[1] |
Beard JB, Green RL. 1994. The role of turfgrasses in environmental protection and their benefits to humans. Journal of Environmental Quality 23:452−60 doi: 10.2134/jeq1994.00472425002300030007x |
[2] |
Chawla SL, Roshni A, Patel M, Patil S, Shah HP. 2018. Turfgrass: A billion dollar industry. In Proceedings of the National Conference on Floriculture for Rural and Urban Prosperity in the Scenario of Climate Change-2018. pp. 30−35 |
[3] |
Milesi C, Running SW, Elvidge CD, Dietz JB, Tuttle BT, et al. 2005. Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environmental Management 36:426−38 doi: 10.1007/s00267-004-0316-2 |
[4] |
Haydu JJ, Hodges AW, Hall CR. 2009. Economic impacts of the turfgrass and lawncare industry in the United States. USDA, CES, University of Florida, IFAS. URL http://edis.ifas.ufl.edu/pdffiles/FE/FE63200.pdf (last accessed 14 March 2021) |
[5] |
Stier JC, Steinke K, Ervin EH, Higginson FR, McMaugh PE. 2013. Turfgrass benefits and issues. In Turfgrass: Biology, Use, and Management, eds. Stier JC, Horgan BP, Bonos SA. Agron. Monogr. 56. Madison, WI: ASA, CSSA, and SSSA. pp. 105–45 https://doi.org/10.2134/agronmonogr56.c3 |
[6] |
Meyer WA, Funk CR. 1989. Progress and benefits to humanity from breeding cool-season grasses for turf. In Contributions from breeding forage and turf grasses, eds. Sleper et al. CSSA Spec. Publ. 15. CSSA, Madison, WI. pp. 31−48 https://doi.org/10.2135/cssaspecpub15.c4 |
[7] |
Bonos SA, Huff DR. 2013. Cool-season grasses: biology and breeding. In Turfgrass: Biology, Use, and Management. Agron. Monogr, eds. Stier JC, Horgan BP, Bonos SA. Bonos. Madison, WI: ASA, CSSA, and SSSA. pp. 591–660 https://doi.org/10.2134/agronmonogr56.c17 |
[8] |
Hanna W, Raymer P, Schwartz B. 2013. Warm-season grasses: biology and breeding. In Turfgrass: Biology, Use, and Management. eds. Stier JC, Horgan BP, Bonos SA. Bonos. Agron. Monogr. 56. Madison, WI: ASA, CSSA, and SSSA. pp. 543–90 https://doi.org/10.2134/agronmonogr56.c16 |
[9] |
Meyer WA, Hoffman L, Bonos SA. 2017. Breeding cool-season turfgrass cultivars for stress tolerance and sustainability in a changing environment. International Turfgrass Society Research Journal 13:3−10 doi: 10.2134/itsrj2016.09.0806 |
[10] |
Baxter LL, Schwartz BM. 2018. History of bermudagrass turfgrass breeding research in Tifton, GA. HortScience 53:1560−61 doi: 10.21273/HORTSCI13257-18 |
[11] |
Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S. 2013. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics. 126:867−87 doi: 10.1007/s00122-013-2066-0 |
[12] |
Jiang GL. 2013. Molecular markers and marker-assisted breeding in plants. In Plant Breeding from Laboratories to Fields, ed. Andersen SB. Rijeka, Croatia: InTech. pp. 45−83 https://doi.org/10.5772/52583 |
[13] |
Chawade A, van Ham J, Blomquist H, Bagge O, Alexandersson E, et al. 2019. High-throughput field-phenotyping tools for plant breeding and precision agriculture. Agronomy 9:258 doi: 10.3390/agronomy9050258 |
[14] |
Mir RR, Reynolds M, Pinto F, Khan MA, Bhat MA. 2019. High-throughput phenotyping for crop improvement in the genomics era. Plant Science. 282:60−72 doi: 10.1016/j.plantsci.2019.01.007 |
[15] |
Furbank RT, Tester M. 2011. Phenomics – technologies to relieve the phenotyping bottleneck. Trends in Plant Science 16:635−44 doi: 10.1016/j.tplants.2011.09.005 |
[16] |
Araus JL, Cairns JE. 2014. Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Science 19:52−61 doi: 10.1016/j.tplants.2013.09.008 |
[17] |
Fahlgren N, Gehan MA, Baxter I. 2015. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Current opinion in plant biology 24:93−99 doi: 10.1016/j.pbi.2015.02.006 |
[18] |
Cabrera-Bosquet L, Sánchez C, Rosales A, Palacios-Rojas N, Araus JL. 2011. Near-Infrared Reflectance Spectroscopy (NIRS) assessment of δ18O and nitrogen and ash contents for improved yield potential and drought adaptation in maize. Journal of agricultural and food chemistry 59:467−74 doi: 10.1021/jf103395z |
[19] |
White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA, et al. 2012. Field-based phenomics for plant genetics research. Field Crops Research 133:101−12 doi: 10.1016/j.fcr.2012.04.003 |
[20] |
Monneveux P, Ramírez DA, Pino MT. 2013. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals? Plant Science 205:76−86 doi: 10.1016/j.plantsci.2013.01.011 |
