[1] Postgate JR. 1982. The fundamentals of nitrogen fixation. Cambridge University Press: UK
[2] Rees DC, Tezcan FA, Haynes CA, Walton MY, Andrade S, et al. 2005. Structural basis of biological nitrogen fixation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences 363:971−84 doi: 10.1098/rsta.2004.1539
[3] Capone DG, Popa R, Flood B, Nealson KH. 2006. Follow the nitrogen. Science 312:708−9 doi: 10.1126/science.1111863
[4] Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, et al. 2013. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 368:20130164 doi: 10.1098/rstb.2013.0164
[5] Lee CC, Hu Y, Ribbe MW. 2009. Unique features of the nitrogenase VFe protein from Azotobacter vinelandii. PNAS 106:9209−14 doi: 10.1073/pnas.0904408106
[6] Unkovich M. 2013. Isotope discrimination provides new insight into biological nitrogen fixation. New Phytologist 198:643−6 doi: 10.1111/nph.12227
[7] Mus F, Crook MB, Garcia K, Costas AG, Geddes BA, et al. 2016. Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied and Environmental Microbiology 82:3698−710 doi: 10.1128/AEM.01055-16
[8] Urquiaga S, Cruz KHS, Boddey RM. 1992. Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen-balance estimates. Soil Science Society of America Journal 56:105−114 doi: 10.2136/sssaj1992.03615995005600010017x
[9] Reed SC, Townsend AR, Cleveland CC, Nemergut DR. 2010. Microbial community shifts influence patterns in tropical forest nitrogen fixation. Oecologia 264:521−31 doi: 10.1007/s00442-010-1649-6
[10] Steunou AS, Bhaya D, Bateson MM, Melendrez MC, Ward DM, et al. 2006. In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. PNAS 14:2398−403 doi: 10.1073/pnas.0507513103
[11] Barron AR, Purves DW, Hedin LO. 2011. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165:511−20 doi: 10.1007/s00442-010-1838-3
[12] Reed SC, Cleveland CC, Townsend AR. 2011. Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annual Review of Ecology, Evolution, and Systematics 42:489−512 doi: 10.1146/annurev-ecolsys-102710-145034
[13] Lancaster KM, Roemelt M, Ettenhuber P, Hu Y, Ribbe MW, et al. 2011. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 334:974−977 doi: 10.1126/science.1206445
[14] Rao VR, Ramakrishnan B, Adhya TK, Kanungo PK, Nayak DN. 1998. Review: Current status and future prospects of associative nitrogen fixation in rice. World Journal of Microbiology and Biotechnology 14:621−33 doi: 10.1023/A:1008831914095
[15] Bates ST, Cropsey GWG, Caporaso JG, Knight R, Fierer N. 2011. Bacterial communities associated with the lichen symbiosis. Applied and Environmental Microbiology 77:1309−1314 doi: 10.1128/AEM.02257-10
[16] Sigurbjörnsdóttir MA, Andrésson ÓS. 2016. Nutrient scavenging activity and antagonistic factors of non-photobiont lichen-associated bacteria: A review. World Journal of Microbiology & Biotechnology 32:68 doi: 10.1007/s11274-016-2019-2
[17] Leigh JA. 2000. Nitrogen fixation in methanogens: the archaeal perspective. Current Issues in Molecular Biology 2:125−31
[18] Smercina DN, Evans SE, Friesen ML, Tiemann LK. 2019. To fix or not to fix: controls on free-living nitrogen-fixation in the rhizosphere. Applied and Environmenta Microbiology 85:e02546-18 doi: 10.1128/AEM.02546-18
[19] Stewart WDP. 1975. Nitrogen fixation by free living bacteria. UK: Cambridge University press
[20] Cleveland CC, Reed SC, Townsend AR. 2006. Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492−503 doi: 10.1890/05-0525
[21] Unkovich M, Baldock J. 2008. Measurement of asymbiotic N2 fixation in Australian agriculture. Soil Biology and Biochemistry 40:2915−21 doi: 10.1016/j.soilbio.2008.08.021
[22] Vitousek PM, Menge DNL, Reed SC, Cleveland CC. 2013. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. hilosophical Transactions of the Royal Society of London Series B, Biological Sciences 368:20130119 doi: 10.1098/rstb.2013.0119
[23] Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, et al. 2002. Towards an ecological understanding of biological nitrogen fixation. In The Nitrogen Cycle at Regional to Global Scales, eds. Boyer EW, Howarth RW. Netherlands: Springer, Dordrecht. pp. 1–45 https://doi.org/10.1007/978-94-017-3405-9_1
