[1] Boss PK, Bastow RM, Mylne JS, Dean C. 2004. Multiple pathways in the decision to flower: enabling, promoting, and resetting. The Plant Cell 16:S18−S31 doi: 10.1105/tpc.015958
[2] Yuan Y, Wu J, Sun R, Zhang X, Xu D, et al. 2009. A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. Journal Experimental Botany 60:1299−308 doi: 10.1093/jxb/erp010
[3] Wu J, Wei K, Cheng F, Li S, Wang Q, et al. 2012. A naturally occurring InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in Brassica rapa. BMC Plant Biology 12:151 doi: 10.1186/1471-2229-12-151
[4] Fornara F, de Montaigu A, Coupland G. 2010. SnapShot: control of flowering time in Aradidopsis. Cell 141:550 doi: 10.1016/j.cell.2010.04.024
[5] Alexandre CM, Hennig L. 2008. FLC or not FLC: the other side of vernalization. Journal of Experimental Botany 59:1127−35 doi: 10.1093/jxb/ern070
[6] Jack T. 2004. Molecular and genetic mechanisms of floral control. The Plant Cell 16:S1−S17 doi: 10.1105/tpc.017038
[7] Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, et al. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116−20 doi: 10.1038/35074138
[8] Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, et al. 2004. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003−6 doi: 10.1126/science.1091761
[9] Michaels SD, Amasino RM. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell 11:949−56 doi: 10.1105/tpc.11.5.949
[10] Honma T, Goto K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525−29 doi: 10.1038/35054083
[11] Sheldon CC, Hills MJ, Lister C, Dean C, Dennis ES, et al. 2008. Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization. Proceedings of the National Academy of Sciences 105:2214−19 doi: 10.1073/pnas.0711453105
[12] Sung S, Amasino RM. 2006. Molecular genetic studies of the memory of winter. Journal of Experimental Botany 57:3369−77 doi: 10.1093/jxb/erl105
[13] Schmitz RJ, Amasino RM. 2007. Vernalization: a model for investigating epigenetics and eukaryotic gene regulation in plants. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1769:269−75 doi: 10.1016/j.bbaexp.2007.02.003
[14] Kemi U, Niittyvuopio A, Toivainen T, Pasanen A, Quilot-Turion B, et al. 2013. Role of vernalization and of duplicated FLOWERING LOCUS C in the perennial Arabidopsis lyrata. The New phytologist 197:323−35 doi: 10.1111/j.1469-8137.2012.04378.x
[15] Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C. 2002. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297:243−46 doi: 10.1126/science.1072147
[16] Sung S, Amasino RM. 2004. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159−64 doi: 10.1038/nature02195
[17] Noh B, Lee SH, Kim HJ, Yi G, Shin EA, et al. 2004. Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. The Plant Cell 16:2601−13 doi: 10.1105/tpc.104.025353
[18] Srikanth A, Schmid M. 2011. Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences 68:2013−37 doi: 10.1007/s00018-011-0673-y
[19] Tadege M, Sheldon CC, Helliwell CA. 2001. Control of flowering time by FLC orthologues in Brassica napus. The Plant Journal 28:545−53 doi: 10.1046/j.1365-313X.2001.01182.x
[20] Schranz ME, Quijada P, Sung SB, Lukens L, Amasino R, et al. 2002. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162:1457−68 doi: 10.1093/genetics/162.3.1457
[21] Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, et al. 2006. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. The Plant Cell 18:1339 doi: 10.1105/tpc.105.040535
[22] Osborn TC. 2004. The contribution of polyploidy to variation in Brassica species. Physiologia Plantarum 121:531−36 doi: 10.1111/j.1399-3054.2004.00360.x
[23] Kim JS, Chung TY, King GJ, Jin M, Yang TJ, et al. 2006. A sequence-tagged linkage map of Brassica rapa. Genetics 174:29 doi: 10.1534/genetics.106.060152
[24] Xi X, Wei K, Gao B, Liu J, Liang J, et al. 2018. BrFLC5: a weak regulator of flowering time in Brassica rapa. Theoretical Applied Genetics 131:2107−16 doi: 10.1007/s00122-018-3139-x
