[1] |
Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, et al. 2004. Extinction risk from climate change. Nature 427:145−48 doi: 10.1038/nature02121
|
[2] |
Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, et al. 2015. Assessing species vulnerability to climate change. Nature Climate Change 5:215−25 doi: 10.1038/nclimate2448
|
[3] |
Hong C, Mueller ND, Burney JA, Zhang Y, AghaKouchak A, et al. 2020. Impacts of ozone and climate change on yields of perennial crops in California. Nature Food 1:166−72 doi: 10.1038/s43016-020-0043-8
|
[4] |
Mosedale JR, Abernethy KE, Smart RE, Wilson RJ, Maclean IMD. 2016. Climate change impacts and adaptive strategies: lessons from the grapevine. Global Change Biology 22:3814−28 doi: 10.1111/gcb.13406
|
[5] |
Leisner CP. 2020. Review: Climate change impacts on food security- focus on perennial cropping systems and nutritional value. Plant Science 293:110412 doi: 10.1016/j.plantsci.2020.110412
|
[6] |
Teixeira A, Eiras-Dias J, Castellarin SD, Gerós H. 2013. Berry phenolics of grapevine under challenging environments. International Journal of Molecular Sciences 14:18711−39 doi: 10.3390/ijms140918711
|
[7] |
Mosedale JR, Wilson RJ, Maclean IMD. 2015. Climate change and crop exposure to adverse weather: changes to frost risk and grapevine flowering conditions. PLoS One 10:e0141218 doi: 10.1371/journal.pone.0141218
|
[8] |
Evans RG. 2000. The art of protecting grapevines from low temperature injury. Proceedings Of ASEV 50th Anniversary Annual Meeting, ASEV 50th Anniversary Annual Meeting, Seattle WA, 2000, pp. 60−72. USA
|
[9] |
Poling EB. 2008. Spring cold injury to winegrapes and protection strategies and methods. HortScience 43:1652−62 doi: 10.21273/HORTSCI.43.6.1652
|
[10] |
Zabadal TJ, Dami IE, Goffinet MC, Martinson TE, Chien ML. 2007. Winter injury to grapevines and methods of protection, Vol. Ext. Bul. E2930. Michigan State University Extension
|
[11] |
Lang G, Early J, Martin G, Darnell R. 1987. Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22:371−77
|
[12] |
Gusta LV, Trischuk R, Weiser CJ. 2005. Plant cold acclimation: the role of abscisic acid. Journal of Plant Growth Regulation 24:308−18 doi: 10.1007/s00344-005-0079-x
|
[13] |
Fennell AY, Schlauch KA, Gouthu S, Deluc LG, Khadka V, et al. 2015. Short day transcriptomic programming during induction of dormancy in grapevine. Frontiers in Plant Science 6:834 doi: 10.3389/fpls.2015.00834
|
[14] |
Hüner NPA, Bode R, Dahal K, Busch FA, Possmayer M, et al. 2012. Shedding some light on cold acclimation, cold adaptation, and phenotypic plasticity. Botany. 91:127−36
|
[15] |
Uemura M, Tominaga Y, Nakagawara C, Shigematsu S, Minami A, et al. 2006. Responses of the plasma membrane to low temperatures. Physiologia Plantarum 126:81−89 doi: 10.1111/j.1399-3054.2005.00594.x
|
[16] |
Griffith M, Yaish MWF. 2004. Antifreeze proteins in overwintering plants: a tale of two activities. Trends in Plant Science 9:399−405 doi: 10.1016/j.tplants.2004.06.007
|
[17] |
Thomashow MF. 2010. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiology 154:571−77 doi: 10.1104/pp.110.161794
|
[18] |
Signorelli S, Shaw J, Hermawaty D, Wang Z, Verboven P, et al. 2020. The initiation of bud burst in grapevine features dynamic regulation of the apoplastic pore size. Journal of Experimental Botany 71:719−29 doi: 10.1093/jxb/erz200
|
[19] |
Xie Z, Forney CF, Bondada B. 2018. Renewal of vascular connections between grapevine buds and canes during bud break. Scientia Horticulturae 233:331−38 doi: 10.1016/j.scienta.2018.02.019
|
[20] |
Chai F, Liu W, Xiang Y, Meng X, Sun X, et al. 2019. Comparative metabolic profiling of Vitis amurensis and Vitis vinifera during cold acclimation. Horticulture Research 6:8 doi: 10.1038/s41438-018-0083-5
|
[21] |
Campoy JA, Ruiz D, Egea J. 2011. Dormancy in temperate fruit trees in a global warming context: A review. Scientia Horticulturae 130:357−72 doi: 10.1016/j.scienta.2011.07.011
|
[22] |
Dokoozlian NK. 1999. Chilling temperature and duration interact on the budbreak of `Perlette' grapevine cuttings. HortScience. 34(6):1−3 doi: 10.21273/HORTSCI.34.6.1
|
[23] |
Londo JP, Johnson LM. 2014. Variation in the chilling requirement and budburst rate of wild Vitis species. Environmental and Experimental Botany 106:138−47 doi: 10.1016/j.envexpbot.2013.12.012