[24] Eckford R, Cook FD, Saul D, Aislabie J, Foght J. 2002. Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic soils. Applied and Environmental Microbiology 68:5181−85 doi: 10.1128/AEM.68.10.5181-5185.2002
[25] Seneviratne G, Indrasena IK. 2006. Nitrogen fixation in lichens is important for improved rock weathering. Journal of Biosciences 31:639−43 doi: 10.1007/BF02708416
[26] Crews TE, Kurina LM, Vitousek PM. 2001. Organic matter and nitrogen accumulation and nitrogen fixation during early ecosystem development in Hawaii. Biogeochemistry 52:259−79 doi: 10.1023/A:1006441726650
[27] Benner JW, Vitousek PM. 2007. Development of a diverse epiphyte community in response to phosphorus fertilization. Ecology Letters 10:628−36 doi: 10.1111/j.1461-0248.2007.01054.x
[28] Rees DC, Howard JB. 2000. Nitrogenase: standing at the crossroads. Current Opinion in Chemical Biology 4:559−66 doi: 10.1016/S1367-5931(00)00132-0
[29] Hu Y, Ribbe MW. 2015. Nitrogenase and homologs. Journal of Biological Inorganic Chemistry 20:435−45 doi: 10.1007/s00775-014-1225-3
[30] Hofmann-Findeklee C, Gadkari D, Meyer O. 2000. Superoxide-dependent nitrogen fixation. In Nitrogen fixation: From Molecules to Crop Productivity, eds. Pedrosa FO, Hungria M, Yates G, Newton WE. Dordrecht: Springer, Kluwer Academic Publishers. pp. 23−30 https://doi.org/10.1007/0-306-47615-0_5
[31] Ribbe M, Gadkari D, Meyer O. 1997. N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. Journal of Biological Chemistry 272:26627−33 doi: 10.1074/jbc.272.42.26627
[32] Zhao Y, Bian SM, Zhou HN, Huang JF. 2006. Diversity of nitrogenase systems in diazotrophs. Journal of Integrative Plant Biology 48:745−55 doi: 10.1111/j.1744-7909.2006.00271.x
[33] Howard JB, Rees DC. 1996. Structural basis of biological nitrogen fixation. Chemical Reviews 96:2965−82 doi: 10.1021/cr9500545
[34] Schindelin H, Kisker C, Schlessman JL, Howard JB, Rees DC. 1997. Structure of ADP·AIF4-stabilized nitrogenase complex and its implications for signal transduction. Nature 387:370−76 doi: 10.1038/387370a0
[35] Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, et al. 2002. Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297:1696−700 doi: 10.1126/science.1073877
[36] Schneider K, Müller A. 2004. Iron-only nitrogenase: exceptional catalytic, structural and spectroscopic features. In Catalysts for Nitrogen Fixation, eds. Smith BE, Richards RL, Newton WE. Netherlands: Springer, Dordrecht. pp. 281−307 https://doi.org/10.1007/978-1-4020-3611-8_11
[37] Chan MK, Kim J, Rees DC. 1993. The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 Å resolution structures. Science 260:792−94 doi: 10.1126/science.8484118
[38] Christiansen J, Seefeldt LC, Dean DR. 2000. Competitive substrate and inhibitor interactions at the physiologically relevant active site of nitrogenase. The Journal of Biological Chemistry 275:36104−7 doi: 10.1074/jbc.M004889200
[39] Glazer AN, Kechris K, Howard JB. 2015. Distribution and ecological niches of nitrogenases. In Biological Nitrogen Fixation, ed. de Bruijn FJ. Hoboken, New Jersey: John Wiley & Sons. pp. 87−98 https://doi.org/10.1002/9781119053095.ch8
[40] Newton WE. 2015. Recent advances in understanding nitrogenases and how they work. In Biological Nitrogen Fixation, ed. de Bruijn FJ. Hoboken, New Jersey: John Wiley & Sons. pp. 5−20 https://doi.org/10.1002/9781119053095.ch2
[41] Halbleib CM, Ludden PW. 2000. Regulation of biological nitrogen fixation. The Journal of Nutrition 130:1081−84 doi: 10.1093/jn/130.5.1081
[42] Seefeldt LC, Hoffman BM, Dean DR. 2009. Mechanism of Mo-dependent nitrogenase. Annual Review of Biochemistry 78:701−22 doi: 10.1146/annurev.biochem.78.070907.103812
[43] Bishop PE, Jarlenski DM, Hetherington DR. 1980. Evidence for an alternative nitrogen fixation system in Asotobacter vinelandii. PNAS 77:7342−46 doi: 10.1073/pnas.77.12.7342
[44] Miller RW, Eady RR. 1988. Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase. The Biochemical Journal 256:429−32 doi: 10.1042/bj2560429
