[1] |
Cruz RPD, Federizzi LC, Milach SCK. 1995. Apomixis in plants. ciência rural
|
[2] |
Hanna WW, Bashaw EC. 1987. Apomixis: its identification and use in plant breeding. Crop Science 27:1136−39 doi: 10.2135/cropsci1987.0011183X002700060010x
|
[3] |
Hojsgaard D, Greilhuber J, Pellino M, Paun O, Sharbel TF et al. 2014. Emergence of apospory and bypass of meiosis via apomixis after sexual hybridisation and polyploidisation. New Phytologist 204:1000−12 doi: 10.1111/nph.12954
|
[4] |
Mikami K, Li C, Irie R, Hama Y. 2019. A unique life cycle transition in the red seaweed Pyropia yezoensis depends on apospory. Communications Biology 2:299 doi: 10.1038/s42003-019-0549-5
|
[5] |
Asker SE, and Jerling L. 1992. Apomixis in Plants. Boca Raton and London: CRC press
|
[6] |
Conner JA, Mookkan M, Huo H, Chae K, Ozias-Akins P. 2015. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. PNAS 112:11205−10 doi: 10.1073/pnas.1505856112
|
[7] |
Spielman M, Vinkenoog R, Scott RJ. 2003. Genetic mechanisms of apomixis. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 358:1095−103 doi: 10.1098/rstb.2003.1298
|
[8] |
Rodrigo JM, Zappacosta DC, Selva JP, Garbus I, Albertini E et al. 2017. Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula). PLoS One. 12:e0175852 doi: 10.1371/journal.pone.0175852
|
[9] |
Bicknell RA, Koltunow AM. 2004. Understanding apomixis: recent advances and remaining conundrums. The Plant Cell 16:S228−S245 doi: 10.1105/tpc.017921
|
[10] |
Ozias-Akins P. 2006. Apomixis: developmental characteristics and genetics. Critical Reviews in Plant Sciences 25:199−214 doi: 10.1080/07352680600563926
|
[11] |
Koltunow AM. 1993. Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. The Plant Cell 5:1425−37 doi: 10.2307/3869793
|
[12] |
Dobeš C, Lückl A, Hülber K, Paule J. 2013. Prospects and limits of the flow cytometric seed screen-insights from Potentilla sensu lato (Potentilleae, Rosaceae). New phytologist 198:605−16 doi: 10.1111/nph.12149
|
[13] |
Cosendai AC, Hörandl E. 2010. Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae). Annals of Botany. 105:457−70 doi: 10.1093/aob/mcp304
|
[14] |
Carman JG, Jamison M, Elliott E, Dwivedi KK, Naumova TN. 2011. Apospory appears to accelerate the onset of meiosis and sexual embryo sac formation in sorghum ovules. BMC Plant Biology 11:9 doi: 10.1186/1471-2229-11-9
|
[15] |
Figueiredo DD, Köhler C. 2018. Auxin: a molecular trigger of seed development. Genes & Development 32:479−90 doi: 10.1101/gad.312546.118
|
[16] |
Jiang Y, Lahlali R, Karunakaran C, Warkentin TD, Davis AR, et al. 2019. Pollen, ovules, and pollination in pea: Success, failure, and resilience in heat. Plant, Cell & Environment 42:354−72 doi: 10.1111/pce.13427
|
[17] |
Richards AJ. 2003. Apomixis in flowering plants: an overview. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 358:1085−93 doi: 10.1098/rstb.2003.1294
|
[18] |
de Wet, JM J, Harlan JR, Stalker HT, Randrianasolo AV. 1978. The origin of tripsacoid maize (Zea mays L.). Evolution 32:233−44 doi: 10.1111/j.1558-5646.1978.tb00640.x
|
[19] |
Sakurai K, Brown SK, Weeden N. 2000. Self-incompatibility alleles of apple cultivars and advanced selections. HortScience 35:116−19 doi: 10.21273/HORTSCI.35.1.116
|
[20] |
