[1] |
Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, et al. 2008. Climate change: can wheat beat the heat? Agriculture, Ecosystems & Environment 126:46−58 doi: 10.1016/j.agee.2008.01.019
|
[2] |
Change IPOC. 2014. IPCC. Climate change
|
[3] |
Wahid A, Gelani S, Ashraf M, Foolad MR. 2007. Heat tolerance in plants: an overview. Environmental and Experimental Botany 61:199−223 doi: 10.1016/j.envexpbot.2007.05.011
|
[4] |
Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, et al. 2007. Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10:310−16 doi: 10.1016/j.pbi.2007.04.011
|
[5] |
Mittler R, Finka A, Goloubinoff P. 2012. How do plants feel the heat? Trends in Biochemical Sciences 37:118−25 doi: 10.1016/j.tibs.2011.11.007
|
[6] |
Qu A, Ding Y, Jiang Q, Zhu C. 2013. Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications 432:203−7 doi: 10.1016/j.bbrc.2013.01.104
|
[7] |
Bita CE, Gerats T. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science 4:273 doi: 10.3389/fpls.2013.00273
|
[8] |
Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Transcriptional regulatory network of plant heat stress response. Trends in Plant Science 22:53−65 doi: 10.1016/j.tplants.2016.08.015
|
[9] |
Li Q, He Y, Tu M, Yan J, Yu L, et al. 2019. Transcriptome sequencing of two Kentucky bluegrass (Poa pratensis L.) genotypes in response to heat Stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47:328−38 doi: 10.15835/nbha47111365
|
[10] |
Wang K, Liu Y, Tian J, Huang K, Shi T, et al. 2017. Transcriptional profiling and identification of heat-responsive genes in perennial ryegrass by RNA-sequencing. Frontiers in Plant Science 8:1032 doi: 10.3389/fpls.2017.01032
|
[11] |
Li Z, Cheng B, Zeng W, Liu Z, Peng Y. 2019. The transcriptional and post-transcriptional regulation in perennial creeping bentgrass in response to γ-aminobutyric acid (GABA) and heat stress. Environmental and Experimental Botany 162:515−24 doi: 10.1016/j.envexpbot.2019.03.026
|
[12] |
Hu T, Sun X, Zhang X, Nevo E, Fu J. 2014. An RNA sequencing transcriptome analysis of the high-temperature stressed tall fescue reveals novel insights into plant thermotolerance. BMC Genomics 15:1147 doi: 10.1186/1471-2164-15-1147
|
[13] |
Li Y, Wang Y, Tang Y, Kakani VG, Mahalingam R. 2013. Transcriptome analysis of heat stress response in switchgrass (Panicum virgatum L.). BMC Plant Biology 13:153 doi: 10.1186/1471-2229-13-153
|
[14] |
Xu Y, Wang J, Bonos SA, Meyer WA, Huang B. 2018. Candidate genes and molecular markers correlated to physiological traits for heat tolerance in fine fescue cultivars. International Journal of Molecular Sciences 19:116 doi: 10.3390/ijms19010116
|
[15] |
Losvik A, Beste L, Glinwood R, Ivarson E, Stephens J, et al. 2017. Overexpression and down-regulation of barley lipoxygenase LOX2.2 affects jasmonate-regulated genes and aphid fecundity. International Journal of Molecular Sciences 18:2765 doi: 10.3390/ijms18122765
|
[16] |
Viswanath KK, Varakumar P, Pamuru RR, Basha SJ, Mehta S, et al. 2020. Plant lipoxygenases and their role in plant physiology. Journal of Plant Biology 63:83−95 doi: 10.1007/s12374-020-09241-x
|
[17] |
Umate P. 2011. Genome-wide analysis of lipoxygenase gene family in Arabidopsis and rice. Plant Signaling & Behavior 6:335−38 doi: 10.4161/psb.6.3.13546
|
[18] |
