[1] |
Zhu Y, Lv H, Dai W, Guo L, Tan J, et al. 2016. Separation of aroma components in Xihu Longjing tea using simultaneous distillation extraction with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Separation and Purification Technology 164:146−54 doi: 10.1016/j.seppur.2016.03.028
|
[2] |
Zeng L, Zhou Y, Fu X, Liao Y, Yuan Y, et al. 2018. Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. Journal of Agricultural and Food Chemistry 66:3899−909 doi: 10.1021/acs.jafc.8b00515
|
[3] |
Zhu Y, Lv H, Shao C, Kang S, Zhang Y, et al. 2018. Identification of key odorants responsible for chestnut-like aroma quality of green teas. Food Research International 108:74−82 doi: 10.1016/j.foodres.2018.03.026
|
[4] |
Baba R, Amano Y, Wada Y, Kumazawa K. 2017. Characterization of the potent odorants contributing to the characteristic aroma of Matcha by gas chromatography–olfactometry techniques. Journal of Agricultural and Food Chemistry 65:2984−89 doi: 10.1021/acs.jafc.7b00421
|
[5] |
Feng Z, Li Y, Li M, Wang Y, Zhang L, et al. 2019. Tea aroma formation from six model manufacturing processes. Food Chemistry 285:347−54 doi: 10.1016/j.foodchem.2019.01.174
|
[6] |
Han Z, Rana MM, Liu G, Gao M, Li D, et al. 2016. Green tea flavour determinants and their changes over manufacturing processes. Food Chemistry 212:739−48 doi: 10.1016/j.foodchem.2016.06.049
|
[7] |
Porat R, Lichter A, Terry LA, Harker R, Buzby J. 2018. Postharvest losses of fruit and vegetables during retail and in consumers' homes: Quantifications, causes, and means of prevention. Postharvest Biology and Technology 139:135−49 doi: 10.1016/j.postharvbio.2017.11.019
|
[8] |
Yu X, Li Y, He C, Zhou J, Chen Y, et al. 2020. Nonvolatile metabolism in postharvest tea (Camellia sinensis L.) leaves: Effects of different withering treatments on nonvolatile metabolites, gene expression levels, and enzyme activity. Food Chemistry 327:126992 doi: 10.1016/j.foodchem.2020.126992
|
[9] |
Schouten RE, Zhang X, Verschoor JA, Otma EC, Tijskens LMM, van Kooten O. 2009. Development of colour of broccoli heads as affected by controlled atmosphere storage and temperature. Postharvest Biology and Technology 51:27−35 doi: 10.1016/j.postharvbio.2008.06.005
|
[10] |
Yu X, Hu S, He C, Zhou J, Qu F, et al. 2019. Chlorophyll metabolism in postharvest tea (Camellia sinensis L.) leaves: variations in color values, chlorophyll derivatives, and gene expression levels under different withering treatments. Journal of Agricultural and Food Chemistry 67:10624−36 doi: 10.1021/acs.jafc.9b03477
|
[11] |
Wang Y, Zheng P, Liu P, Song X, Guo F, et al. 2019. Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling. Food Chemistry 272:313−22 doi: 10.1016/j.foodchem.2018.08.013
|
[12] |
Ho C, Zheng X, Li S. 2015. Tea aroma formation. Food Science and Human Wellness 4:9−27 doi: 10.1016/j.fshw.2015.04.001
|
[13] |
Zhu Y, Shao C, Lv H, Zhang Y, Dai W, et al. 2017. Enantiomeric and quantitative analysis of volatile terpenoids in different teas (Camellia sinensis). Journal of Chromatography A 1490:177−90 doi: 10.1016/j.chroma.2017.02.013
|
[14] |
Baba R, Kumazawa K. 2014. Characterization of the potent odorants contributing to the characteristic aroma of Chinese green tea infusions by aroma extract dilution analysis. Journal of Agricultural and Food Chemistry 62:8308−13 doi: 10.1021/jf502308a
|
[15] |
Saijō R, Takeo T. 1973. Volatile and non-volatile forms of aroma compounds in tea leaves and their changes due to injury. Agricultural and Biological Chemistry 37:1367−73 doi: 10.1080/00021369.1973.10860844
|
[16] |
Katsuno T, Kasuga H, Kusano Y, Yaguchi Y, Tomomura M, et al. 2014. Characterisation of odorant compounds and their biochemical formation in green tea with a low temperature storage process. Food Chemistry 148:388−95 doi: 10.1016/j.foodchem.2013.10.069
|
[17] |
Fu X, Chen Y, Mei X, Katsuno T, Kobayashi E, et al. 2015. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Scientific Reports 5:16858 doi: 10.1038/srep16858
|
[18] |