Wu J, Wang Y, Xu J, Korban SS, Fei Z, et al. 2018. Diversification and independent domestication of Asian and European pears. Genome Biology 19:77 doi: 10.1186/s13059-018-1452-y
|
[21] |
Krawczyk E, Rojek J, Kowalkowska AK, Kapusta M, Znaniecka J, et al. 2016. Evidence for mixed sexual and asexual reproduction in the rare European mycoheterotrophic orchid Epipogium aphyllum, Orchidaceae (ghost orchid). Annals of Botany 118:159−72 doi: 10.1093/aob/mcw084
|
[22] |
Begcy K, Dresselhaus T. 2017. Tracking maize pollen development by theLeaf Collar Method. Plant Reproduction 30:171−78 doi: 10.1007/s00497-017-0311-4
|
[23] |
Wang X, Wang K, Yin G, Liu X, Liu M, et al. 2018. Pollen-expressed leucine-rich repeat extensins are essential for pollen germination and growth. Plant Physiology 176:1993−2006 doi: 10.1104/pp.17.01241
|
[24] |
Kiefer M, Nauerth BH, Volkert C, Ibberson D, Loreth A et al. 2020. Gene function rather than reproductive mode drives the evolution of RNA helicases in sexual and apomicticBoechera. Genome Biology and Evolution 12:656−73 doi: 10.1093/gbe/evaa078
|
[25] |
de Oliveira FA, Vigna BBZ, da Silva CC, Fávero AP, de Matta FP et al. 2020. Coexpression and transcriptome analyses identify active apomixis-related genes in Paspalum notatum leaves. BMC Genomics. 21:78 doi: 10.1186/s12864-020-6518-z
|
[26] |
Schmidt A. 2020. Controlling apomixis: shared features and distinct characteristics of gene regulation. Genes 11:329 doi: 10.3390/genes11030329
|
[27] |
Scheben A, Hojsgaard D. 2020. Can we use gene-editing to induce apomixis in sexual plants? Genes 11:781 doi: 10.3390/genes11070781
|
[28] |
Okada T, Catanach AS, Johnson SD, Bicknell RA, Koltunow AM. 2007. An Hieracium mutant, loss of apomeiosis 1 (loa1), is defective in the initiation of apomixis. Sexual Plant Reproduction 20:199−211 doi: 10.1007/s00497-007-0057-5
|
[29] |
Koltunow AM, Johnson SD, Lynch M, Yoshihara T, Costantino P. 2001. Expression of rolB in apomictic Hieracium piloselloides Vill. causes ectopic meristems in planta and changes in ovule formation, where apomixis initiates at higher frequency. Planta 214:196−205 doi: 10.1007/s004250100612
|
[30] |
Nonomura KI, Morohoshi A, Nakano M, Eiguchi M, Miyao A, et al. 2007. A germ cell-specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. The Plant Cell 19:2583−94 doi: 10.1105/tpc.107.053199
|
[31] |
Yadegari R, Kinoshita T, Lotan O, Cohen G, Katz A, et al. 2000. Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. The Plant Cell 12:2367−82 doi: 10.1105/tpc.12.12.2367
|
[32] |
Kohler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U et al. 2003. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and is required for seed development. The EMBO Journal 22:4804−14 doi: 10.1093/emboj/cdg444
|
[33] |
Liu D, Dong Q, Sun C, Wang Q, You C, et al. 2012. Functional characterization of an apple apomixis-related MhFIE gene in reproduction development. Plant Science 185−186:105−11 doi: 10.1016/j.plantsci.2011.09.004
|
[34] |
Schmidt ED, Guzzo F, Toonen MA, de Vries SC. 1997. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development. 124:2049−62 doi: 10.1242/dev.124.10.2049
|
[35] |