[45] Dixon R, Kahn D. 2004. Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology 2:621−31 doi: 10.1038/nrmicro954
[46] Grabbe R, Schmitz RA. 2003. Oxygen control of nif gene expression in Klebsiella pneumoniae depends on NifL reduction at the cytoplasmic membrane by electrons derived from the reduced quinone pool. European Journal of Biochemistry 270:1555−66 doi: 10.1046/j.1432-1033.2003.03520.x
[47] Barrett J, Ray P, Sobczyk A, Little R, Dixon R. 2001. Concerted inhibition of the transcriptional activation functions of the enhancer-binding protein NIFA by the anti-activator NIFL. Molecular Microbiology 39:480−94 doi: 10.1046/j.1365-2958.2001.02243.x
[48] Martinez-Argudo I, Little R, Shearer N, Johnson P, Dixon R. 2004. The NifL-NifA system: a multidomain transcriptional regulatory complex that integrates environmental signals. Journal of Bacteriology 186:601−10 doi: 10.1128/JB.186.3.601-610.2004
[49] De-Bruijn FJ, Hilgert U, Stigter J, Schneider M, Meyer H, et al. 1990. Regulation of nitrogen fixation and assimilation genes in the free-living versus symbiotic state. In Nitrogen Fixation, eds. Gresshoff PM, Roth LE, Stacey G, Newton WE. Boston, MA: Springer. pp. 33−44 https://doi.org/10.1007/978-1-4684-6432-0_4
[50] Jack R, De Zamaroczy M, Merrick M. 1999. The signal transduction protein GlnK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae. Journal of Bacteriology 181:1156−62 doi: 10.1128/JB.181.4.1156-1162.1999
[51] Colnaghi R, Rudnick P, He L, Green A, Yan D, et al. 2001. Lethality of glnD null mutations in Azotobacter vinelandii is suppressible by prevention of glutamine synthetase adenylylation. Microbiology 147:1267−76 doi: 10.1099/00221287-147-5-1267
[52] Rudnick P, Kunz C, Gunatilaka MK, Hines ER, Kennedy C. 2002. Role of GlnK in NifL-mediated regulation of NifA activity in Azotobacter vinelandii. Journal of Bacteriology 184:812−20 doi: 10.1128/JB.184.3.812-820.2002
[53] Little R, Dixon R. 2003. The amino-terminal GAF domain of Azotobacter vinelandii NifA binds 2-Oxoglutarate to resist inhibition by NifL under nitrogen-limiting conditions. Journal of Biological Chemistry 278:28711−18 doi: 10.1074/jbc.M301992200
[54] Poza-Carrión C, Echavarri-Erasun C, Rubio LM. 2015. Regulation of nif Gene Expression in Azotobacter vinelandii. In Biological Nitrogen Fixation, ed. de Bruijn FJ. Hoboken, New Jersey: John Wiley & Sons. pp. 99−108 https://doi.org/10.1002/9781119053095.ch9
[55] Arsène F, Kaminski PA, Elmerich C. 1999. Control of Azospirillum brasilense NifA activity by PII: effect of replacing Tyr residues of the NifA N-terminal domain on NifA activity. FEMS Microbiology Letters 179:339−43 doi: 10.1111/j.1574-6968.1999.tb08747.x
[56] Zhang Y, Pohlmann EL, Roberts GP. 2004. Identification of critical residues in GlnB for its activation of NifA activity in the photosynthetic bacterium Rhodospirillum rubrum. PNAS 101:2782−87 doi: 10.1073/pnas.0306763101
[57] Huergo LF, Pedrosa FO, Muller-Santos M, Chubatsu LS, Monteiro RA, et al. 2012. PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity. Microbiology 158:176−90 doi: 10.1099/mic.0.049783-0
[58] Merrick MJ. 1983. Nitrogen control of the nif regulon in Klebsiella pneumoniae: involvement of the ntrA gene and analogies between ntrC and nifA. The EMBO Journal 21:39−44 doi: 10.1002/j.1460-2075.1983.tb01377.x
[59] Apte SK, Prabhavathi N. 1994. Rearrangements of nitrogen fixation (nif) genes in the heterocystous cyanobacteria. Journal of Biosciences 19:579−602
[60] Kallas T, Coursin T, Rippka R. 1985. Different organization of nif genes in nonheterocystous and heterocystous cyanobacteria. Plant Molecular Biology 5:321 doi: 10.1007/BF00020630
[61] Wagner SC. 2011. Biological nitrogen fixation. Nature Education Knowledge 3:15
[62] Belnap J. 2002. Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biology and Fertility of Soils 35:128−35 doi: 10.1007/s00374-002-0452-x
[63] Abed RMM, Al Kharusi S, Schramm A, Robinson MD. 2010. Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman. FEMS Microbiology Ecology 72:418−28 doi: 10.1111/j.1574-6941.2010.00854.x