|
[24] |
Ferguson JC, Tarara JM, Mills LJ, Grove GG, Keller M. 2011. Dynamic thermal time model of cold hardiness for dormant grapevine buds. Annals of Botany 107:389−96 doi: 10.1093/aob/mcq263
|
[25] |
Londo JP, Kovaleski AP. 2017. Characterization of wild North American grapevine cold hardiness using differential thermal analysis. American Journal of Enology and Viticulture 68:203 doi: 10.5344/ajev.2016.16090
|
[26] |
Kovaleski AP, Londo JP. 2019. Tempo of gene regulation in wild and cultivated Vitis species shows coordination between cold deacclimation and budbreak. Plant Science 287:110178 doi: 10.1016/j.plantsci.2019.110178
|
[27] |
Saddhe AA, Kundan K, Padmanabh D. 2017. Mechanism of ABA signaling in response to abiotic stress in plants. In Mechanism of Plant Hormone Signaling under Stress, ed. PandeyGK , Hoboken, New Jersey: John Wiley & Sons, Inc. pp. 173–95 https://doi.org/10.1002/9781118889022.ch8
|
[28] |
Zheng C, Halaly T, Acheampong AK, Takebayashi Y, Jikumaru Y, et al. 2015. Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism. Journal of Experimental Botany 66:1527−42 doi: 10.1093/jxb/eru519
|
[29] |
Rubio S, Pérez FJ. 2019. ABA and its signaling pathway are involved in the cold acclimation and deacclimation of grapevine buds. Scientia Horticulturae 256:108565 doi: 10.1016/j.scienta.2019.108565
|
[30] |
Li S, Dami IE. 2016. Responses of Vitis vinifera 'Pinot gris' grapevines to exogenous abscisic acid (ABA): I. yield, fruit quality, dormancy, and freezing tolerance. Journal of Plant Growth Regulation 35:245−55 doi: 10.1007/s00344-015-9529-2
|
[31] |
Wang H, Blakeslee JJ, Jones ML, Chapin LJ, Dami IE. 2020. Exogenous abscisic acid enhances physiological, metabolic, and transcriptional cold acclimation responses in greenhouse-grown grapevines. Plant Science 293:110437 doi: 10.1016/j.plantsci.2020.110437
|
[32] |
Rubio S, Noriega X, Pérez FJ. 2019. Abscisic acid (ABA) and low temperatures synergistically increase the expression of CBF/DREB1 transcription factors and cold-hardiness in grapevine dormant buds. Annals of Botany 123:681−89 doi: 10.1093/aob/mcy201
|
[33] |
Rubio S, Noriega X, Pérez FJ. 2019. ABA promotes starch synthesis and storage metabolism in dormant grapevine buds. Journal of Plant Physiology 234–235:1−8 doi: 10.1016/j.jplph.2019.01.004
|
[34] |
Vergara R, Noriega X, Aravena K, Prieto H, Pérez FJ. 2017. ABA represses the expression of cell cycle genes and may modulate the development of endodormancy in grapevine buds. Frontiers in Plant Science 8:812 doi: 10.3389/fpls.2017.00812
|
[35] |
Ju Y, Yue X, Min Z, Wang X, Fang Y, et al. 2020. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry 146:98−111 doi: 10.1016/j.plaphy.2019.11.002
|
[36] |
Noriega X, Pérez FJ. 2017. ABA biosynthesis genes are down-regulated while auxin and cytokinin biosynthesis genes are up-regulated during the release of grapevine buds from endodormancy. Journal of Plant Growth Regulation 36:814−23 doi: 10.1007/s00344-017-9685-7
|
[37] |
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29:15−21 doi: 10.1093/bioinformatics/bts635
|
[38] |
Canaguier A, Grimplet J, Di Gaspero G, Scalabrin S, Duchêne E, et al. 2017. A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genomics Data. 14:56−62 doi: 10.1016/j.gdata.2017.09.002
|
[39] |
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8
|
[40] |
Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 9:559 doi: 10.1186/1471-2105-9-559
|
[41] |
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. 2005. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102:15545−50 doi: 10.1073/pnas.0506580102
|
[42] |
Waltz F, Soufari H, Bochler A, Giegé P, Hashem Y. 2020. Cryo-EM structure of the RNA-rich plant mitochondrial ribosome. Nature Plants 6:377−83 doi: 10.1038/s41477-020-0631-5
|
[43] |
Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, et al. 2016. A survey of best practices for RNA-seq data analysis. Genome Biology 17(1):13 doi: 10.1186/s13059-016-0881-8
|
[44] |
Toubiana D, Puzis R, Sadka A, Blumwald E. 2019. A genetic algorithm to optimize weighted gene co-expression network analysis. Journal of Computational Biology 26:1349−66 doi: 10.1089/cmb.2019.0221
|
[45] |