Ma J, He Y, Hu Z, Xu W, Xia J, et al. 2012. Characterization and expression analysis of AcSERK2, a somatic embryogenesis- and stress resistance-related gene in pineapple. Gene 500:115−23 doi: 10.1016/j.gene.2012.03.013
|
[36] |
Zhang LJ, Dong WX, Guo SM, Wang YX, Wang AD, et al. 2015. Cloning and characterization of the SERK1 gene in triploid Pingyi Tiancha [Malus hupehensis (Pamp.) Rehd. var. pingyiensis Jiang] and a tetraploid hybrid strain. Genetics and Molecular Research 14:14576−86 doi: 10.4238/2015.November.18.21
|
[37] |
Ahmadi B, Masoomi-Aladizgeh F, Shariatpanahi ME, Azadi P, Keshavarz-Alizadeh M. 2016. Molecular characterization and expression analysis of SERK1 and SERK2 in Brassica napus L.: implication for microspore embryogenesis and plant regeneration. Plant Cell Reports 35:185−93 doi: 10.1007/s00299-015-1878-6
|
[38] |
Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. 2010. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 53:814−27 doi: 10.1111/j.1365-313X.2007.03373.x
|
[39] |
Reyes JL, Chua NH. 2010. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. The Plant Journal 49:592−606 doi: 10.1111/j.1365-313X.2006.02980.x
|
[40] |
Castillejo C, Waurich V, Wagner H, Ramos R, Oiza N, et al. 2020. Allelic variation of MYB10 is the major force controlling natural variation of skin and flesh color in strawberry (Fragaria spp.) fruit. The Plant Cell 32:3723−49 doi: 10.1105/tpc.20.00474
|
[41] |
Gou J, Felippes FF, Liu C, Weigel D, Wang J. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. The Plant Cell 234:1512−22 doi: 10.1105/tpc.111.084525
|
[42] |
Cheng H, Song S, Xiao L, Soo HM, Cheng Z, et al. 2009. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genetics 5:e1000440 doi: 10.1371/journal.pgen.1000440
|
[43] |
Xing S, Salinas M, Garcia-Molina A, Höhmann S, Berndtgen R, et al. 2013. SPL8 and miR156-targeted SPL genes redundantly regulate Arabidopsis gynoecium differential patterning. The Plant Journal 75:566−77 doi: 10.1111/tpj.12221
|
[44] |
Preston J, Wheeler J, Heazlewood J, Li S, Parish RW. 2004. AtMYB32 is required for normal pollen development in Arabidopsis thaliana. The Plant Journal 40:979−95 doi: 10.1111/j.1365-313X.2004.02280.x
|
[45] |
Karl S. 1959. The cytogenetics of facultative apomixis in Malus species. Journal of the Arnold Arboretum 40:289−297 doi: 10.5962/p.186033
|
[46] |
Dermen H. 1936. Aposporic parthenogenesis in a triploid apple Malus hupehensis. Journal of the Arnold Arboretum 17:90−105 doi: 10.5962/p.185347
|
[47] |
Xi R, Han Q. 1998. Main rootstock of fruit trees. Beijing: China Forestry Press
|
[48] |
Wu M, Wang B, Dong Y, et al. 2010. Advances in apomictic reproduction of apple plants. Shandong Agricultural Science. 7:24−28
|
[49] |
Wang K, Liu F, Gao Y, et al. 2013. Research progress of apple germplasm resources in China. Chinese Fruit Trees 2:61−64
|
[50] |
Fiala JL. 1994. Flowering crabapples: the genus Malus. Portland, OR: Timber Press
|
[51] |
Lledo MD, Rich TCG. 2004. Genetic variation in progenies of three Hieracium microspecies endemic from Wales (United Kingdom). Thaiszia. 14:11−12
|
[52] |
Mangla Y, Chaudhary M, Gupta H, Thakur R, Goel S, et al. 2015. Facultative apomixis and development of fruit in a deciduous shrub with medicinal and nutritional uses. AoB PLANTS 7:plv098 doi: 10.1093/aobpla/plv098