[21] |
Walter A, Studer B, Kölliker R. 2012. Advanced phenotyping offers opportunities for improved breeding of forage and turf species. Annals of Botany 110:1271−79 doi: 10.1093/aob/mcs026 |
[22] |
Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R. 2014. Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 4:349−79 doi: 10.3390/agronomy4030349 |
[23] |
Li L, Zhang Q, Huang D. 2014. A review of imaging techniques for plant phenotyping. Sensors 14:20078−111 doi: 10.3390/s141120078 |
[24] |
Sankaran S, Khot LR, Espinoza CZ, Jarolmasjed S, Sathuvalli VR, et al. 2015. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. European Journal of Agronomy 70:112−23 doi: 10.1016/j.eja.2015.07.004 |
[25] |
Zhang Y, Zhang N. 2018. Imaging technologies for plant high-throughput phenotyping: a review. Frontiers of Agricultural Science and Engineering 5:406−19 doi: 10.15302/j-fase-2018242 |
[26] |
Feng L, Chen S, Zhang C, Zhang Y, He Y. 2021. A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping. Computers and Electronics in Agriculture 182:106033 doi: 10.1016/j.compag.2021.106033 |
[27] |
Mahner M, Kary M. 1997. What exactly are genomes, genotypes and phenotypes? And what about phenomes? Journal of Theoretical Biology 186:55−63 doi: 10.1006/jtbi.1996.0335 |
[28] |
Fiorani F, Schurr U. 2013. Future scenarios for plant phenotyping. Annual Review of Plant Biology 64:267−291 doi: 10.1146/annurev-arplant-050312-120137 |
[29] |
Rahaman M, Chen D, Gillani Z, Klukas C, Chen M. 2015. Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Frontiers in Plant Science 6:619 doi: 10.3389/fpls.2015.00619 |
[30] |
Yano MM, Tuberosa R. 2009. Genome studies and molecular genetics — from sequence to crops: genomics comes of age. Current Opinion in Plant Biology 12:103−6 doi: 10.1016/j.pbi.2009.01.001 |
[31] |
Tester M, Langridge P. 2010. Breeding technologies to increase crop production in a changing world. Science 327:818−22 doi: 10.1126/science.1183700 |
[32] |
Schneeberger K, Weigel D. 2011. Fast-forward genetics enabled by new sequencing technologies. Trends in Plant Science 16:282−88 doi: 10.1016/j.tplants.2011.02.006 |
[33] |
Finkel E. 2009. With 'phenomics', plant scientists hope to shift breeding into overdrive. Science 325:380−81 doi: 10.1126/science.325_380 |
[34] |
Furbank RT. 2009. Plant phenomics: from gene to form and function. Functional Plant Biology 36:v−vi doi: 10.1071/fpv36n11_fo |
[35] |
Houle D, Govindaraju DR, Omholt S. 2010. Phenomics: the next challenge. Nature Reviews Genetics 11:855−66 doi: 10.1038/nrg2897 |
[36] |
Fiorani F, Rascher U, Jahnke S, Schurr U. 2012. Imaging plants dynamics in heterogenic environments. Current Opinion in Biotechnology 23:227−35 doi: 10.1016/j.copbio.2011.12.010 |
[37] |
Hartmann A, Czauderna T, Hoffmann R, Stein N, Schreiber F. 2011. HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC Bioinformatics 12:148 doi: 10.1186/1471-2105-12-148 |
[38] |
Chen D, Neumann K, Friedel S, Kilian B, Chen M, et al. 2014. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. The Plant Cell 26:4636−55 doi: 10.1105/tpc.114.129601 |
[39] |
Naito H, Ogawa S, Valencia MO, Mohri H, Urano Y, et al. 2017. Estimating rice yield related traits and quantitative trait loci analysis under different nitrogen treatments using a simple tower-based field phenotyping system with modified single-lens reflex cameras. ISPRS Journal of Photogrammetry and Remote Sensing 125:50−62 doi: 10.1016/j.isprsjprs.2017.01.010 |
[40] |
Shafiekhani A, Kadam S, Fritschi FB, DeSouza GN. 2017. Vinobot and vinoculer: two robotic platforms for high-throughput field phenotyping. Sensors 17:214 doi: 10.3390/s17010214 |
[41] |
Yang G, Liu J, Zhao C, Li Z, Huang Y, et al. 2017. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Frontiers in Plant Science 8:1111 doi: 10.3389/fpls.2017.01111 |
[42] |
Berni JAJ, Zarco-Tejada PJ, Suarez L, Fereres E. 2009. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing 47:722−38 doi: 10.1109/tgrs.2008.2010457 |
[43] |
Andrade-Sanchez P, Gore MA, Heun JT, Thorp KR, Carmo-Silva AE, et al. 2013. Development and evaluation of a field-based high-throughput phenotyping platform. Functional Plant Biology 41:68−79 doi: 10.1071/fp13126 |
[44] |