Lalel HJD, Singh Z. 2006. Controlled atmosphere storage of 'Delta R2E2' mango fruit affects production of aroma volatile compounds. The Journal of Horticultural Science and Biotechnology 81:449−57 doi: 10.1080/14620316.2006.11512087
|
[19] |
Yang Z, Baldermann S, Watanabe N. 2013. Recent studies of the volatile compounds in tea. Food Research International 53:585−99 doi: 10.1016/j.foodres.2013.02.011
|
[20] |
Obenland D, Collin S, Sievert J, Arpaia ML. 2013. Mandarin flavor and aroma volatile composition are strongly influenced by holding temperature. Postharvest Biology and Technology 82:6−14 doi: 10.1016/j.postharvbio.2013.02.013
|
[21] |
Hendel-Rahmanim K, Masci T, Vainstein A, Weiss D. 2007. Diurnal regulation of scent emission in rose flowers. Planta 226:1491−99 doi: 10.1007/s00425-007-0582-3
|
[22] |
Mendoza-Poudereux I, Kutzner E, Huber C, Segura J, Arrillaga I, Eisenreich W. 2017. Dynamics of Monoterpene Formation in Spike Lavender Plants. Metabolites 7:65 doi: 10.3390/metabo7040065
|
[23] |
Chen Q, Zhu Y, Dai W, Lv H, Mu B, et al. 2019. Aroma formation and dynamic changes during white tea processing. Food Chemistry 274:915−24 doi: 10.1016/j.foodchem.2018.09.072
|
[24] |
Lucchetta L, Manríquez D, El-Sharkawy I, Flores FB, Latché A, et al. 2007. The role of ethylene in the expression of genes involved in the biosynthesis of aroma volatiles in melon. In Advances in Plant Ethylene Research, eds. Ramina A, Chang C, Giovannoni J, Klee H, Perata P, et al. Dordrecht: Springer Netherlands. pp. 189−95 https://doi.org/10.1007/978-1-4020-6014-4_41
|
[25] |
Fu X, Cheng S, Zhang Y, Du B, Feng C, et al. 2017. Differential responses of four biosynthetic pathways of aroma compounds in postharvest strawberry (Fragaria × ananassa Duch.) under interaction of light and temperature. Food Chemistry 221:356−64 doi: 10.1016/j.foodchem.2016.10.082
|
[26] |
Zou J, Chen J, Tang N, Gao Y, Hong M, et al. 2018. Transcriptome analysis of aroma volatile metabolism change in tomato (Solanum lycopersicum) fruit under different storage temperatures and 1-MCP treatment. Postharvest Biology and Technology 135:57−67 doi: 10.1016/j.postharvbio.2017.08.017
|
[27] |
Chen C, Ning J, Wang W, Wang H. 2011. The effect of controlled atmosphere storage on aroma components of Hami melon. Proc. 2011 International Conference on New Technology of Agricultural, Zibo, China, 2011. pp. 764−68. China: IEEE https://doi.org/10.1109/ICAE.2011.5943905
|
[28] |
Zhang B, Yin X, Li X, Yang S, Ferguson IB, Chen K. 2009. Lipoxygenase Gene Expression in Ripening Kiwifruit in Relation to Ethylene and Aroma Production. Journal of Agricultural and Food Chemistry 57:2875−81 doi: 10.1021/jf9000378
|
[29] |
Maritim TK, Kamunya SM, Mireji P, Mwendia C, Muoki RC, et al. 2015. Physiological and biochemical response of tea [Camellia sinensis (L.) O. Kuntze] to water-deficit stress. The Journal of Horticultural Science and Biotechnology 90:395−400 doi: 10.1080/14620316.2015.11513200
|
[30] |
Dong F, Yang Z, Baldermann S, Kajitani Y, Ota S, et al. 2012. Characterization of ʟ-phenylalanine metabolism to acetophenone and 1-phenylethanol in the flowers of Camellia sinensis using stable isotope labeling. Journal of Plant Physiology 169:217−25 doi: 10.1016/j.jplph.2011.12.003
|
[31] |
Xu Q, He Y, Yan X, Zhao S, Zhu J, et al. 2018. Unraveling a crosstalk regulatory network of temporal aroma accumulation in tea plant (Camellia sinensis) leaves by integration of metabolomics and transcriptomics. Environmental and Experimental Botany 149:81−94 doi: 10.1016/j.envexpbot.2018.02.005
|
[32] |
Hu C, Li D, Ma Y, Zhang W, Lin C, et al. 2018. Formation mechanism of the oolong tea characteristic aroma during bruising and withering treatment. Food Chemistry 269:202−11 doi: 10.1016/j.foodchem.2018.07.016
|
[33] |
Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences 115:E4151−E4158 doi: 10.1073/pnas.1719622115
|
[34] |
Luo J, Ni D, Li C, Du Y, Chen Y. 2021. The relationship between fluoride accumulation in tea plant and changes in leaf cell wall structure and composition under different fluoride conditions. Environmental Pollution 270:116283 doi: 10.1016/j.envpol.2020.116283
|