[1] |
Boyd LA, Ridout C, O'Sullivan DM, Leach JE, Leung H. 2013. Plant-pathogen interactions: disease resistance in modern agriculture. Trends in Genetics 29:233−40 doi: 10.1016/j.tig.2012.10.011
|
[2] |
Bigeard J, Colcombet J, Hirt H. 2015. Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant 8:521−39 doi: 10.1016/j.molp.2014.12.022
|
[3] |
Lorang J. 2018. Necrotrophic exploitation and subversion of plant defense: a lifestyle or just a phase, and implications in breeding resistance. Phytopathology 109:332−46 doi: 10.1094/PHYTO-09-18-0334-IA
|
[4] |
Mengiste T. 2012. Plant immunity to necrotrophs. Annual Review of Phytopathology 50:267−94 doi: 10.1146/annurev-phyto-081211-172955
|
[5] |
Shin S, Zheng P, Fazio G, Mazzola M, Main D, et al. 2016. Transcriptome changes specifically associated with apple (Malus domestica) root defense response during Pythium ultimum infection. Physiological and Molecular Plant Pathology 94:16−26 doi: 10.1016/j.pmpp.2016.03.003
|
[6] |
Zhu Y, Shao J, Zhou Z, Davis RE. 2017. Comparative transcriptome analysis reveals a preformed defense system in apple root of a resistant genotype of G. 935 in the absence of pathogen. International Journal of Plant Genomics 2017:8950746 doi: 10.1155/2017/8950746
|
[7] |
Zhu Y, Shao J, Zhou Z, Davis RE. 2019. Genotype-specific suppression of multiple defense pathways in apple root during infection by Pythium ultimum. Horticulture Research 6:10 doi: 10.1038/s41438-018-0087-1
|
[8] |
Zhu Y, Li G, Singh J, Khan A, Fazio G, et al. 2021. Laccase directed lignification is one of the major processes associated with the defense response against Pythium ultimum infection in apple roots. Frontiers in Plant Science 12:629776 doi: 10.3389/fpls.2021.629776
|
[9] |
Nicholson RL, Hammerschmidt R. 1992. Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology 30:369−89 doi: 10.1146/annurev.py.30.090192.002101
|
[10] |
Vance CP, Kirk TK, Sherwood RT. 1980. Lignification as a mechanism of disease resistance. Annual Review of Phytopathology 18:259−88 doi: 10.1146/annurev.py.18.090180.001355
|
[11] |
Miedes E, Vanholme R, Boerjan W, Molina A. 2014. The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science 5:358 doi: 10.3389/fpls.2014.00358
|
[12] |
Balasubramanian VK, Rai KM, Thu SW, Hii MM, Mendu V. 2016. Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development. Scientific Reports 6:34309 doi: 10.1038/srep34309
|
[13] |
Yang C, Liang Y, Qiu D, Zeng H, Yuan J, et al. 2018. Lignin metabolism involves Botrytis cinerea BcGs1-induced defense response in tomato. BMC Plant Biology 18:103 doi: 10.1186/s12870-018-1319-0
|
[14] |
Arcuri MLC, Fialho LC, Vasconcellos Nunes-Laitz A, Fuchs-Ferraz MCP, Wolf IR, et al. 2020. Genome-wide identification of multifunctional laccase gene family in Eucalyptus grandis: potential targets for lignin engineering and stress tolerance. Trees 34:745−58 doi: 10.1007/s00468-020-01954-3
|
[15] |
Lee MH, Jeon HS, Kim SH, Chung JH, Roppolo D, et al. 2019. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. The EMBO journal 38:e101948 doi: 10.15252/embj.2019101948
|
[16] |
Boudet AM, Lapierre C, Grima-Pettenati J. 1995. Tansley review No. 80. Biochemistry and molecular biology of lignification. New Phytologist 129:203−36 doi: 10.1111/j.1469-8137.1995.tb04292.x
|
[17] |
Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:519−46 doi: 10.1146/annurev.arplant.54.031902.134938
|
[18] |
Zhao Q, Dixon RA. 2011. Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends in Plant Science 16:227−33 doi: 10.1016/j.tplants.2010.12.005
|
[19] |
Chaurasia PK, Yadav RSS, Yadava S. 2013. A review on mechanism of laccase action. Research & Reviews in BioSciences 7:66−71
|
[20] |
Voxeur A, Wang Y, Sibout R. 2015. Lignification: different mechanisms for a versatile polymer. Current Opinion in Plant Biology 23:83−90 doi: 10.1016/j.pbi.2014.11.006
|
[21] |
Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. 2010. Lignin biosynthesis and structure. Plant Physiology 153:895−905 doi: 10.1104/pp.110.155119
|
[22] |
Bhuiyan NH, Selvaraj G, Wei Y, King J. 2009. Role of lignification in plant defense. Plant signaling & behavior 4:158−59 doi: 10.4161/psb.4.2.7688