Montes JM, Technow F, Dhillon BS, Mauch F, Melchinger AE. 2011. High-throughput non-destructive biomass determination during early plant development in maize under field conditions. Field Crops Research 121:268−73 doi: 10.1016/j.fcr.2010.12.017 |
[45] |
Busemeyer L, Mentrup D, Möller K, Wunder E, Alheit K, et al. 2013. Breedvision − A multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors 13:2830−47 doi: 10.3390/s130302830 |
[46] |
Comar A, Burger P, de Solan B, Baret F, Daumard F, et al. 2012. A semi-automatic system for high throughput phenotyping wheat cultivars in-field conditions: Description and first results. Functional Plant Biology 39:914−924 doi: 10.1071/FP12065 |
[47] |
Crain JL, Wei Y, Barker J III, Thompson SM, Alderman PD, et al. 2016. Development and deployment of a portable field phenotyping platform. Crop Science 56:965−75 doi: 10.2135/cropsci2015.05.0290 |
[48] |
Ruckelshausen A, Biber P, Dorna M, Gremmes H, Klose R, et al. 2009. BoniRob–an autonomous field robot platform for individual plant phenotyping. Precision Agriculture 9:841−47 |
[49] |
Jensen K, Nielsen SH, Joergensen RN, Boegild A, Jacobsen NJ, et al. 2013. A low cost, modular robotics tool carrier for precision agriculture research. Proceedings of the 11th International Conference on Precision Agriculture, Indianapolis, IN, USA, 15−18 Jul 2012. USA: International Society of Precision Agriculture |
[50] |
White JW, Conley MM. 2012. A flexible, low-cost cart for proximal sensing. Crop Science 53:1646−49 doi: 10.2135/cropsci2013.01.0054 |
[51] |
Stowell L, Gelernter W. 2008. Evaluation of a Geonics EM38 and NTech GreenSeeker sensor array for use in precision turfgrass management. Abstracts, GSA-SSSA-ASA-CSSA-GCAGS International Annual Meeting, Houston, TX. pp. 5–9 http://acs.confex.com/crops/2008am/webprogram/Paper45119.html |
[52] |
Carrow RN, Krum JM, Flitcroft I, Cline V. 2010. Precision turfgrass management: Challenges and field applications for mapping turfgrass soil and stress. Precision Agriculture 11:115−34 doi: 10.1007/s11119-009-9136-y |
[53] |
Krum JM, Carrow RN, Karnok K. 2010. Spatial mapping of complex turfgrass sites: Site-specific management units and protocols. Crop Science 50:301−15 doi: 10.2135/cropsci2009.04.0173 |
[54] |
Booth JC, Sullivan D, Askew SA, Kochersberger K, McCall DS. 2021. Investigating targeted spring dead spot management via aerial mapping and precision-guided fungicide applications. Crop Science 61:3134−44 doi: 10.1002/csc2.20623 |
[55] |
Eisenbeiss H. 2004. A mini unmanned aerial vehicle (UAV): system overview and image acquisition. International Archives of Photogrammetry. Remote Sensing and Spatial Information Sciences 36:1−7 |
[56] |
Boon MA, Drijfhout AP, Tesfamichael S. 2017. Comparison of a fixed-wing and multi-rotor uav for environmental mapping applications: A case study. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42:47−54 doi: 10.5194/isprs-archives-XLII-2-W6-47-2017 |
[57] |
Cai G, Dias J, Seneviratne L. 2014. A survey of small scale unmanned aerial vehicles: Recent advances and future development trends. Unmanned Systems 2:175−99 doi: 10.1142/S2301385014300017 |
[58] |
Thamm FP, Brieger N, Neitzke KP, Meyer M, Jansen R, Mönninghof M. 2015. SONGBIRD-an innovative UAS combining the advantages of fixed wing and multi rotor UAS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 40:345−49 doi: 10.5194/isprsarchives-xl-1-w4-345-2015 |
[59] |
Hayes DJ, Sader SA. 2001. Comparison of change-detection techniques for monitoring tropical forest clearing and vegetation regrowth in a time series. Photogrammetric Engineering and Remote Sensing. 67:1067−75 |
[60] |
Richardson MD, Karcher DE, Purcell LC. 2001. Quantifying turfgrass cover using digital image analysis. Crop Science 41:1884−88 doi: 10.2135/cropsci2001.1884 |
[61] |
Karcher DE, Richardson MD. 2003. Quantifying turfgrass color using digital image analysis. Crop Science 43:943−51 doi: 10.2135/cropsci2003.9430 |
[62] |
Madec S, Baret F, De Solan B, Thomas S, Dutartre D, Jezequel S, Hemmerlé M, Colombeau G, Comar A. 2017. High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground LiDAR estimates. Frontiers in Plant Science 8:2002 doi: 10.3389/fpls.2017.02002 |
[63] |