Melan MA, Dong X, Endara ME, Davis KR, Ausubel FM, et al. 1993. An Arabidopsis thaliana LIPOXYGENASE1 gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiology 101:441−50 doi: 10.1104/pp.101.2.441
|
[19] |
Keunen E, Remans T, Opdenakker K, Jozefczak M, Gielen H, et al. 2013. A mutant of the Arabidopsis thaliana LIPOXYGENASE1 gene shows altered signalling and oxidative stress related responses after cadmium exposure. Plant Physiology and Biochemistry 63:272−80 doi: 10.1016/j.plaphy.2012.12.005
|
[20] |
Bannenberg G, Martínez M, Hamberg M, Castresana C. 2009. Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids 44:85 doi: 10.1007/s11745-008-3245-7
|
[21] |
Ding H, Lai J, Wu Q, Zhang S, Chen L, et al. 2016. Jasmonate complements the function of Arabidopsis lipoxygenase3 in salinity stress response. Plant Science 244:1−7 doi: 10.1016/j.plantsci.2015.11.009
|
[22] |
Mack AJ, Peterman TK, Siedow JN. 1987. Lipoxygenase isozymes in higher plants: biochemical properties and physiological role. Isozymes 13:127−54
|
[23] |
Hildebrand DF. 1989. Lipoxygenases. Physiologia Plantarum 76:249−53 doi: 10.1111/j.1399-3054.1989.tb05641.x
|
[24] |
Siedow JN. 1991. Plant lipoxygenase: structure and function. Annual Review of Plant Physiology and Plant Molecular Biology 42:145−88 doi: 10.1146/annurev.pp.42.060191.001045
|
[25] |
Ferrer JL, Austin MB, Stewart C Jr, Noel JP. 2008. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiology and Biochemistry 46:356−70 doi: 10.1016/j.plaphy.2007.12.009
|
[26] |
Huang J, Gu M, Lai Z, Fan B, Shi K, et al. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology 153:1526−38 doi: 10.1104/pp.110.157370
|
[27] |
Gharibi S, Sayed Tabatabaei BE, Saeidi G, Talebi M, Matkowski A. 2019. The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech. f. Phytochemistry 162:90−98 doi: 10.1016/j.phytochem.2019.03.004
|
[28] |
Chun HJ, Baek D, Cho HM, Lee SH, Jin BJ, et al. 2019. Lignin biosynthesis genes play critical roles in the adaptation of Arabidopsis plants to high-salt stress. Plant Signaling & Behavior 14:1625697 doi: 10.1080/15592324.2019.1625697
|
[29] |
Dittrich H, Kutchan TM. 1991. Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack. PNAS 88:9969−73 doi: 10.1073/pnas.88.22.9969
|
[30] |
Facchini PJ, Penzes C, Johnson AG, Bull D. 1996. Molecular characterization of berberine bridge enzyme genes from opium poppy. Plant Physiology 112:1669−77 doi: 10.1104/pp.112.4.1669
|
[31] |
Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, et al. 2004. Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotechnology Journal 2:359−66 doi: 10.1111/j.1467-7652.2004.00085.x
|
[32] |
Locci F, Benedetti M, Pontiggia D, Citterico M, Caprari C, et al. 2019. An Arabidopsis berberine bridge enzyme-like protein specifically oxidizes cellulose oligomers and plays a role in immunity. The Plant Journal 98:540−54 doi: 10.1111/tpj.14237
|
[33] |
Santamaría ME, Arnaiz A, Velasco-Arroyo B, Grbic V, Diaz I, et al. 2018. Arabidopsis response to the spider mite Tetranychus urticae depends on the regulation of reactive oxygen species homeostasis. Scientific Reports 8:9432 doi: 10.1038/s41598-018-27904-1
|
[34] |
Kiani D, Soltanloo H, Ramezanpour SS, Nasrolahnezhad Qumi AA, Yamchi A, et al. 2017. A barley mutant with improved salt tolerance through ion homeostasis and ROS scavenging under salt stress. Acta Physiologiae Plantarum 39:90 doi: 10.1007/s11738-017-2359-z
|
[35] |