[64] Büdel B, Colesie C, Green TGA, Grube M, Suau RL, et al. 2014. Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodiversity and Conservation 23:1639−58 doi: 10.1007/s10531-014-0645-2
[65] Nunes da Rocha U, Cadillo-Quiroz H, Karaoz U, Rajeev L, Klitgord N, et al. 2015. Isolation of a significant fraction of non-phototroph diversity from a desert Biological Soil Crust. Frontiers in Microbiology 6:277 doi: 10.3389/fmicb.2015.00277
[66] DeLuca TH, Zackrisson O, Gundale MJ, Nilsson MC. 2008. Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320:1181 doi: 10.1126/science.1154836
[67] Smil V. 1999. Nitrogen in crop production: an account of global flows. Global Biogeochemical Cycles 13:647−62 doi: 10.1029/1999GB900015
[68] Reis V, Lee S, Kennedy C. 2007. Biological nitrogen fixation in sugarcane. In Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations, ed. Emerich C, Newton WE. Dordrecht: Springer, Netherlands. pp. 213−232 https://doi.org/10.1007/1-4020-3546-2_10
[69] Billings SA, Schaeffer SM, Evans RD. 2003. Nitrogen fixation by biological soil crusts and heterotrophic bacteria in an intact Mojave Desert ecosystem with elevated CO2 and added soil carbon. Soil Biology and Biochemistry 35:643−49 doi: 10.1016/S0038-0717(03)00011-7
[70] Reed SC, Cleveland CC, Townsend AR. 2008. Tree species control rates of free-living nitrogen fixation in a tropical rain forest. Ecology 89:2924−34 doi: 10.1890/07-1430.1
[71] Matson AL, Corre MD, Burneo JI, Veldkamp E. 2015. Free-living nitrogen fixation responds to elevated nutrient inputs in tropical montane forest floor and canopy soils of southern Ecuador. Biogeochemistry 122:281−94 doi: 10.1007/s10533-014-0041-8
[72] Blossfeld S, Gansert D, Thiele B, Kuhn AJ, Lösch R. 2011. The dynamics of oxygen concentration, pH value, and organic acids in the rhizosphere of Juncus spp. Soil Biology and Biochemistry 43:1186−97 doi: 10.1016/j.soilbio.2011.02.007
[73] Fay P. 1992. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiological Reviews 56:340−73 doi: 10.1128/mr.56.2.340-373.1992
[74] Gallon RJ. 1992. Reconciling the incompatible: N2 fixation and O2. New Phytologist 122:571−609 doi: 10.1111/j.1469-8137.1992.tb00087.x
[75] Marchal K, Vanderleyden J. 2000. The "oxygen paradox" of dinitrogen-fixing bacteria. Biology and Fertility of Soils 30:363−373 doi: 10.1007/s003740050017
[76] Poole RK, Hill S. 1997. Respiratory protection of nitrogenase activity in Azotobacter vinelandii – roles of the terminal oxidases. Bioscience Reports 17:303−17 doi: 10.1023/A:1027336712748
[77] Burgess BK, Lowe DJ. 1996. Mechanism of molybdenum nitrogenase. Chemical Reviews 96:2983−3012 doi: 10.1021/cr950055x
[78] Eady RR. 1996. Structure-function relationships of alternative nitrogenases. Chemical Reviews 96:3013−30 doi: 10.1021/cr950057h
[79] Hu Y, Ribbe MW. 2011. Biosynthesis of the metalloclusters of Mo-lybdenum nitrogenase. Microbiology and Molecular Biology Reviews 75:664−67 doi: 10.1128/MMBR.05008-11
[80] Igarashi RY, Seefeldt LC. 2003. Nitrogen fixation: the mechanism of the Modependent nitrogenase. Critical Reviews in Biochemistry and Molecular Biology 38:351−84 doi: 10.1080/10409230391036766
[81] Barron AR, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AML, et al. 2008. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nature Geoscience 2:42−45 doi: 10.1038/ngeo366
[82] Bellenger JP, Wichard T, Xu Y, Kraepiel AML. 2011. Essential metals for nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and high use efficiency. Environmental Microbiology 13:1395−411 doi: 10.1111/j.1462-2920.2011.02440.x
[83] Bellenger JP, Xu Y, Zhang X, Morel FMM, Kraepiel AML. 2014. Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N2-fixing bacteria in soils. Soil Biology and Biochemistry 69:413−420 doi: 10.1016/j.soilbio.2013.11.015
[84] Mudler EG. 1979. Physiology and ecology of freeliving nitrogen fixing bacteria. In Nitrogen fixation by free-living micro-organisms, ed. Stewart WDP. Cambridge: Cambridge University press. pp. 3−28