|
[23] |
Xu L, Zhu L, Tu L, Liu L, Yuan D, et al. 2011. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. Journal of Experimental Botany 62:5607−21 doi: 10.1093/jxb/err245
|
[24] |
Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, et al. 2010. Laccases: a never-ending story. Cellular and Molecular Life Sciences 67:369−85 doi: 10.1007/s00018-009-0169-1
|
[25] |
Mayer AM, Staples RC. 2002. Laccase: new functions for an old enzyme. Phytochemistry 60:551−65 doi: 10.1016/S0031-9422(02)00171-1
|
[26] |
Pilon M. 2017. The copper microRNAs. New Phytologist 213:1030−35 doi: 10.1111/nph.14244
|
[27] |
Janusz G, Pawlik A, Świderska-Burek U, Polak J, Sulej J, et al. 2020. Laccase properties, physiological functions, and evolution. International Journal of Molecular Sciences 21:966 doi: 10.3390/ijms21030966
|
[28] |
Turlapati PV, Kim K-W, Davin LB, Lewis NG. 2011. The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function (s). Planta 233:439−70 doi: 10.1007/s00425-010-1298-3
|
[29] |
Wang J, Feng J, Jia W, Chang S, Li S, et al. 2015. Lignin engineering through laccase modification: a promising field for energy plant improvement. Biotechnology for Biofuels 8:145 doi: 10.1186/s13068-015-0331-y
|
[30] |
Ducros V, Brzozowski AM, Wilson KS, Brown SH, Østergaard P, et al. 1998. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nature Structural Biology 5:310−16 doi: 10.1038/nsb0498-310
|
[31] |
Zhu Y, Shin S, Mazzola M. 2016. Genotype responses of two apple rootstocks to infection by Pythium ultimum causing apple replant disease. Canadian Journal of Plant Pathology 38:483−91 doi: 10.1080/07060661.2016.1260640
|
[32] |
Zhu Y, Zhao J, Zhou Z. 2018. Identifying an elite panel of apple rootstock germplasm with contrasting root resistance to Pythium ultimum. Journal of Plant Pathology & Microbiology 9:11 doi: 10.4172/2157-7471.1000461
|
[33] |
Dodds PN, Rathjen JP. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics 11:539−48 doi: 10.1038/nrg2812
|
[34] |
Moore JW, Loake GJ, Spoel SH. 2011. Transcription dynamics in plant immunity. The Plant Cell 23:2809−20 doi: 10.1105/tpc.111.087346
|
[35] |
Tsuda K, Somssich IE. 2015. Transcriptional networks in plant immunity. New Phytologist 206:932−47 doi: 10.1111/nph.13286
|
[36] |
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, et al. 2010. The genome of the domesticated apple (Malus× domestica Borkh.). Nature Genetics 42:833−39 doi: 10.1038/ng.654
|
[37] |
Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics 49:1099−106 doi: 10.1038/ng.3886
|
[38] |
Zhu Y, Fazio G, Mazzola M. 2014. Elucidating the molecular responses of apple rootstock resistant to ARD pathogens: challenges and opportunities for development of genomics-assisted breeding tools. Horticulture Research 1:14043 doi: 10.1038/hortres.2014.43
|
[39] |
Zhu Y, Zheng P, Varanasi V, Shin S, Main D, et al. 2012. Multiple plant hormones and cell wall metabolism regulate apple fruit maturation patterns and texture attributes. Tree Genetics & Genomes 8:1389−406 doi: 10.1007/s11295-012-0526-3
|
[40] |
Ma QH, Zhu HH, Qiao MY. 2018. Contribution of both lignin content and sinapyl monomer to disease resistance in tobacco. Plant Pathology 67:642−50 doi: 10.1111/ppa.12767
|
[41] |
Mazzola M. 1997. Identification and pathogenicity of Rhizoctonia spp. isolated from apple roots and orchard soils. Phytopathology 87:582−87 doi: 10.1094/PHYTO.1997.87.6.582
|
[42] |
Letunic I, Doerks T, Bork P. 2015. SMART: recent updates, new developments and status in 2015. Nucleic Acids Research 43:D257−D260 doi: 10.1093/nar/gku949
|
[43] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009
|
[44] |
Zhou Z, Cong P, Tian Y, Zhu Y. 2017. Using RNA-seq data to select reference genes for normalizing gene expression in apple roots. PLoS One 12:e0185288 doi: 10.1371/journal.pone.0185288
|
[45] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
|
[46] |
Lloyd SR, Schoonbeek HJ, Trick M, Zipfel C, Ridout CJ. 2014. Methods to study PAMP-triggered immunity in Brassica species. Molecular Plant-Microbe Interactions 27:286−95 doi: 10.1094/MPMI-05-13-0154-FI
|