|
[53] |
Nogler GA. 1984. Gametophytic apomixis
|
[54] |
Schmidt H. 1977. Contributions on the breeding of apomictic apple stocks. Z. Pflanzenzucht. 78:3−12
|
[55] |
Dong S. 1987. Malus plants and apomixis. Malus Plants and Apomixis
|
[56] |
Zhou Z, An H, Yang F, Wu L. 1998. Study on the interspecific and intraspecific differences of apomixis in malus mill. Journal of southwest agricultural university
|
[57] |
Olien WC, Stiles WC, Mccrum RC. 1987. Apomictic crabapples and their potential for research and fruit production. HortScience 22:541−46
|
[58] |
Grimanelli D, Leblanc O, Perotti E, Grossniklaus U. 2001. Developmental genetics of gametophytic apomixis. Trends in Genetics 17:597−604 doi: 10.1016/S0168-9525(01)02454-4
|
[59] |
Kao RH. 2007. Asexuality and the coexistence of cytotypes. New Phytologist 175:764−72 doi: 10.1111/j.1469-8137.2007.02145.x
|
[60] |
Okada T, Hu Y, Tucker MR, Taylor JM, Johnson SD, et al. 2013. Enlarging cells initiating apomixis in Hieracium praealtum transition to an embryo sac program prior to entering mitosis. Plant Physiology 163:216−31 doi: 10.1104/pp.113.219485
|
[61] |
Muralidhar P, Haig D. 2017. Sexy males and sexless females: the origin of triploid apomicts. Heredity 118:436−41 doi: 10.1038/hdy.2016.124
|
[62] |
Koltunow AM, Johnson SD, Bicknell RA. 2000. Apomixis is not developmentally conserved in related, genetically characterized Hieracium plants of varying ploidy. Sexual Plant Reproduction. 12:253−66 doi: 10.1007/s004970050193
|
[63] |
Koltunow AMG, Johnson SD, Rodrigues JCM, Okada T, Hu Y, et al. 2011. Sexual reproduction is the default mode in the apomictic Hieracium subgenus Pilosella, in which two dominant loci function to enable apomixis. The Plant Journal 66:890−902 doi: 10.1111/j.1365-313X.2011.04556.x
|
[64] |
Bräuning S, Catanach A, Lord JM, Bicknell R, MacKnight RC. 2018. Comparative transcriptome analysis of the wild-type model apomict Hieracium praealtum and its loss of parthenogenesis (lop) mutant. BMC Plant Biology 18:206 doi: 10.1186/s12870-018-1423-1
|
[65] |
Juranić M, Tucker MR, Schultz CJ, Shirley NJ, Taylor JM, et al. 2018. Asexual female gametogenesis involves contact with a sexually fated megaspore in apomictic Hieracium. Plant Plant Physiology 177:1027−49 doi: 10.1104/pp.18.00342
|
[66] |
Hörandl E. 2010. The evolution of self-fertility in apomictic plants. Sexual Plant Reproduction 23:73−86 doi: 10.1007/s00497-009-0122-3
|
[67] |
Sorensen AM, Rouse DT, Clements MA, John P, Perotti E. 2009. Description of a fertilization-independent obligate apomictic species: Corunastylis apostasioides Fitzg. Sexual Plant Reproduction 22:153−65 doi: 10.1007/s00497-009-0100-9
|
[68] |
Maia FR, Varassin IG, Goldenberg R. 2016. Apomixis does not affect visitation to flowers of Melastomataceae, but pollen sterility does. Plant Biology 18:132−38 doi: 10.1111/plb.12364
|
[69] |
Ramos MJN, Coito JL, Silva HG, Cunha J, Costa MMR, et al. 2014. Flower development and sex specification in wild grapevine. BMC Genomics 15:1095 doi: 10.1186/1471-2164-15-1095
|
[70] |
Hörandl E, Temsch EM. 2009. Introgression of apomixis into sexual species is inhibited by mentor effects and ploidy barriers in the Ranunculus auricomus complex. Annals of Botany 104:81−89 doi: 10.1093/aob/mcp093