Lee RM, Thimmapuram J, Thinglum KA, Gong G, Hernandez AG, et al. 2009. Sampling the waterhemp (Amaranthus tuberculatus) genome using pyrosequencing technology. Weed Science 57:463−69 doi: 10.1614/WS-09-021.1
|
[36] |
Gaines TA, Lorentz L, Figge A, Herrmann J, Maiwald F, et al. 2014. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. The Plant Journal 78:865−76 doi: 10.1111/tpj.12514
|
[37] |
Halkier BA, Møller BL. 1989. Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of Sorghum bicolor (L.) Moench and partial purification of the enzyme system involved. Plant Physiology 90:1552−59 doi: 10.1104/pp.90.4.1552
|
[38] |
Sibbesen O, Koch B, Halkier BA, Møller B. 1994. Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. PNAS 91:9740−44 doi: 10.1073/pnas.91.21.9740
|
[39] |
Bak S, Kahn RA, Nielsen HL, Møller BL, Halkier BA. 1998. Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Molecular Biology 36:393−405 doi: 10.1023/A:1005915507497
|
[40] |
Pičmanová M, Neilson EH, Motawia MS, Olsen CE, Agerbirk N, et al. 2015. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochemical Journal 469:375−89 doi: 10.1042/BJ20150390
|
[41] |
Bjarnholt N, Neilson EH, Crocoll C, Jørgensen K, Motawia MS, et al. 2018. Glutathione transferases catalyze recycling of auto-toxic cyanogenic glucosides in sorghum. The Plant Journal 94:1109−25 doi: 10.1111/tpj.13923
|
[42] |
Gleadow RM, Møller BL. 2014. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annual Review of Plant Biology 65:155−85 doi: 10.1146/annurev-arplant-050213-040027
|
[43] |
Burke JJ, Chen J, Burow G, Mechref Y, Rosenow D, et al. 2013. Leaf dhurrin content is a quantitative measure of the level of pre-and postflowering drought tolerance in sorghum. Crop Science 53:1056−65 doi: 10.2135/cropsci2012.09.0520
|
[44] |
Emendack Y, Burke J, Laza H, Sanchez J, Hayes C. 2018. Abiotic stress effects on sorghum leaf dhurrin and soluble sugar contents throughout plant development. Crop Science 58:1706−16 doi: 10.2135/cropsci2018.01.0059
|
[45] |
Hoagland DR, Arnon DI. 1938. The water culture method for growing plants with soil. Rep. of the Calif. California Agricultural Experiment Station Circular 1950:39
|
[46] |
Hiscox JD, Israelstam GF. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57:1332−34 doi: 10.1139/b79-163
|
[47] |
Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24:1 doi: 10.1104/pp.24.1.1
|
[48] |
Blum A, Ebercon A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science 21:43−47 doi: 10.2135/cropsci1981.0011183X002100010013x
|
[49] |
Xu Y, Huang B. 2018. Comparative transcriptomic analysis reveals common molecular factors responsive to heat and drought stress in Agrostis stolonifera. Scientific Reports 8:15181 doi: 10.1038/s41598-018-33597-3
|
[50] |
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210−2 doi: 10.1093/bioinformatics/btv351
|
[51] |
Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139−40 doi: 10.1093/bioinformatics/btp616
|
[52] |
Young MD, Wakefield MJ, Smyth GK, Oshlack A. 2010. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology 11:R14 doi: 10.1186/gb-2010-11-2-r14
|
[53] |
Yu G, Wang L, Han Y, He Q. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology 16:284−87 doi: 10.1089/omi.2011.0118
|
[54] |
Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559 doi: 10.1186/1471-2105-9-559
|
[55] |
Zhang B, Horvath S. 2005. A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology 4:17 doi: 10.2202/1544-6115.1128
|