[1] |
Boase, MR, Miller R, Deroles SC. 1997. Chrysanthemum systematics, genetics, and breeding. In Plant Breeding Reviews, ed. Janick J. 14: 379. USA: John Wiley & Sons. pp. 321−61 https://doi.org/10.1002/9780470650073.ch10 |
[2] |
Zhang F, Hua L, Fei J, Wang F, Liao Y, et al. 2016. Chromosome doubling to overcome the chrysanthemum cross barrier based on insight from transcriptomic and proteomic analyses. BMC Genomics 17:585 doi: 10.1186/s12864-016-2939-0 |
[3] |
Teixeira da Silva JA. 2004. Ornamental chrysanthemums: improvement by biotechnology. Plant Cell Tissue and Organ Culture 79:1−18 doi: 10.1023/B:TICU.0000049444.67329.b9 |
[4] |
Wu J, Liu C, Seng S, Khan MA, Sui J, et al. 2015. Somatic embryogenesis and Agrobacterium-mediated transformation of Gladiolus hybridus cv. 'Advance Red'. Plant Cell, Tissue and Organ Culture (PCTOC) 120:717−28 doi: 10.1007/s11240-014-0639-5 |
[5] |
Jiang B, Miao H, Chen S, Zhang S, Chen F, et al. 2010. The lateral suppressor-like gene, DgLsL, alternated the axillary branching in transgenic chrysanthemum (Chrysanthemum × morifolium) by modulating IAA and GA content. Plant Molecular Biology Reporter 28:144 doi: 10.1007/s11105-009-0130-3 |
[6] |
Shinoyama H, Sano T, Saito M, Ezura H, Aida R, et al. 2012. Induction of male sterility in transgenic chrysanthemums (Chrysanthemum morifolium Ramat.) by expression of a mutated ethylene receptor gene, Cm-ETR1/H69A, and the stability of this sterility at varying growth temperatures. Molecular Breeding 29:285−95 doi: 10.1007/s11032-010-9546-6 |
[7] |
Dolgov SV, Mitiouchkina TY, Skryabin KG. 1997. Agrobacterial transformation of chrysanthemum. In ISHS Acta Horticulturae 447: III International Symposium on In Vitro Culture and Horticultural Breeding, eds. Altman A, Ziv M. pp. 329−34 https://doi.org/10.17660/actahortic.1997.447.66 |
[8] |
Shinoyama H, Komano M, Nomura Y, Nagai T. 2002. Introduction of delta-endotoxin gene of bacillus thuringiensis to chrysanthemum [Dendranthema × grandiflorum (Ramat.) kitamura] for insect resistance. Breeding Science 52:43−50 doi: 10.1270/jsbbs.52.43 |
[9] |
Valizadeh M, Kazemitaba SK, Jongsma MA. 2012. Agrobacterium-mediated genetic transformation of chrysanthemum (Chrysanthemum morifolium Ramat.) with an aphidicidal gene, gcs (Gamma-cadinene Synthase). International Journal of Plant Breeding and Genetics 6:168−81 doi: 10.3923/ijpbg.2012.168.181 |
[10] |
Renou JP, Brochard P, Jalouzot R. 1993. Recovery of transgenic chrysanthemum (Dendranthema grandiflora, Tzvelev) after hygromycin resistance selection. Plant Science 89:185−97 doi: 10.1016/0168-9452(93)90127-L |
[11] |
Langens-Gerrits M, Kuijpers AM, De Klerk GJ, Croes A. 2003. Contribution of explant carbohydrate reserves and sucrose in the medium to bulb growth of lily regenerated on scale segments in vitro. Physiologia Plantarum 117:245−55 doi: 10.1034/j.1399-3054.2003.1170212.x |
[12] |
Wingender R, Henn HJ, Barth S, Voeste D, Machlab H, et al. 1996. A regeneration protocol for sunflower (Helianthus annuus L.) protoplasts. Plant Cell Reports 15:742−45 doi: 10.1007/BF00232219 |
[13] |
Liu Z, Park BJ, Kanno A, Kameya T. 2005. The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Molecular Breeding 16:189 doi: 10.1007/s11032-005-6616-2 |
[14] |
Clough SJ, Bent AF. 2008. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43 doi: 10.1046/j.1365-313x.1998.00343.x |
[15] |
Acereto-Escoffié POM, Chi-Manzanero BH, Echeverría-Echeverría S, Grijalva R, Kay AJ, et al. 2005. Agrobacterium-mediated transformation of Musa acuminata cv. "Grand Nain" scalps by vacuum infiltration. Scientia Horticulturae 105:359−71 doi: 10.1016/j.scienta.2005.01.028 |
[16] |
Canche-Moo RLR, Ku-Gonzalez A, Burgeff C, Loyola-Vargas VM, Rodríguez-Zapata LC, et al. 2006. Genetic transformation of Coffea canephora by vacuum infiltration. Plant Cell, Tissue and Organ Culture 84:373−77 doi: 10.1007/s11240-005-9036-4 |
[17] |
Charity JA, Holland L, Donaldson SS, Grace L, Walter C. 2002. Agrobacterium-mediated transformation of Pinus radiata organogenic tissue using vacuum-infiltration. Plant Cell, Tissue and Organ Culture 70:51−60 doi: 10.1023/A:1016009309176 |
[18] |
Arun M, Subramanyam K, Mariashibu TS, Theboral J, Shivanandhan G, et al. 2015. A Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Applied Biochemistry and Biotechnology 175:2266−87 doi: 10.1007/s12010-014-1360-x |
[19] |
Mariashibu TS, Subramanyam K, Arun M, Mayavan S, Rajesh M, et al. 2013. Vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Acta Physiologiae Plantarum 35:41−54 doi: 10.1007/s11738-012-1046-3 |
[20] |
