[1] Bach TJ. 1995. Some new aspects of isoprenoid biosynthesis in plants − a review. Lipids 30:191−202 doi: 10.1007/BF02537822
[2] Disch A, Hemmerlin A, Bach TJ, Rohmer M. 1998. Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2 cells. Biochemical Journal 331:615−21 doi: 10.1042/bj3310615
[3] Rodríguez-Concepción M, Boronat A. 2015. Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis. Current Opinion in Plant Biology 25:17−22 doi: 10.1016/j.pbi.2015.04.001
[4] Baker FC, Brooks CJW. 1976. Biosynthesis of the sesquiterpenoid, capsidiol, in sweet pepper fruits inoculated with fungal spores. Phytochemistry 15:689−94 doi: 10.1016/S0031-9422(00)94422-4
[5] Vranová E, Coman D, Gruissem W. 2012. Structure and dynamics of the isoprenoid pathway network. Mol Plant 5:318−33 doi: 10.1093/mp/sss015
[6] Ratcliffe RG, Shachar-Hill Y. 2006. Measuring multiple fluxes through plant metabolic networks. The Plant Journal 45:490−511 doi: 10.1111/j.1365-313X.2005.02649.x
[7] Vranová E, Coman D, Gruissem W. 2013. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annual Review of Plant Biology 64:665−700 doi: 10.1146/annurev-arplant-050312-120116
[8] Estévez JM, Cantero A, Romero C, Kawaide H, Jiménez LF, et al. 2000. Analysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methyl-D-erythritol-4-phosphate pathway in Arabidopsis. Plant physiology 124:95−104 doi: 10.1104/pp.124.1.95
[9] Walter MH, Hans J, Strack D. 2002. Two distantly related genes encoding 1-deoxy-D-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. The Plant Journal 31:243−54 doi: 10.1046/j.1365-313X.2002.01352.x
[10] Lois LM, Rodríguez-Concepción M, Gallego F, Campos N, Boronat A. 2000. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. The Plant Journal 22:503−13 doi: 10.1046/j.1365-313x.2000.00764.x
[11] Kim BR, Kim SU, Chang YJ. 2005. Differential expression of three 1-deoxy-D-xylulose-5-phosphate synthase genes in rice. Biotechnology Letters 27:997−1001 doi: 10.1007/s10529-005-7849-1
[12] Cordoba E, Porta H, Arroyo A, San Román C, Medina L, et al. 2011. Functional characterization of the three genes encoding 1-deoxy-D-xylulose 5-phosphate synthase in maize. Journal of Experimental Botany 62:2023−38 doi: 10.1093/jxb/erq393
[13] Phillips MA, Walter MH, Ralph SG, Dabrowska P, Luck K, et al. 2007. Functional identification and differential expression of 1-deoxy-D-xylulose 5-phosphate synthase in induced terpenoid resin formation of Norway spruce (Picea abies). Plant Molecular Biology 65:243−57 doi: 10.1007/s11103-007-9212-5
[14] Fan H, Wu Q, Wang X, Wu L, Cai Y, et al. 2016. Molecular cloning and expression of 1-deoxy-D-xylulose-5-phosphate synthase and 1-deoxy-D-xylulose-5-phosphate reductoisomerase in Dendrobium officinale. Plant Cell, Tissue and Organ Culture 125:381−85 doi: 10.1007/s11240-016-0945-1
[15] Xu Y, Liu J, Liang L, Yang X, Zhang Z, et al. 2014. Molecular cloning and characterization of three cDNAs encoding 1-deoxy-D-xylulose-5-phosphate synthase in Aquilaria sinensis (Lour.) Gilg. Plant Physiology and Biochemistry 82:133−41 doi: 10.1016/j.plaphy.2014.05.013
[16] Zhang F, Liu W, Xia J, Zeng J, Xiang L, et al. 2018. Molecular characterization of the 1-deoxy-D-xylulose 5-phosphate synthase gene family in Artemisia annua. Frontiers in Plant Science 9:952 doi: 10.3389/fpls.2018.00952