[85] Mortenson LE. 1964. Ferredoxin and ATP, requirements for nitrogen fixation in cell-free extracts of Clostridium pasteurianum. PNAS 52:272−79 doi: 10.1073/pnas.52.2.272
[86] Figg TM, Holland PL, Cundari TR. 2012. Cooperativity between low-valent iron and potassium promoters in dinitrogen fixation. Inorganic Chemistry 51:7546−50 doi: 10.1021/ic300150u
[87] Hill S. 1992. Physiology of nitrogen fixation in free-living heterotrophs. In Biological Nitrogen Fixation, ed. Stacey G, Burris RH, Evans J. New York: Chapman and Hall. pp. 87–129
[88] Dynarski KA, Houlton BZ. 2017. Nutrient limitation of terrestrial free-living nitrogen fixation. New Phytologist 217:1050−61 doi: 10.1111/nph.14905
[89] Thompson MV, Vitousek PM. 1997. Asymbiotic nitrogen fixation and litter decomposition on a long soil-age gradient in Hawaiian montane rain forest. Biotropica 29:134−44 doi: 10.1111/j.1744-7429.1997.tb00017.x
[90] Vitousek PM, Hobbie S. 2000. Heterotrophic nitrogen fixation in decomposing litter: patterns and regulation. Ecology 81:2366−76 doi: 10.1890/0012-9658(2000)081[2366:HNFIDL]2.0.CO;2
[91] Benner JW, Conroy S, Lunch CK, Toyoda N, Vitousek PM. 2007. Phosphorus fertilization increases the abundance and nitrogenase activity of the cyanolichen Pseudocyphell ariacrocata in Hawaiian montane forests. Biotropica 39:400−5 doi: 10.1111/j.1744-7429.2007.00267.x
[92] Zheng M, Li D, Lu X, Zhu X, Zhang W, Huang J, Mo J. 2016. Effects of phosphorus addition with and without nitrogen addition on biological nitrogen fixation in tropical legume and non-legume tree plantations. Biogeochemistry 131:65−76 doi: 10.1007/s10533-016-0265-x
[93] Wurzburger N, Bellenger JP, Kraepiel AML, Hedin LO. 2012. Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests. PloS One 7:e33710 doi: 10.1371/journal.pone.0033710
[94] Jones K, Bangs D. 1985. Nitrogen fixation by free-living heterotrophic bacteria in an oak forest: The effect of liming. Soil Biology and Biochemistry 175:705−9 doi: 10.1016/0038-0717(85)90049-5
[95] Maheswaran J, Gunatilleke IAUN. 1990. Nitrogenase activity in soil and litter of a tropical lowland rain forest and an adjacent fernland in Sri Lanka. Journal of Tropical Ecology 6:281−89 doi: 10.1017/S026646740000451X
[96] Hofmockel KS, Schlesinger WH. 2007. Carbon dioxide effects on heterotrophic dinitrogen fixation in a temperate pine forest. Soil Science Society of America Journal 71:140−44 doi: 10.2136/sssaj2006.110
[97] Pérez CA, Carmona MR, Armesto JJ. 2010. Non-symbiotic nitrogen fixation during leaf litter decomposition in an old-growth temperate rain forest of Chiloé Island, southern Chile: effects of single versus mixed species litter. Austral Ecology 35:148−56 doi: 10.1111/j.1442-9993.2009.02020.x
[98] Eisele KA, Schimel DS, Kapustka LA, Parton WJ. 1989. Effects of available P and N: P ratios on non-symbiotic dinitrogen fixation in tallgrass prairie soils. Oecologia 79:471−74 doi: 10.1007/BF00378663
[99] Chapin DM, Bliss LC, Bledsoe LJ. 1991. Environmental regulation of nitrogen fixation in a high arctic lowland ecosystem. Canadian Journal of Botany 69:2744−55 doi: 10.1139/b91-345
[100] Arrigo KR. 2005. Marine microorganisms and global nutrient cycles. Nature 437:349−55 doi: 10.1038/nature04159
[101] Bowsher AW, Evans S, Tiemann LK, Friesen ML. 2018. Effects of soil nitrogen availability on rhizodeposition in plants: a review. Plant and Soil 423:59−85 doi: 10.1007/s11104-017-3497-1
[102] Lindsay EA, Colloff MJ, Gibb NL, Wakelin SA. 2010. The abundance of microbial functional genes in grassy woodlands is influenced more by soil nutrient enrichment than by recent weed invasion or livestock exclusion. Applied and Environmental Microbiology 76:5547−55 doi: 10.1128/AEM.03054-09
[103] Norman JS, Friesen ML. 2017. Complex N acquisition by soil diazotrophs: how the ability to release exoenzymes affects N fixation by terrestrial free-living diazotrophs. The ISME Journal 11:315−26 doi: 10.1038/ismej.2016.127
[104] Kox MAR, Lüke C, Fritz C, van den Elzen E, van Alen T, et al. 2016. Effects of nitrogen fertilization on diazotrophic activity of microorganisms associated with Sphagnum magellanicum. Plant and Soil 406:83−100 doi: 10.1007/s11104-016-2851-z
