantsci.2020.110457
[25] Hirata H, Ohnishi T, Watanabe N. 2016. Biosynthesis of floral scent 2-phenylethanol in rose flowers. Bioscience, Biotechnology, and Biochemistry 80:1865−73 doi: 10.1080/09168451.2016.1191333
[26] Verdonk JC, Haring MA, van Tunen AJ, Schuurink RC. 2005. ODORANT1 regulates fragrance biosynthesis in petunia flowers. The Plant Cell 17:1612−24 doi: 10.1105/tpc.104.028837
[27] Yang Z, Li Y, Gao F, Jin W, Li S, et al. 2020. MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana. Journal of Experimental Botany 71:4140−58 doi: 10.1093/jxb/eraa184
[28] Yan H, Zhang H, Wang Q, Jian H, Qiu X, et al. 2011. Isolation and identification of a putative scent-related gene RhMYB1 from rose. Molecular Biology Reports 38:4475−82 doi: 10.1007/s11033-010-0577-1
[29] Shalit M, Guterman I, Volpin H, Bar E, Tamari T, et al. 2003. Volatile ester formation in roses. Identification of an acetyl-coenzyme A. Geraniol/citronellol acetyltransferase in developing rose petals. Plant Physiology 131:1868−76 doi: 10.1104/pp.102.018572
[30] Hirata H, Ohnishi T, Ishida H, Tomida K, Sakai M, et al. 2012. Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts. Journal of Plant Physiology 169:444−51 doi: 10.1016/j.jplph.2011.12.005
[31] Roccia A, Hibrand-Saint Oyant L, Cavel E, Caissard JC, Machenaud J, et al. 2019. Biosynthesis of 2-Phenylethanol in Rose Petals Is Linked to the Expression of One Allele of RhPAAS. Plant Physiology 179:1064−79 doi: 10.1104/pp.18.01468
[32] Yan HJ, Baudino S, Caissard JC, Nicolè F, Zhang H, et al. 2018. Functional characterization of the eugenol synthase gene (RcEGS1) in rose. Plant Physiology and Biochemistry 129:21−26 doi: 10.1016/j.plaphy.2018.05.015
[33] Oliva M, Ovadia R, Perl A, Bar E, Lewinsohn E, et al. 2015. Enhanced formation of aromatic amino acids increases fragrance without affecting flower longevity or pigmentation in Petunia × hybrida. Plant Biotechnology Journal 13:125−36 doi: 10.1111/pbi.12253
[34] Zuker A, Tzfira T, Ben-Meir H, Ovadis M, Shklarman E, et al. 2002. Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Molecular Breeding 9:33−41 doi: 10.1023/A:1019204531262
[35] Ben Zvi MM, Florence NZ, Masci T, Ovadis M, Shklarman E, et al. 2008. Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers. Plant Biotechnol J 6:403−15 doi: 10.1111/j.1467-7652.2008.00329.x
[36] Cna'ani A, Spitzer-Rimon B, Ravid J, Farhi M, Masci T, et al. 2015. Two showy traits, scent emission and pigmentation, are finely coregulated by the MYB transcription factor PH4 in petunia flowers. New Phytol 208:708−14 doi: 10.1111/nph.13534
[37] Shaipulah NFM, Muhlemann JK, Woodworth BD, Van Moerkercke A, Verdonk JC. 2016. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia. Plant Physiology 170:717−31 doi: 10.1104/pp.15.01646
[38] Gao J, Ren R, Wei Y, Jin J, Ahmad S, et al. 2020. Comparative Metabolomic Analysis Reveals Distinct Flavonoid Biosynthesis Regulation for Leaf Color Development of Cymbidium sinense 'Red Sun'. International Journal of Molecular Sciences 21:1869 doi: 10.3390/ijms21051869
[39] Johnson ET, Yi H, Shin B, Oh BJ, Cheong H, et al. 1999. Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins. The Plant Journal 19:81−5 doi: 10.1046/j.1365-313X.1999.00502.x
[40] Magnard JL, Roccia A, Caissard JC, Vergne P, Sun P, et al. 2015. Biosynthesis of monoterpene scent compounds in roses. Science 349:81−83 doi: 10.1126/science.aab0696
[41] Bergougnoux V, Caissard JC, Jullien F, Magnard JL, Scalliet G, et al. 2007. Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds. Planta 226:853−66 doi: 10.1007/s00425-007-0531-1