[17] Mandel MA, Feldmann KA, Herrera-Estrella L, Rocha-Sosa M, León P. 1996. CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. The Plant Journal 9:649−58 doi: 10.1046/j.1365-313X.1996.9050649.x
[18] Wang Y, Yuan X, Li S, Chen W, Li J. 2018. Gene cloning and functional characterization of three 1-deoxy-D-xylulose 5-phosphate synthases in Simao pine. Bioresources 13:6370−82
[19] Zhang M, Li K, Zhang C, Gai J, Yu D. 2009. Identification and characterization of class 1 DXS gene encoding 1-deoxy-D-xylulose-5-phosphate synthase, the first committed enzyme of the MEP pathway from soybean. Molecular Biology Reports 36:879−87 doi: 10.1007/s11033-008-9258-8
[20] Jadaun JS, Sangwan NS, Narnoliya LK, Singh N, Bansal S, et al. 2017. Over-expression of DXS gene enhances terpenoidal secondary metabolite accumulation in rose-scented geranium and Withania somnifera: active involvement of plastid isoprenogenic pathway in their biosynthesis. Physiologia Plantarum 159:381−400 doi: 10.1111/ppl.12507
[21] Okada A, Shimizu T, Okada K, Kuzuyama T, Koga J, et al. 2007. Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice. Plant Molecular Biology 65:177−87 doi: 10.1007/s11103-007-9207-2
[22] Xi X, Zha Q, He Y, Tian Y, Jiang A. 2020. Influence of cluster thinning and girdling on aroma composition in 'Jumeigui' table grape. Scientific Reports 10:6877 doi: 10.1038/s41598-020-63826-7
[23] Mansouri H, Asrar Z, Mehrabani M. 2009. Effects of gibberellic acid on primary terpenoids and $ \Delta $9-tetrahydrocannabinol in Cannabis sativa at flowering stage. Journal of Integrative Plant Biology 51:553−61 doi: 10.1111/j.1744-7909.2009.00833.x
[24] Abraham EM, Huang B, Bonos SA, Meyer WA. 2004. Evaluation of drought resistance for Texas bluegrass, Kentucky bluegrass, and their hybrids. Crop Science 44:1746−53 doi: 10.2135/cropsci2004.1746
[25] Turgeon AJ. 1991. Turfgrass management. USA: Prentice-Hall Inc
[26] Hooley R. 1994. Gibberellins: perception, transduction and responses. Plant Mol Biol 26:1529−55 doi: 10.1007/BF00016489
[27] Gan L, Di R, Chao Y, Han L, Chen X, et al. 2016. De novo transcriptome analysis for Kentucky Bluegrass dwarf mutants induced by space mutation. PLoS One 11:e0151768 doi: 10.1371/journal.pone.0151768
[28] Wright LP, Rohwer JM, Ghirardo A, Hammerbacher A, Ortiz-Alcaide M, et al. 2014. 1-Deoxyxylulose 5-phosphate synthase controls flux through the 2-C-methylerythritol 4-phosphate pathway in Arabidopsis thaliana. Plant Physiology 165:1488−504 doi: 10.1104/pp.114.245191
[29] Phillips MA, León P, Boronat A, Rodríguez-Concepción M. 2008. The plastidial MEP pathway: unified nomenclature and resources. Trends in Plant Science 13:619−23 doi: 10.1016/j.tplants.2008.09.003
[30] Kim SM, Kuzuyama T, Chang YJ, Song KS, Kim SU. 2006. Identification of class 2 1-deoxy-D-xylulose 5-phosphate synthase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase genes from Ginkgo biloba and their transcription in embryo culture with respect to ginkgolide biosynthesis. Planta Medica 72:234−40 doi: 10.1055/s-2005-916180
[31] Zhou W, Huang F, Li S, Wang Y, Zhou C, et al. 2016. Molecular cloning and characterization of two 1-deoxy-D-xylulose-5-phosphate synthase genes involved in tanshinone biosynthesis in Salvia miltiorrhiza. Molecular Breeding 36:124 doi: 10.1007/s11032-016-0550-3
[32] Hunter WN, Bond CS, Gabrielsen M, Kemp LE. 2003. Structure and reactivity in the non-mevalonate pathway of isoprenoid biosynthesis. Biochemical Society Transactions 31:537−42 doi: 10.1042/bst0310537