Zhang J, Maleski J, Schwartz B, Dunn D, Mailhot D, Ni X, Harris-Shultz K, Knoll J, Toews M. 2021. Assessing spatio-temporal patterns of sugarcane aphid (Hemiptera: Aphididae) infestations on silage sorghum yield using unmanned aerial systems (UAS). Crop Protection 146:105681 doi: 10.1016/j.cropro.2021.105681 |
[64] |
Karcher DE, Richardson MD. 2013. Digital image analysis in turfgrass research. In Turfgrass: Biology, Use, and Management, eds. Stier JC, Horgan BP, Bonos SA. Agron. Monogr. 56. Madison, WI: ASA, CSSA, and SSSA. p. 1133–49 https://doi.org/10.2134/agronmonogr56.c29 |
[65] |
Shaver BR, Richardson MD, McCalla JH, Karcher DE, Berger PJ. 2006. Dormant seeding bermudagrass cultivars in a transition-zone environment. Crop Science 46:1787−92 doi: 10.2135/cropsci2006.02-0078 |
[66] |
Patton AJ, Volenec JJ, Reicher ZJ. 2007. Stolon growth and dry matter partitioning explain differences in zoysiagrass establishment rates. Crop Science 47:1237−45 doi: 10.2135/cropsci2006.10.0633 |
[67] |
Schnell RW, Vietor DM, White RH, Provin TL, Munster CL. 2009. Effects of composted biosolids and nitrogen on turfgrass establishment, sod properties, and nutrient export at harvest. HortScience 44:1746−1750 doi: 10.21273/HORTSCI.44.6.1746 |
[68] |
Herrmann M, Goatley JM Jr, McCall DS, Askew SD. 2021. Establishment of dormant 'Latitude 36' bermudagrass sprigs in the transition zone. Crop, Forage & Turfgrass Management. 7:e20087 doi: 10.1002/cft2.20087 |
[69] |
Karcher DE, Richardson MD, Hignight K, Rush D. 2008. Drought tolerance of tall fescue populations selected for high root/shoot ratios and summer survival. Crop Science 48:771−77 doi: 10.2135/cropsci2007.05.0272 |
[70] |
Richardson MD, Karcher DE, Hignight K, Rush D. 2008. Drought tolerance and rooting capacity of Kentucky bluegrass cultivars. Crop Science 48:2429−36 doi: 10.2135/cropsci2008.01.0034 |
[71] |
Githinji LJM, Dane JH, Walker RH. 2009. Water-use patterns of tall fescue and hybrid bluegrass cultivars subjected to ET-based irrigation scheduling. Irrigation Science 27:377−91 doi: 10.1007/s00271-009-0153-4 |
[72] |
McCall DS, Zhang X, Sullivan DG, Askew SD, Ervin EH. 2017. Enhanced soil moisture assessment using narrowband reflectance vegetation indices in creeping bentgrass. Crop Science 57:S-161−S-168 doi: 10.2135/cropsci2016.06.0471 |
[73] |
Badzmierowski MJ, McCall DS, Evanylo G. 2019. Using hyperspectral and multispectral indices to detect water stress for an urban turfgrass system. Agronomy 9:439 doi: 10.3390/agronomy9080439 |
[74] |
Sorochan JC, Karcher DE, Parham JM, Richardson MD. 2006. Segway and golf car wear on bermudagrass fairway turf. Applied Turfgrass Science 3:1−7 |
[75] |
Trappe JM, Richardson MD, Patton AJ. 2012. Species selection, pre-plant cultivation, and traffic affect overseeding establishment in bermudagrass turf. Agronomy Journal 104:1130−35 doi: 10.2134/agronj2011.0407 |
[76] |
Ellram A, Horgan B, Hulke B. 2007. Mowing strategies and dew removal to minimize dollar spot on creeping bentgrass. Crop Science 47:2129−37 doi: 10.2135/cropsci2006.10.0649 |
[77] |
Tomaso-Peterson M. 2008. Controlling spring dead spot of bermudagrass: Scientists at Mississippi State University conduct research to unravel this mysterious turfgrass disease. USGA Green Section Record 46:16−19 |
[78] |
Wong F, Chen CM, Stowell L. 2009. Effects of nitrogen and Primo Maxx on brown ring patch development: Best management practices are still being developed for brown ring patch, a recently discovered disease of Poa annua greens. Golf Course Management 77:117−121 |
[79] |
Richardson MD, Hignight KW, Walker RH, Rodgers CA, Rush D, McCalla JH, Karcher DE. 2007. Meadow fescue and tetraploid perennial ryegrass – Two new species for overseeding dormant bermudagrass turf. Crop Sci. 47:83−90 doi: 10.2135/cropsci2006.04.0221 |
[80] |
Okeyo DO, Fry JD, Bremmer D, Rajashekar CB, Kennelly M, et al. 2011. Freezing Tolerance and Seasonal Color of Experimental Zoysiagrasses. Crop Science 51:2858−63 doi: 10.2135/cropsci2011.01.0049 |
[81] |
Xiang H, Tian L. 2011. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering 108:174−190 doi: 10.1016/j.biosystemseng.2010.11.010 |
[82] |
Zhang J, Virk S, Porter W, Kenworthy K, Sullivan D, Schwartz B. 2019. Applications of unmanned aerial vehicle based imagery in turfgrass field trials. Frontiers in Plant Science 10:279 doi: 10.3389/fpls.2019.00279 |
[83] |
