[1] Boretti A, Rosa L. 2019. Reassessing the projections of the World Water Development Report. npj Clean Water 2:15 doi: 10.1038/s41545-019-0039-9
[2] Goodarzian Ghahfarokhi M, Mansurifar S, Taghizadeh-Mehrjardi R, Saeidi M, Jamshidi AM, et al. 2015. Effects of drought stress and rewatering on antioxidant systems and relative water content in different growth stages of maize (Zea mays L.) hybrids. Archives of Agronomy and Soil Science 61:493−506 doi: 10.1080/03650340.2014.943198
[3] Kistner E, Kellner O, Andresen J, Todey D, Morton LW. 2018. Vulnerability of specialty crops to short-term climatic variability and adaptation strategies in the Midwestern USA. Climatic Change 146:145−58 doi: 10.1007/s10584-017-2066-1
[4] Herring SC, Hoerling MP, Peterson TC, Stott PA. 2014. Explaining extreme events of 2013 from a climate perspective. Bulletin of the American Meteorological Society 95:S1−S104 doi: 10.1175/1520-0477-95.9.s1.1
[5] Yamaguchi-Shinozaki K, Shinozaki K. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology 57:781−803 doi: 10.1146/annurev.arplant.57.032905.105444
[6] Estrada-Melo AC, Chao, Reid MS, Jiang CZ. 2015. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia. Horticulture Research 2:15013 doi: 10.1038/hortres.2015.13
[7] Colebrook EH, Thomas SG, Phillips AL, Hedden P. 2014. The role of gibberellin signalling in plant responses to abiotic stress. The Journal of Experimental Biology 217:67−75 doi: 10.1242/jeb.089938
[8] Plaza-Wüthrich S, Blösch R, Rindisbacher A, Cannarozzi G, Tadele Z. 2016. Gibberellin deficiency confers both lodging and drought tolerance in small cereals. Frontiers in plant science 7:643 doi: 10.3389/fpls.2016.00643
[9] Hedden P, Phillips AL. 2000. Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science 5:523−30 doi: 10.1016/S1360-1385(00)01790-8
[10] Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Annual Review of Plant Biology 59:225−51 doi: 10.1146/annurev.arplant.59.032607.092804
[11] Zhong T, Zhang L, Sun S, Zeng H, Han L. 2014. Effect of localized reduction of gibberellins in different tobacco organs on drought stress tolerance and recovery. Plant Biotechnology Reports 8:399−408 doi: 10.1007/s11816-014-0330-7
[12] Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, et al. 2006. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. The Plant Cell 18:3399−414 doi: 10.1105/tpc.106.047415
[13] Harberd NP, Belfield E, Yasumura Y. 2009. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments. The Plant Cell 21:1328−39 doi: 10.1105/tpc.109.066969
[14] Hirano K, Ueguchi-Tanaka M, Matsuoka M. 2008. GID1-mediated gibberellin signaling in plants. Trends in Plant Science 13:192−9 doi: 10.1016/j.tplants.2008.02.005
[15] Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, et al. 2001. slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. The Plant Cell 13:999−1010 doi: 10.1105/tpc.13.5.999
[16] King KE, Moritz T, Harberd NP. 2001. Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159:767−76 doi: 10.1093/genetics/159.2.767
[17] Liang YC, Reid MS, Jiang CZ. 2014. Controlling plant architecture by manipulation of gibberellic acid signalling in petunia. Horticulture Research 1:14061 doi: 10.1038/hortres.2014.61
[18] Peng J, Carol P, Richards DE, King KE, Cowling RJ, et al. 1997. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes & Development 11:3194−205 doi: 10.1101/gad.11.23.3194
[19] Fu X, Sudhakar D, Peng J, Richards DE, Christou P, et al. 2001. Expression of Arabidopsis GAI in transgenic rice represses multiple gibberellin responses. The Plant Cell 13:1791−802 doi: 10.1105/TPC.010020
[20] Hynes LW, Peng J, Richards DE, Harberd NP. 2003. Transgenic expression of the Arabidopsis DELLA proteins GAI and gai confers altered gibberellin response in tobacco. Transgenic Research 12:707−14 doi: 10.1023/B:TRAG.0000005145.68017.6e
[21] Petty LM, Harberd NP, Carré IA, Thomas B, Jackson SD. 2003. Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellin response. Plant Science 164:175−82 doi: 10.1016/S0168-9452(02)00380-1
[22] Zhu L, Li X, Welander M. 2008. Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size. Plant Cell Reports 27:289−96 doi: 10.1007/s00299-007-0462-0
[23] Msanne J, Lin J, Stone JM, Awada T. 2011. Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234:97−107 doi: 10.1007/s00425-011-1387-y
[24] Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, et al. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. The Plant Cell 13:61−72 doi: 10.1105/tpc.13.1.61
[25] Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, et al. 2003. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. The Plant Journal 34:137−48 doi: 10.1046/j.1365-313X.2003.01708.x
[26] Yin D, Sun D, Han Z, Ni D, Norris A, et al. 2019. PhERF2, an ethylene-responsive element binding factor, plays an essential role in waterlogging tolerance of petunia. Horticulture Research 6:83 doi: 10.1038/s41438-019-0165-z
[27] Jiang CZ, Yee J, Mitchell DL, Britt AB. 1997. Photorepair mutants of Arabidopsis. Proceedings of The National Academy of Sciences of The United States of America 94:7441−45 doi: 10.1073/pnas.94.14.7441
[28] Dong X, Ma C, Xu T, Reid MS, Jiang CZ, et al. 2021. Auxin response and transport during induction of pedicel abscission in tomato. Horticulture Research 8:192 doi: 10.1038/s41438-021-00626-8
[29] Wang H, Stier G, Lin J, Liu G, Zhang Z, et al. 2013. Transcriptome changes associated with delayed flower senescence on transgenic petunia by inducing expression of etr1-1 , a mutant ethylene receptor. PLoS ONE 8:e65800 doi: 10.1371/journal.pone.0065800
[30] Wang H, Chang X, Lin J, Chang Y, Chen JC, et al. 2018. Transcriptome profiling reveals regulatory mechanisms underlying corolla senescence in petunia. Horticulture Research 5:16 doi: 10.1038/s41438-018-0018-1
[31] Karssen CM, Zagorski S, Kepczynski J, Groot SPC. 1989. Key role for endogenous gibberellins in the control of seed germination. Annals of Botany 63:71−80 doi: 10.1093/oxfordjournals.aob.a087730