[105] Steenhoudt O, Vanderleyden J. 2000. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Reviews 24:487−506 doi: 10.1111/j.1574-6976.2000.tb00552.x
[106] Houlton BZ, Wang YP, Vitousek PM, Field CB. 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327−330 doi: 10.1038/nature07028
[107] Gupta VVSR, Roper MM. 2010. Protection of free-living nitrogen-fixing bacteria within the soil matrix. Soil and Tillage Research 109:50−54 doi: 10.1016/j.still.2010.04.002
[108] Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS. 2003. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Applied and Environmental Microbiology 69:1800−9 doi: 10.1128/AEM.69.3.1800-1809.2003
[109] Zhan J, Sun Q. 2011. Diversity of free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings during the process of natural ecological restoration. Journal of Environmental Sciences 23:476−87 doi: 10.1016/S1001-0742(10)60433-0
[110] Sobolev D, Begonia MFT. 2008. Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. International Journal of Environmental Research and Public Health 5:450−56 doi: 10.3390/ijerph5050450
[111] Huhe, Borjigin S, Cheng Y, Nomura N, Nakajima T, et al. 2014. Effect of abandonment on diversity and abundance of free-living nitrogen-fixing bacteria and total bacteria in the cropland soils of Hulun Buir, Inner Mongolia. PLoS One 9:e106714 doi: 10.1371/journal.pone.0106714
[112] Orr CH, James A, Leifert C, Cooper JM, Cummings SP. 2011. Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Applied and Environmental Microbiology 77:911−19 doi: 10.1128/AEM.01250-10
[113] Davidson EA, de Carvalho CJR, Figueira AM, Ishida FY, Ometto JPHB, et al. 2007. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447:995−98 doi: 10.1038/nature05900
[114] Mirza BS, Potisap C, Nüsslein K, Bohannan BJM, Rodrigues JLM. 2014. Response of Free-Living Nitrogen-Fixing Microorganisms to Land Use Change in the Amazon Rainforest. Applied and Environmental Microbiology 80:281−88 doi: 10.1128/AEM.02362-13
[115] Zhan J, Sun Q. 2012. Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings. Microbiological Research 167:157−165 doi: 10.1016/j.micres.2011.05.006
[116] Minett DA, Cook PLM, Kessler AJ, Cavagnaro TR. 2013. Root effects on the spatial and temporal dynamics of oxygen in sand-based laboratory-scale constructed biofilters. Ecolog. Engin 58:414−22 doi: 10.1016/j.ecoleng.2013.06.028
[117] York LM, Carminati A, Mooney SJ, Ritz K, Bennett MJ. 2016. The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. Journal of Experimental Botany 67:3629−43 doi: 10.1093/jxb/erw108
[118] Cotta SR, Dias ACF, Marriel IE, Andreote FD, Seldin L, et al. 2014. Different effects of transgenic maize and non-transgenic maize on nitrogen-transforming archaea and bacteria in tropical soils. Applied and Environmental Microbiology 80:6437−6445 doi: 10.1128/AEM.01778-14
[119] Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, et al. 1999. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles 13:623−45 doi: 10.1029/1999GB900014
[120] Jordan C, Caskey W, Escalante G, Herrera R, Montagnini F, et al. 1983. Nitrogen dynamics during conversion of primary Amazonian rain forest to slash and burn agriculture. Oikos 40:131−139 doi: 10.2307/3544208
[121] Cusack DF, Silver W, McDowell WH. 2009. Biological nitrogen fixation in two tropical forests: ecosystem -level patterns and effects of nitrogen fertilization. Ecosystems 12:1299−315 doi: 10.1007/s10021-009-9290-0
[122] DeLuca TH, Zackrisson O, Nilsson MC, Sellstedt A. 2002. Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917−20 doi: 10.1038/nature01051
[123] Yeager CM, Kornosky JL, Morgan RE, Cain EC, Garcia-Pichel F, et al. 2007. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiology Ecology 60:85−97 doi: 10.1111/j.1574-6941.2006.00265.x
[124] Giller KE. 2001. Nitrogen fixation in tropical cropping systems, 2nd edition. 423pp. Wallingford: CABI. https://doi.org/10.1079/9780851994178.0000