Louhaichi M, Borman MM, Johnson DE. 2001. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International 16:65−70 doi: 10.1080/10106040108542184 |
[84] |
Gitelson AA, Kaufman YJ, Stark R, Rundquist D. 2002. Novel algorithms for remote estimation of vegetation fraction. Remote sensing of Environment 80:76−87 doi: 10.1016/S0034-4257(01)00289-9 |
[85] |
Hong M, Bremer DJ, van der Merwe D. 2019. Using small unmanned aircraft systems for early detection of drought stress in turfgrass. Crop Science 59:2829−44 doi: 10.2135/cropsci2019.04.0212 |
[86] |
Blackmer TM, Schepers JS, Varvel GE. 1994. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agronomy Journal 86:934−38 doi: 10.2134/agronj1994.00021962008600060002x |
[87] |
Gausman HW. 1977. Reflectance of leaf components. Remote Sensing of Environment 6:1−9 doi: 10.1016/0034-4257(77)90015-3 |
[88] |
Horler DNH, Dockray M, Barber J. 1983. The red edge of plant leaf reflectance. International journal of remote sensing 4:273−88 doi: 10.1080/01431168308948546 |
[89] |
Peñuelas J, Filella I, Biel C, Serrano L, Save R. 1993. The reflectance at the 950-970 nm region as an indicator of plant water status. International Journal of Remote Sensing 14:1887−905 doi: 10.1080/01431169308954010 |
[90] |
Zarco-Tejada PJ, Rueda CA, Ustin SL. 2003. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment. 85:109−24 doi: 10.1016/S0034-4257(02)00197-9 |
[91] |
McCall DS, Sullivan DG, Zhang X, Martin SB, Wong A, et al. 2021. Influence of synthetic phthalocyanine pigments on light reflectance of creeping bentgrass. Crop Science 61:804−13 doi: 10.1002/csc2.20335 |
[92] |
Knipling EB. 1970. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment 1:155−59 doi: 10.1016/S0034-4257(70)80021-9 |
[93] |
Carter GA. 1991. Primary and secondary effects of water content on the spectral reflectance of leaves. American Journal of Botany 78:916−24 doi: 10.1002/j.1537-2197.1991.tb14495.x |
[94] |
Kou L, Labrie D, Chylek P. 1993. Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range. Applied Optics 32:3531−40 doi: 10.1364/AO.32.003531 |
[95] |
Munns R, James RA, Sirault XRR, Furbank RT, Jones HG. 2010. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. Journal of Experimental Botany 61:3499−3507 doi: 10.1093/jxb/erq199 |
[96] |
Govender M, Chetty K, Bulcock H. 2007. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA 33:145−51 doi: 10.4314/wsa.v33i2.49049 |
[97] |
Fitz–Rodríguez E, Choi CY. 2002. Monitoring turfgrass quality using multispectral radiometry. Transactions of the ASAE 45:865−71 doi: 10.13031/2013.8839 |
[98] |
Resop JP, Cundiff JS, Heatwole CD. 2011. Spatial analysis to site satellite storage locations for herbaceous biomass In the piedmont of the southeast. Applied Engineering in Agriculture 27:25−32 doi: 10.13031/2013.36221 |
[99] |
Jiang Y, Duncan RR, Carrow RN. 2004. Assessment of low light tolerance of seashore paspalum and bermudagrass. Crop Science 44:587−94 doi: 10.2135/cropsci2004.5870 |
[100] |
Jiang Y, Carrow RN. 2007. Broadband spectral reflectance models of turfgrass species and cultivars to drought stress. Crop Science 47:1611−18 doi: 10.2135/cropsci2006.09.0617 |
[101] |
Zhang J, Unruh JB, Kenworthy K, Erickson J, Christensen CT, et al. 2016. Phenotypic plasticity and turf performance of zoysiagrass in response to reduced light intensities. Crop Science 56:1337−48 doi: 10.2135/cropsci2015.09.0570 |
[102] |
Bell GE, Howell BM, Johnson GV, Raun WR, Solie JB, et al. 2004. Optical sensing of turfgrass chlorophyll content and tissue nitrogen. HortScience 39:1130−32 doi: 10.21273/HORTSCI.39.5.1130 |
[103] |
Trenholm LE, Carrow RN, Duncan RR. 1999. Relationship of multispectral radiometry data to qualitative data in turfgrass research. Crop Science 39:763−69 doi: 10.2135/cropsci1999.0011183X003900030025x |
[104] |
Jordan CF. 1969. Derivation of leaf-area index from quality of light on the forest floor. Ecology 50:663−66 doi: 10.2307/1936256 |
[105] |
Birth GS, McVey, GR. 1968. Measuring the color of growing turf with a reflectance spectrophotometer. Agronomy Journal 60:640−43 doi: 10.2134/agronj1968.00021962006000060016x |
[106] |
Rouse JW, Haas RW, Schell JA, Deering DW. 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Greenbelt, MD: Final Report. Remote Sensing Center, Texas A&M University, College Station |
[107] |