[33] Henriquez MA, Soliman A, Li G, Hannoufa A, Ayele BT, et al. 2016. Molecular cloning, functional characterization and expression of potato (Solanum tuberosum) 1-deoxy-d-xylulose 5-phosphate synthase 1 (StDXS1) in response to Phytophthora infestans. Plant Science 243:71−83 doi: 10.1016/j.plantsci.2015.12.001
[34] Srinath M, Shailaja A, Bhavani B, Bindu V, Giri CC. 2017. Characterization of 1-deoxy-D-xylulose 5-phosphate synthase (DXS) protein in Andrographis paniculata (Burm. f.) Wall. ex. Nees: A in silico appraisal. Ann Phytomedicine 6:63−73 doi: 10.21276/ap.2017.6.2.5
[35] Yan N, Zhang H, Zhang Z, Shi J, Timko MP, et al. 2016. Organ- and growing stage-specific expression of solanesol biosynthesis genes inNicotiana tabacum reveals their association with solanesol content. Molecules 21:1536 doi: 10.3390/molecules21111536
[36] Enfissi EMA, Fraser PD, Lois LM, Boronat A, Schuch W, et al. 2005. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnology Journal 3:17−27 doi: 10.1111/j.1467-7652.2004.00091.x
[37] García-Alcázar M, Giménez E, Pineda B, Capel C, García-Sogo B, et al. 2017. Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival. Scientific Reports 7:45333 doi: 10.1038/srep45333
[38] Yang D, Ma P, Liang X, Wei Z, Liang Z, et al. 2012. PEG and ABA trigger methyl jasmonate accumulation to induce the MEP pathway and increase tanshinone production in Salvia miltiorrhiza hairy roots. Physiologia Plantarum 146:173−83 doi: 10.1111/j.1399-3054.2012.01603.x
[39] Estévez JM, Cantero A, Reindl A, Reichler S, León P. 2001. 1-deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. Journal of Biological Chemistry 276:22901−9 doi: 10.1074/jbc.M100854200
[40] Zhang S, Ding G, He W, Liu K, Luo Y, et al. 2020. Functional characterization of the 1-deoxy-D-xylulose 5-phosphate synthase genes in Morus notabilis. Frontiers in Plant Science 11:1142 doi: 10.3389/fpls.2020.01142
[41] Kumar SR, Rai A, Bomzan DP, Kumar K, Hemmerlin A, et al. 2020. A plastid-localized bona fide geranylgeranyl diphosphate synthase plays a necessary role in monoterpene indole alkaloid biosynthesis in Catharanthus roseus. The Plant Journal 103:248−65 doi: 10.1111/tpj.14725
[42] Gan L, Su H, Ling X, Yin S. 2017. Rust pathogen identification and mechanism of disease-resistance research on Kentucky bluegrass dwarf mutant. Journal of Beijing Forestry University 39:87−92
[43] Sohpal VK, Dey A, Singh A. 2010. MEGA biocentric software for sequence and phylogenetic analysis: a review. International Journal of Bioinformatics Research and Applications 6:230−40 doi: 10.1504/IJBRA.2010.034072
[44] Lebedeva I, Stein C. 2001. Antisense oligonucleotides: promise and reality. Annual Review of Pharmacology and Toxicology 41:403−19 doi: 10.1146/annurev.pharmtox.41.1.403
[45] Ha CD, Lemaux PG, Cho MJ. 2001. Stable transformation of a recalcitrant Kentucky bluegrass (Poa pratensis L.) cultivar using mature seed-derived highly regenerative tissues. In Vitro Cellular & Developmental Biology - Plant 37:6−11 doi: 10.1007/s11627-001-0002-5
[46] Arnon DI. 1949. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiology 24:1−15 doi: 10.1104/pp.24.1.1
[47] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28:511−5 doi: 10.1038/nbt.1621
[48] Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52 doi: 10.1038/nbt.1883