[125] Bustamante MMC, Medina E, Asner GP, Nardoto GB, Garcia-Montiel DC. 2006. Nitrogen cycling in tropical and temperate savannas. Biogeochemistry 79:209−37 doi: 10.1007/s10533-006-9006-x
[126] Herridge DF, Peoples MB, Boddey RM. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil 311:1−18 doi: 10.1007/s11104-008-9668-3
[127] Montoya JP, Holl CM, Zehr JP, Hansen A, Villareal TA, et al. 2004. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430:1027−31 doi: 10.1038/nature02824
[128] Falcón LI, Carpenter EJ, Cipriano F, Bergman B, Capone DG. 2004. N2 fixation by unicellular bacterioplankton from the Atlantic and Pacific Oceans: phylogeny and in situ rates. Applied and Environmental Microbiology 70:765−770 doi: 10.1128/AEM.70.2.765-770.2004
[129] Mehta MP, Baross JA. 2006. Nitrogen fixation at 92 °C by a hydrothermal vent archaeon. Science 314:1783−86 doi: 10.1126/science.1134772
[130] Howarth RW, Marino R, Lane J, Cole JJ. 1988. Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnology and Oceanography 33:669−87 doi: 10.4319/lo.1988.33.4part2.0669
[131] MacGregor BJ, Van Mooy B, Baker BJ, Mellon M, Moisander PH, et al. 2001. Microbiological, molecular biological and stable isotopic evidence for nitrogen fixation in the open waters of Lake Michigan. Environmental Microbiology 3:205−219 doi: 10.1046/j.1462-2920.2001.00180.x
[132] Steward GF, Zehr JP, Jellison R, Montoya JP, Hollibaugh JT. 2004. Vertical distribution of nitrogen-fixing phylotypes in a meromictic, hypersaline lake. Microbial Ecology 47:30−40 doi: 10.1007/s00248-003-1017-8
[133] Zani S, Mellon MT, Collier JL, Zehr JP. 2000. Expression of nifH genes in natural microbial assemblages in Lake George, New York, detected by reverse transcriptase PCR. Applied and Environmental Microbiology 66:3119−24 doi: 10.1128/AEM.66.7.3119-3124.2000
[134] Wasmund N, Voss M, Lochte K. 2001. Evidence of nitrogen fixation by non-heterocystous cyanobacteria in the Baltic Sea and re-calculation of a budget of nitrogen fixation. Marine Ecology Progress Series 214:1−14 doi: 10.3354/meps214001
[135] Zehr JP, Waterbury JB, Turner PJ, Montoya JP, Omoregie E, et al. 2001. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412:635−38 doi: 10.1038/35088063
[136] Montoya JP, Carpented EJ, Capone DG. 2002. Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic. Limnology and Oceanography 47:1617−28 doi: 10.4319/lo.2002.47.6.1617
[137] Pantoja S, Repeta DJ, Sachs JP, Sigman DM. 2002. Stable isotope constraints on the nitrogen cycle of the Mediterranean Sea water column. Deep Sea Research Part I: Oceanographic Research Papers 49:1609−21 doi: 10.1016/S0967-0637(02)00066-3
[138] Capone DG. 1993. Determination of nitrogenase activity in aquatic samples using the acetylene reduction procedure. In Handbook of Methods in Aquatic Microbial Ecology, eds. Kemp PF, Sherr BF, Sherr EB, Cole JJ. Boca Raton, Fla: CRC Press. pp. 621−631 https://doi.org/10.1201/9780203752746-74/10.1201/9780203752746-74
[139] Moisander P, Lehtimäki J, Sivonen K, Kononen K. 1996. Comparison of 15N2 and acetylene reduction methods for the measurement of nitrogen fixation by Baltic Sea cyanobacteria. Phycologia 35:140−146 doi: 10.2216/i0031-8884-35-6S-140.1
[140] Kayanne H, Hirota M, Yamamuro M, Koike I. 2005. Nitrogen fixation of filamentous cyanobacteria in a coral reef measured using three different methods. Coral Reefs 24:197−200 doi: 10.1007/s00338-004-0465-z
[141] Oremland RS, Taylor BF. 1975. Inhibition of methanogenesis in marine sediments by acetylene and ethylene: validity of the acetylene reduction assay for anaerobic microcosms. Applied Microbiology 30:707−9 doi: 10.1128/am.30.4.707-709.1975
[142] Montoya JP, Voss M, Kähler P, Capone DG. 1996. A simple, high precision, high-sensitivity tracer assay for N(inf2) fixation. Applied and Environmental Microbiology 62:986−93 doi: 10.1128/aem.62.3.986-993.1996
[143] Mulholland MR, Bernhardt PW. 2005. The effect of growth rate, phosphorus concentrations and temperature on N2 fixation, carbon fixation, and nitrogen release in continuous cultures of Trichodesmium IMS101. Limnology and Oceanography 50:839−49 doi: 10.4319/lo.2005.50.3.0839