|
[71] |
Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T et al. 2014. Male−female communication triggers calcium signatures during fertilization in Arabidopsis. Nature Communications 5:4645 doi: 10.1038/ncomms5645
|
[72] |
Mao B. 1995. Studies on the apomixis capacity of the apple plant. Journal of Southwest Agricultural University 17:220−23
|
[73] |
Maruyama D, Hamamura Y, Takeuchi H, Susaki D, Nishimaki M, et al. 2013. Independent control by each female gamete prevents the attraction of multiple pollen tubes. Developmental Cell 25:317−23 doi: 10.1016/j.devcel.2013.03.013
|
[74] |
Hofmann NR. 2010. Apomixis and Gene Expression in Boechera. The Plant Cell 22:539−39 doi: 10.1105/tpc.110.220312
|
[75] |
Long J, Liu Z, Wu X, Fang Y, Jia H, et al. 2016. Genome-scale mRNA and small RNA transcriptomic insights into the initiation of citrus apomixis. Journal of Experimental Botany 67:5743−56 doi: 10.1093/jxb/erw338
|
[76] |
Garcia-Aguilar M, Michaud C, Leblanc O, Grimanelli D. 2010. Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes. The Plant Cell 22:3249−67 doi: 10.1105/tpc.109.072181
|
[77] |
Brukhin V. 2017. Molecular and genetic regulation of apomixis. Russian Journal of Genetics 53:943−64 doi: 10.1134/s1022795417090046
|
[78] |
Wang X, Xu Y, Zhang S, Cao L, Huang Y, et al. 2017. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nature Genetics 49:765−72 doi: 10.1038/ng.3839
|
[79] |
Albertini E, Marconi G, Reale L, Barcaccia G, Porceddu A, et al. 2005. SERK and APOSTART. Candidate Genes for Apomixis in Poa pratensis. Plant Physiology 138:2185−2199 doi: 10.1104/pp.105.062059
|
[80] |
Song H, Ping A, Sun M, Qi X, Gao M, et al. 2017. Identification of genes related to floral organ development in pak choi by expression profiling. Genetics and Molecular Research 16:gmr16019233 doi: 10.4238/gmr16019233
|
[81] |
Bücherl CA, Van Esse GW, Kruis A, Luchtenberg J, Westphal AH, et al. 2013. Visualization of BRI1 and BAK1 (SERK3) membrane receptor heterooligomers during brassinosteroid signaling. Plant Physiology 162:1911−25 doi: 10.1104/pp.113.220152
|
[82] |
Kim MH, Kim Y, Kim JW, Lee HS, Lee WS, et al. 2013. Identification of Arabidopsis BAK1-associating receptor-like kinase 1 (BARK1) and characterization of its gene expression and brassinosteroid-regulated root phenotypes. Plant and Cell Physiology 54:1620−34 doi: 10.1093/pcp/pct106
|
[83] |
Xing S, Quodt V, Chandler J, Höhmann S, Berndtgen R, et al. 2013. SPL8 acts together with the brassinosteroid-signaling component BIM1 in controlling Arabidopsis thaliana male fertility. Plants 2:416−28 doi: 10.3390/plants2030416
|
[84] |
Ma Y, Sawhney VK, Steeves TA. 2011. Staining of paraffin-embedded plant material in safranin and fast green without prior removal of the paraffin. Canadian Journal of Botany. 71:996−99 doi: 10.1139/b93-114
|
[85] |
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52 doi: 10.1038/nbt.1883
|
[86] |
Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatic 12:323 doi: 10.1186/1471-2105-12-323
|
[87] |
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5:621−28 doi: 10.1038/nmeth.1226
|
[88] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
|