Mysore KS, Kumar CT, Gelvin SB. 2000. Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. The Plant Journal 21:9−16 doi: 10.1046/j.1365-313x.2000.00646.x |
[21] |
Niwa H. 2001. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Structure and Function 26:137−48 doi: 10.1247/csf.26.137 |
[22] |
Zhang F, Wang Z, Dong W, Sun C, Wang H, et al. 2014. Transcriptomic and proteomic analysis reveals mechanisms of embryo abortion during chrysanthemum cross breeding. Scientific Reports 4:6536 doi: 10.1038/srep06536 |
[23] |
Zhang F, Dong W, Huang L, Song A, Wang H, et al. 2015. Identification of microRNAs and their targets associated with embryo abortion during chrysanthemum cross breeding via high-throughput sequencing. Plos One 10:e0124371 doi: 10.1371/journal.pone.0124371 |
[24] |
Lu CY, Nugent G, Wardley T. 1990. Efficient, direct plant regeneration from stem segments of chrysanthemum (Chrysanthemum morifolium Ramat. cv. Royal Purple). Plant Cell Reports 8:733−36 doi: 10.1007/BF00272106 |
[25] |
Mohri T, Yamamoto N, Shinohara K. 1996. Agrobacterium-mediated transformation of lombardy poplar (Populus nigra L. var. italica Koehne) using stem segments. Journal of Forest Research 1:13−16 doi: 10.1007/BF02348333 |
[26] |
Moore GA, Jacono CC, Neidigh JL, Lawrence SD, Cline K. 1992. Agrobacterium-mediated transformation of Citrus stem segments and regeneration of transgenic plants. Plant Cell Reports 11:238−42 doi: 10.1007/BF00235073 |
[27] |
Yang L, Hu W, Xie Y, Li Y, Deng Z. 2016. Factors affecting Agrobacterium-mediated transformation efficiency of kumquat seedling internodal stem segments. Scientia Horticulturae 209:105−112 doi: 10.1016/j.scienta.2016.06.018 |
[28] |
Zhou H, Shao M, Ge Z. 2008. Studies on the factors affecting Agrobacterium tumefacien mediated transformation in stem segments of potato. Journal of Henan Agricultural University 42:345−49 doi: 10.16445/j.cnki.1000-2340.2008.03.013 |
[29] |
Chopra R, Aparna Saini R. 2011. Sonication and vacuum infilteration assisted Agrobacterium tumefaciens mediated transformation of lentil cotyledons. 81st Annual Session of the National Academy of Sciences, India and National Symposium on "Sustainable Management of Biodiversity using Science andTechnology |
[30] |
Annadana S, Rademaker W, Ramanna M, Udayakumar M, de Jong J. 2000. Response of stem explants to screening and explant source as a basis for methodical advancing of regeneration protocols for chrysanthemum. Plant Cell Tissue and Organ Culture 62:47−55 doi: 10.1023/A:1006483414260 |
[31] |
Lee J, Lee GJ, Chung S, Kim JB, Kim DS, et al. 2008. Effect of plant growth regulators on a shoot and root formation from the leaf and flower culture of a standard-type chrysanthemum 'Jinba'. Korean Journal of Horticultural Science and Technology 26:320−24 |
[32] |
Tao Z, Shen L, Gu X, Wang Y, Yu H, et al. 2017. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature 551:124−28 doi: 10.1038/nature24300 |
[33] |
Kaul V, Miller RM, Hutchinson JF, Richards D. 1990. Shoot regeneration from stem and leaf explants of Dendranthema grandiflora, Tzvelev (syn. Chrysanthemum morifolium Ramat.). Plant Cell, Tissue and Organ Culture 21:21−30 doi: 10.1007/BF00034487 |
[34] |
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15:473−97 doi: 10.1111/j.1399-3054.1962.tb08052.x |
[35] |
Hood EE, Gelvin SB, Melchers LS, Hoekema A. 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Research 2:208−18 doi: 10.1007/BF01977351 |
[36] |
Boase MR, Bradley JM, Borst NK. 1998. Genetic transformation mediated by Agrobacterium tumefaciens of florists' chrysanthemum (Dendranthema × grandiflorum) cultivar 'Peach Margaret'. In Vitro Cellular & Developmental Biology - Plant 34:46−51 doi: 10.1007/BF02823122 |
[37] |
Li F, Zhang H, Zhao H, Gao T, Song A, et al. 2017. Chrysanthemum CmHSFA4 gene positively regulates salt stress tolerance in transgenic chrysanthemum. Plant Biotechnology Journal 16:1311−21 doi: 10.1111/pbi.12871 |
[38] |
Cheng X, Wang Z. 2005. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. The Plant Journal 43:758−68 doi: 10.1111/j.1365-313X.2005.02491.x |
[39] |
Lalitha S. 2000. Primer Premier 5. Biotech Software and Internet Report 1:270−72 doi: 10.1089/152791600459894 |
[40] |
Gu C, Chen S, Liu Z, Shan H, Luo H, et al. 2011. Reference gene selection for quantitative Real-Time PCR in chrysanthemum subjected to biotic and abiotic stress. Molecular Biotechnology 49:192 doi: 10.1007/s12033-011-9394-6 |
[41] |
Bustin SA, Benes V, Nolan T, Pfaffl MW. 2005. Quantitative real-time RT-PCR – a perspective. Journal of Molecular Endocrinology 34:597−601 doi: 10.1677/jme.1.01755 |
[42] |
Livak, KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262 |