[144] Peterson BJ, Fry B. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18:293−320 doi: 10.1146/annurev.es.18.110187.001453
[145] Robinson D. 2001. δ15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution 16:153−162 doi: 10.1016/S0169-5347(00)02098-X
[146] Gu B, Chapman AD, Schelske CL. 2006. Factors controlling seasonal variations in stable isotope composition of particulate organic matter in a softwater eutrophic lake. Limnology and Oceanography 51:2837−48 doi: 10.4319/lo.2006.51.6.2837
[147] Patoine A, Graham MD, Leavitt PR. 2006. Spatial variation of nitrogen fixation in lakes of the northern Great Plains. Limnology and Oceanography 51:1665−77 doi: 10.4319/lo.2006.51.4.1665
[148] Zehr JP, Jenkins BD, Short SM, Steward GF. 2003. Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environmental Microbiology 5:539−54 doi: 10.1046/j.1462-2920.2003.00451.x
[149] Short SM, Zehr JP. 2005. Quantitative analysis of nifH genes and transcripts from aquatic environments. Methods in Enzymology 397:380−94 doi: 10.1016/S0076-6879(05)97023-7
[150] Man-Aharonovich D, Kress N, Zeev EB, Berman-Frank I, Béjà O. 2007. Molecular ecology of nifH genes and transcripts in the eastern Mediterranean Sea. Environmental Microbiology 9:2354−63 doi: 10.1111/j.1462-2920.2007.01353.x
[151] Coelho MRR, Marriel IE, Jenkins SN, Lanyon CV, Seldin L, et al. 2009. Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor). sown with two levels of nitrogen fertilizer. Applied Soil Ecology 42:48−53 doi: 10.1016/j.apsoil.2009.01.010
[152] Chowdhury SP, Schmid M, Hartmann A, Tripathi AK. 2009. Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass Lasiurus sindicus. European Journal of Soil Biology 45:114−22 doi: 10.1016/j.ejsobi.2008.06.005
[153] Gaby JC, Buckley DH. 2011. A global census of nitrogenase diversity. Environmental Microbiology 13:1790−99 doi: 10.1111/j.1462-2920.2011.02488.x
[154] Orchard ED, Webb EA, Dyhrman ST. 2009. Molecular analysis of the phosphorus starvation response in Trichodesmium spp. Environmental Microbiology 11:2400−11 doi: 10.1111/j.1462-2920.2009.01968.x
[155] Berg OG, Kurland CG. 2002. Evolution of microbial genomes: sequence acquisition and loss. Molecular Biology and Evolution 19:2265−76 doi: 10.1093/oxfordjournals.molbev.a004050
[156] Short SM, Jenkins BD, Zehr JP. 2004. Spatial and temporal distribution of two diazotrophic bacteria in the Chesapeake Bay. Applied and Environmental Microbiology 70:2186−92 doi: 10.1128/AEM.70.4.2186-2192.2004
[157] Tilman D, Downing JA. 1994. Biodiversity and stability in grasslands. Nature 367:363−65 doi: 10.1038/367363a0
[158] Morford SL, Houlton BZ, Houlton BZ, Dahlgren RA. 2011. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature 477:78−81 doi: 10.1038/nature10415
[159] Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB. 2003. Nitrogen and climate change. Science 302:1512−13 doi: 10.1126/science.1091390
[160] Fowler D, Steadman CE, Stevenson D, Coyle M, Rees RM, et al. 2015. Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics 15:13849−93 doi: 10.5194/acp-15-13849-2015
[161] Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, et al. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7:737−50 doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
[162] Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, et al. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889−92 doi: 10.1126/science.1136674
[163] Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM. 1990. Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology 71:478−91 doi: 10.2307/1940302
[164] Deslippe JR, Egger KN, Henry GHR. 2005. Impacts of warming and fertilization on nitrogen-fixing microbial communities in the Canadian High Arctic. FEMS Microbiology Ecology 53:41−50 doi: 10.1016/j.femsec.2004.12.002
[165] Crews TE, Farrington H, Vitousek PM. 2000. Changes in asymbiotic, heterotrophic nitrogen fixation on leaf litter of Metrosideros polymorpha with long-term ecosystem development in Hawaii. Ecosystems 3:386−95 doi: 10.1007/s100210000034