Deering DW, Rouse JW, Haas RW, Schell JA. 1975. Measuring "forage production" of grazing units from Landsat MSS data. In: Proceedings of the Tenth International Symposium of Remote Sensing of the Environment. Ann Arbor, MI. pp. 1169−78 |
[108] |
Tucker CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8:127−50 doi: 10.1016/0034-4257(79)90013-0 |
[109] |
Rondeaux G, Steven M, Baret F. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment 55:95−107 doi: 10.1016/0034-4257(95)00186-7 |
[110] |
Huete A, Didan K, Miura T, Rodriguez EP, Gao X, et al. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83:195−213 doi: 10.1016/S0034-4257(02)00096-2 |
[111] |
Gitelson AA, Gritz Y, Merzlyak MN. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology 160:271−82 doi: 10.1078/0176-1617-00887 |
[112] |
Mutanga O, Skidmore AK. 2004. Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing 25:3999−4014 doi: 10.1080/01431160310001654923 |
[113] |
Sripada RP, Heiniger RW, White JG, Weisz R. 2005. Aerial color infrared photography for determining late-season nitrogen requirements in corn. Agronomy Journal. 97:1443−51 doi: 10.2134/agronj2004.0314 |
[114] |
Bremer DJ, Lee H, Su K, Keeley SJ. 2011. Relationships between normalized difference vegetation index and visual quality in cool-season turfgrass: II. Factors affecting NDVI and its component reflectances. Crop Science 51:2219−27 doi: 10.2135/cropsci2010.12.0729 |
[115] |
Lee H, Bremer DJ, Su K, Keeley SJ. 2011. Relationships between normalized difference vegetation index and visual quality in turfgrasses: Effects of mowing height. Crop Science 51:323−32 doi: 10.2135/cropsci2010.05.0296 |
[116] |
Nanda MK, Giri U, Bera N. 2018. Canopy temperature-based water stress indices: Potential and limitations. In Advances in Crop Environment Interaction, eds. Bal SK, Mukherjee J, Choudhury BU, Dhawanpp AK. pp. 365−85. Singapore: Springer, Singapore https://doi.org/10.1007/978-981-13-1861-0_14 |
[117] |
Jalali-Farahani HR, Slack DC, Kopec DM, Matthias AD. 1993. Crop water stress index models for Bermudagrass turf: a comparison. Agronomy Journal 85:1210−17 doi: 10.2134/agronj1993.00021962008500060022x |
[118] |
Bijanzadeh E, Naderi R, Emam Y. 2013. Determination of crop water stress index for irrigation scheduling of turfgrass (Cynodon dactylon L. Pers.) under drought conditions. Journal of Plant Physiology and Breeding 3:13−22 |
[119] |
Taghvaeian S, Chávez JL, Hattendorf MJ, Crookston MA. 2013. Optical and thermal remote sensing of turfgrass quality, water stress, and water use under different soil and irrigation treatments. Remote Sensing 5:2327−47 doi: 10.3390/rs5052327 |
[120] |
Foral JG. 2021. Using thermal imaging to measure water stress in creeping bentgrass putting greens. Master's thesis. University of Nebraska-Lincoln, USA. https://digitalcommons.unl.edu/agronhortdiss/221. |
[121] |
Payero JO, Neale CMU, Wright JL. 2005. Non-water-stressed baselines for calculating crop water stress index (CWSI) for alfalfa and tall fescue grass. Transactions of the ASAE 48:653−61 doi: 10.13031/2013.18329 |
[122] |
Zhang L, Niu Y, Zhang H, Han W, Li G, et al. 2019. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Frontiers in Plant Science 10:1270 doi: 10.3389/fpls.2019.01270 |
[123] |
Butler WL. 1973. Primary photochemistry of photosystem II of photosynthesis. Accounts of Chemical Research 6:177−84 doi: 10.1021/ar50066a001 |
[124] |
Maxwell K, Johnson GN. 2000. Chlorophyll fluorescence—a practical guide. Journal of experimental botany 51:659−68 doi: 10.1093/jexbot/51.345.659 |
[125] |
Lee WS, Alchanatis V, Yang C, Hirafuji M, Moshou D, Li C. 2010. Sensing technologies for precision specialty crop production. Computers and electronics in agriculture. 74:2−33 doi: 10.1016/j.compag.2010.08.005 |
[126] |
Gorbe E, Calatayud A. 2012. Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Scientia Horticulturae 138:24−35 doi: 10.1016/j.scienta.2012.02.002 |
[127] |
Chaerle L, Van Der Straeten D. 2000. Imaging techniques and early detection of plant stress. Trends in Plant Science 5:495−501 doi: 10.1016/S1360-1385(00)01781-7 |
[128] |
Kalaji HM, Goltsev V, Bosa K, Allakhverdiev SI, Strasser RJ, et al. 2012. Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker. Photosynthesis Research 114:69−96 doi: 10.1007/s11120-012-9780-3 |
[129] |