[25] Jeong SY, Ahn H, Ryu J, Oh Y, Sivanandhan G, et al. 2019. Generation of early-flowering chinese cabbage (Brassica rapa spp. pekinensis) through crispr/cas9-mediated genome editing. Plant Biotechnology Reports 13:491−99 doi: 10.1007/s11816-019-00566-9
[26] Lou P, Zhao J, Kim JS, Shen S, Del Carpio DP, et al. 2007. Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. Journal of Experimental Botany 58:4005−16 doi: 10.1093/jxb/erm255
[27] Zhao J, Kulkarni V, Liu N, Del Carpio DP, Bucher J, et al,. 2010. BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. Journal Experimental Botany 61:1817−25 doi: 10.1093/jxb/erq048
[28] Xiao D, Zhao JJ, Hou XL, Basnet RK, Del Carpio DP, et al. 2013. The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. Journal of Experimental Botany 64:4503−16 doi: 10.1093/jxb/ert264
[29] Liu Y, Li C, Shi X, Feng H, Wang Y. 2016. Identification of QTLs with additive, epistatic, and QTL × environment interaction effects for the bolting trait in Brassica rapa L. Euphytica 210:427−39 doi: 10.1007/s10681-016-1710-6
[30] Kakizaki T, Kato T, Fukino N, Ishida M, Hatakeyama K, et al. 2011. Identification of quantitative trait loci controlling late bolting in Chinese cabbage (Brassica rapa L.) parental line Nou 6 gou. Breeding Science 61:151−59 doi: 10.1270/jsbbs.61.151
[31] Yang X, Yu Y, Zhang F, Zou Z, Zhao X, et al. 2007. Linkage map construction and quantitative trait loci analysis for bolting based on a double haploid population of Brassica rapa. Journal of Integrative Plant Biology 49:664−71 doi: 10.1111/j.1744-7909.2007.00447.x
[32] Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8:4321−26 doi: 10.1093/nar/8.19.4321
[33] Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows – Wheeler transform. Bioinformatics 25:1754−60 doi: 10.1093/bioinformatics/btp324
[34] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research 20:1297−303 doi: 10.1101/gr.107524.110
[35] Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic acids research 38:e164 doi: 10.1093/nar/gkq603
[36] Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, et al. 2012. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology 30:174−78 doi: 10.1038/nbt.2095
[37] Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
[38] Huang S, Liu Z, Yao R, Li D, Feng H. 2015. Comparative transcriptome analysis of the petal degeneration mutant pdm in Chinese cabbage (Brassica campestris ssp. pekinensis) using RNA-seq. Molecular Genetics and Genomics 290:1833−47 doi: 10.1007/s00438-015-1041-7
[39] Okazaki K, Sakamoto K, Kikuchi R, Saito A, Togashi E, et al. 2007. Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theoretical and Applied Genetics 114:595−608 doi: 10.1007/s00122-006-0460-6
[40] Li F, Kitashiba H, Inaba K, Nishio T. 2009. A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Research 16:311−23 doi: 10.1093/dnares/dsp020
[41] Zhang X, Meng L, Liu B, Hu Y, Cheng F, et al. 2015. A transposon insertion in FLOWERING LOCUS T is associated with delayed flowering in Brassica rapa. Plant Science 241:211−20 doi: 10.1016/j.plantsci.2015.10.007
[42] Huang S, Hou L, Fu W, Liu Z, Li C, et al. 2020. An Insertion Mutation in Bra032169 Encoding a Histone Methyltransferase Is Responsible for Early Bolting in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Frontiers in Plant Science 11:547 doi: 10.3389/fpls.2020.00547
[43] Fu W, Huang S, Gao Y, Zhang M, Qu G, et al. 2020. Role of BrSDG8 on bolting in Chinese cabbage (Brassica rapa). Theoretical and Applied Genetics 133:2937−48 doi: 10.1007/s00122-020-03647-4
[44] Kim SY, Park BS, Kwon SJ, Kim J, Lim MH, et al. 2007. Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L.ssp. Pekinensis). Plant Cell Report 26:327−36 doi: 10.1007/s00299-006-0243-1
[45] Michaels SD, Amasino RM. 2001. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. The Plant Cell 13:935−41 doi: 10.1105/tpc.13.4.935