Grimplet J, Cramer GR, Dickerson JA, Mathiason K, Van Hemert J, et al. 2009. VitisNet: "Omics" integration through grapevine molecular networks. PLoS One 4:e8365 doi: 10.1371/journal.pone.0008365
|
[46] |
Paul A, Jha A, Bhardwaj S, Singh S, Shankar R, et al. 2014. RNA-seq-mediated transcriptome analysis of actively growing and winter dormant shoots identifies non-deciduous habit of evergreen tree tea during winters. Scientific Reports 4:5932 doi: 10.1038/srep05932
|
[47] |
Potvin C, Tardif S. 1988. Sources of variability and experimental designs in growth chambers. Functional Ecology 2:123−30 doi: 10.2307/2389472
|
[48] |
Wan X, Li L. 2005. Molecular cloning and characterization of a dehydration-inducible cDNA encoding a putative 9-cis-epoxycarotenoid dioxygenase in Arachis hygogaea L. DNA Sequence 16:217−23 doi: 10.1080/10425170500129785
|
[49] |
Yang Y, Tan B. 2014. A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis. PLoS One 9:e87283 doi: 10.1371/journal.pone.0087283
|
[50] |
Liu S, Li M, Su L, Ge K, Li L, et al. 2016. Negative feedback regulation of ABA biosynthesis in peanut (Arachis hypogaea): a transcription factor complex inhibits AhNCED1 expression during water stress. Scientific Reports 6:37943 doi: 10.1038/srep37943
|
[51] |
Wang X, Guo C, Peng J, Li C, Wan F, et al. 2019. ABRE-BINDING FACTORS play a role in the feedback regulation of ABA signaling by mediating rapid ABA induction of ABA co-receptor genes. The New Phytologist 221:341−55 doi: 10.1111/nph.15345
|
[52] |
Nishizawa A, Yabuta Y, Shigeoka S. 2008. Galactinol and Raffinose Constitute a Novel Function to Protect Plants from Oxidative Damage. Plant Physiology 147:1251−63 doi: 10.1104/pp.108.122465
|
[53] |
Leyser O. 2018. Auxin Signaling. Plant Physiology 176:465−79 doi: 10.1104/pp.17.00765
|
[54] |
Emenecker RJ, Strader LC. 2020. Auxin-Abscisic Acid Interactions in Plant Growth and Development. Biomolecules. 10:281 doi: 10.3390/biom10020281
|
[55] |
Aloni R, Raviv A, Peterson CA. 1991. The role of auxin in the removal of dormancy callose and resumption of phloem activity in Vitis vinifera. Canadian Journal of Botany 69:1825−32 doi: 10.1139/b91-232
|
[56] |
Yao C, Finlayson SA. 2015. Abscisic acid is a general negative regulator of arabidopsis axillary bud growth. Plant Physiology 169:611−26 doi: 10.1104/pp.15.00682
|
[57] |
Li X, Chen L, Forde BG, Davies WJ. 2017. The biphasic root growth response to abscisic acid in arabidopsis involves interaction with ethylene and auxin signalling pathways. Frontiers in Plant Science 8:1493 doi: 10.3389/fpls.2017.01493
|
[58] |
Byrne ME. 2009. A role for the ribosome in development. Trends in Plant Science 14:512−19 doi: 10.1016/j.tplants.2009.06.009
|
[59] |
Ramos RS, Casati P, Spampinato CP, Falcone Ferreyra ML. 2020. Ribosomal protein RPL10A contributes to early plant development and abscisic acid-dependent responses in Arabidopsis. Frontiers in Plant Science 11:1627 doi: 10.3389/fpls.2020.582353
|
[60] |
Yamasaki S, Matsuura H, Demura T, Kato K. 2015. Changes in Polysome Association of mRNA Throughout Growth and Development in Arabidopsis thaliana. Plant and Cell Physiology 56:2169−80 doi: 10.1093/pcp/pcv133
|
[61] |
Guo J, Wang S, Valerius O, Hall H, Zeng Q, et al. 2011. Involvement of Arabidopsis RACK1 in protein translation and its regulation by abscisic acid. Plant Physiology 155:370−83 doi: 10.1104/pp.110.160663
|
[62] |
Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, et al. 2015. The arabidopsis information resource: Making and mining the "gold standard" annotated reference plant genome. Genesis 53:474−85 doi: 10.1002/dvg.22877
|
[63] |
Zhang Y, Mechlin T, Dami I. 2011. Foliar application of abscisic acid induces dormancy responses in greenhouse-grown grapevines. HortScience. 46:1271−77 doi: 10.21273/HORTSCI.46.9.1271
|
[64] |
Zhang Y, Dami I. 2012. Improving freezing tolerance of 'Chambourcin' grapevines with exogenous abscisic acid. HortScience. 47:1750−57 doi: 10.21273/HORTSCI.47.12.1750
|
[65] |
Eichhorn KW, Lorenz DH. 1977. Phenological development stages of the grapevine. Nachrichtenblatt Dtsch. Pflanzenschutzdienstes. 29:119−20
|
[66] |
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. 2004. UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry 25:1605−12 doi: 10.1002/jcc.20084
|