Bąba W, Kalaji HM, Kompała-Bąba A, Goltsev V. 2016. Acclimatization of photosynthetic apparatus of tor grass (Brachypodium pinnatum) during expansion. PLoS ONE 11:e0156201 doi: 10.1371/journal.pone.0156201 |
[130] |
Goltsev VN, Kalaji HM, Paunov M, Bąba W, Horaczek T, et al. 2016. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian Journal of Plant Physiology 63:869−93 doi: 10.1134/S1021443716050058 |
[131] |
Balachandran VK, Gopinathan CP, PIllai VK, Nandakumar A, Valsala KK. 1997. Chlorophyll profile of the euphotic zone in the Lakshadweep Sea during the southwest monsoon season. Indian Journal of Fisheries 44:29−43 |
[132] |
Lohaus G, Heldt HW, Osmond CB. 2000. Infection with phloem limited Abutilon mosaic virus causes localized carbohydrate accumulation in leaves of Abutilon striatum: relationships to symptom development and effects on chlorophyll fluorescence quenching during photosynthetic induction. Plant Biology 2:161−67 doi: 10.1055/s-2000-9461 |
[133] |
Swarbrick PJ, Schulze-Lefert P, Scholes JD. 2006. Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant, Cell & Environment 29:1061−76 doi: 10.1111/j.1365-3040.2005.01472.x |
[134] |
Chaerle L, Leinonen I, Jones HG, Van Der Straeten D. 2007. Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. Journal of Experimental Botany 58:773−84 doi: 10.1093/jxb/erl257 |
[135] |
Rolfe SA, Scholes JD. 2010. Chlorophyll fluorescence imaging of plant–pathogen interactions. Protoplasma 247:163−75 doi: 10.1007/s00709-010-0203-z |
[136] |
Barbagallo RP, Oxborough K, Pallett KE, Baker NR. 2003. Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant physiology 132:485−93 doi: 10.1104/pp.102.018093 |
[137] |
Konishi A, Eguchi A, Hosoi F, Omasa K. 2009. 3D monitoring spatio-temporal effects of herbicide on a whole plant using combined range and chlorophyll a fluorescence imaging. Functional Plant Biology 36:874−79 doi: 10.1071/FP09108 |
[138] |
Baker NR, Rosenqvist E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. Journal of Experimental Botany 55:1607−21 doi: 10.1093/jxb/erh196 |
[139] |
Lenk S, Chaerle L, Pfündel EE, Langsdorf G, Hagenbeek D, et al. 2007. Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. Journal of Experimental Botany 58:807−14 doi: 10.1093/jxb/erl207 |
[140] |
Baker NR. 2008. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology 59:89−113 doi: 10.1146/annurev.arplant.59.032607.092759 |
[141] |
Harbinson J, Prinzenberg AE, Kruijer W, Aarts MG. 2012. High throughput screening with chlorophyll fluorescence imaging and its use in crop improvement. Current Opinion in Biotechnology 23:221−26 doi: 10.1016/j.copbio.2011.10.006 |
[142] |
Colaço AF, Molin JP, Rosell-Polo JR, Escolà A. 2018. Application of light detection and ranging and ultrasonic sensors to high-throughput phenotyping and precision horticulture: current status and challenges. Horticulture Research 5:35 doi: 10.1038/s41438-018-0043-0 |
[143] |
Lin Y. 2015. LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics? Computers and Electronics in Agriculture 119:61−73 doi: 10.1016/j.compag.2015.10.011 |
[144] |
García-Santillán ID, Montalvo M, Guerrero JM, Pajares G. 2017. Automatic detection of curved and straight crop rows from images in maize fields. Biosystems Engineering 156:61−79 doi: 10.1016/j.biosystemseng.2017.01.013 |
[145] |
Bao Y, Tang L, Breitzman MW, Salas Fernandez MG, Schnable PS. 2019. Field-based robotic phenotyping of sorghum plant architecture using stereo vision. Journal of Field Robotics 36:397−415 doi: 10.1002/rob.21830 |
[146] |
Pandey P, Ge Y, Stoerger V, Schnable JC. 2017. High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Frontiers in Plant Science 8:1348 doi: 10.3389/fpls.2017.01348 |
[147] |
Sun S, Li C, Paterson AH, Jiang Y, Xu R, et al. 2018. In-field high-throughput phenotyping and cotton plant growth analysis using LiDAR. Frontiers in Plant Science 9:16 doi: 10.3389/fpls.2018.00016 |
[148] |
Nguyen P, Badenhorst PE, Shi F, Spangenberg GC, Smith KF, et al. 2021. Design of an Unmanned Ground Vehicle and LiDAR Pipeline for the High-Throughput Phenotyping of Biomass in Perennial Ryegrass. Remote Sensing 13:20 doi: 10.3390/rs13010020 |
[149] |
Pittman JJ, Arnall DB, Interrante SM, Moffet CA, Butler TJ. 2015. Estimation of biomass and canopy height in bermudagrass, alfalfa, and wheat using ultrasonic, laser, and spectral sensors. Sensors 15:2920−43 doi: 10.3390/s150202920 |
[150] |
Scotford IM, Miller PCH. 2004. Combination of spectral reflectance and ultrasonic sensing to monitor the growth of winter wheat. Biosystems Engineering 87:27−38 doi: 10.1016/j.biosystemseng.2003.09.009 |
[151] |
Yuan W, Li J, Bhatta M, Shi Y, Baenziger PS, et al. 2018. Wheat height estimation using LiDAR in comparison to ultrasonic sensor and UAS. Sensors 18:3731 doi: 10.3390/s18113731 |
[152] |
Lobet G, Pagès L, Draye X. 2011. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiology 157:29−39 doi: 10.1104/pp.111.179895 |
[153] |
Pierret A, Gonkhamdee S, Jourdan C, Maeght JL. 2013. IJ_RHIZO: An open-source software to measure scanned images of root samples. Plant and Soil 373:531−39 doi: 10.1007/s11104-013-1795-9 |
[154] |
Clark RT, Famoso AN, Zhao K, Shaff JE, Craft EJ, et al. 2013. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant, Cell & Environment 36:454−466 doi: 10.1111/j.1365-3040.2012.02587.x |
[155] |
Watt M, Moosavi S, Cunningham SC, Kirkegaard JA, Rebetzke GJ, et al. 2013. A rapid, controlled-environment seedling root screen for wheat correlates well with rooting depths at vegetative, but not reproductive, stages at two field sites. Annals of Botany 112:447−55 doi: 10.1093/aob/mct122 |
[156] |
Arsenault JL, Poulcur S, Messier C, Guay R. 1995. WinRHlZO™, a root measuring system with a unique overlap correction method. HortScience 30:906 doi: 10.21273/hortsci.30.4.906d |
[157] |
Abramoff MD, Magelhaes PJ, Ram SJ. 2004. Image processing with ImageJ. Biophotonics International 11:36−42 |
[158] |
Chloupek O. 1977. Evaluation of size of a plants-root system using its electrical capacitance. Plant and Soil 48:525−32 doi: 10.1007/BF02187258 |
[159] |
Messmer R, Fracheboud Y, Bänziger M, Stamp P, Ribaut JM. 2011. Drought stress and tropical maize: QTLs for leaf greenness, plant senescence, and root capacitance. Field Crops Research 124:93−103 doi: 10.1016/j.fcr.2011.06.010 |
[160] |
Metzner R, Eggert A, van Dusschoten D, Pflugfelder D, Gerth S, et al. 2015. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification. Plant Methods 11:1 doi: 10.1186/s13007-015-0043-0 |
[161] |
Flavel RJ, Guppy CN, Tighe M, Watt M, McNeill A, et al. 2012. Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography. Journal of Experimental Botany 63:2503−11 doi: 10.1093/jxb/err421 |
[162] |
Idso SB, Jackson RD, Reginato RJ. 1977. Remote-sensing of crop yields. Science 196:19−25 doi: 10.1126/science.196.4285.19 |
[163] |
González-Dugo MP, Moran MS, Mateos L, Bryant R. 2006. Canopy temperature variability as an indicator of crop water stress severity. Irrigation Science 24:233 doi: 10.1007/s00271-005-0022-8 |
[164] |
Idso SB, Jackson RD, Pinter PJ Jr, Reginato RJ, Hatfield JL. 1981. Normalizing the stress-degree-day parameter for environmental variability. Agricultural meteorology 24:45−55 doi: 10.1016/0002-1571(81)90032-7 |
[165] |
Woebbecke DM, Meyer GE, Von Bargen K, Mortensen DA. 1995. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE 38:259−69 doi: 10.13031/2013.27838 |
[166] |
Zarco-Tejada PJ, Berjón A, López-Lozano R, Miller JR, Martín P, et al. 2005. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment 99:271−87 doi: 10.1016/j.rse.2005.09.002 |
[167] |
Pérez AJ, López F, Benlloch JV, Christensen S. 2000. Colour and shape analysis techniques for weed detection in cereal fields. Computers and Electronics in Agriculture 25:197−212 doi: 10.1016/S0168-1699(99)00068-X |
[168] |
Gardner BR, Blad BL, Garrity DP, Watts DG. 1981. Relationships between crop temperature, grain yield, evapotranspiration and phenological development in two hybrids of moisture stressed sorghum. Irrigation Science 2:213−24 doi: 10.1007/BF00258375 |
[169] |
Roman A, Ursu T. 2016. Multispectral satellite imagery and airborne laser scanning techniques for the detection of archaeological vegetation marks. In Landscape Archaeology On The Northern Frontier Of The Roman Empire At Porolissum-an Interdisciplinary Research Project, eds. Opreanu CH, Lăzărescu VA. Cluj-Napoca, Romania: Mega Publishing House. pp. 141−52. |
[170] |
Giannoni L, Lange F, Tachtsidis I. 2018. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments. Journal of Optics 20:044009 doi: 10.1088/2040-8986/aab3a6 |