[1] |
Biemelt S, Sonnewald U. 2006. Plant-microbe interactions to probe regulation of plant carbon metabolism. Journal of Plant Physiology 163:307−18 doi: 10.1016/j.jplph.2005.10.011
|
[2] |
Chng WBA, Sleiman MSB, Schüpfer F, Lemaitre B. 2014. Transforming growth factor β/activin signaling functions as a sugar-sensing feedback loop to regulate digestive enzyme expression. Cell Reports 9:336−48 doi: 10.1016/j.celrep.2014.08.064
|
[3] |
Kunz S, Pesquet E, Kleczkowski LA. 2014. Functional dissection of sugar signals affecting gene expression in Arabidopsis thaliana. PLoS One 9:e100312 doi: 10.1371/journal.pone.0100312
|
[4] |
Proels RK, Hückelhoven R. 2014. Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses. Molecular Plant Pathology 15:858−64 doi: 10.1111/mpp.12139
|
[5] |
Paul M, Pellny T, Goddijn O. 2001. Enhancing photosynthesis with sugar signals. Trends in Plant Science 6:197−200 doi: 10.1016/S1360-1385(01)01920-3
|
[6] |
Fernie AR, Roessner U, Geigenberger P. 2001. The sucrose analog palatinose leads to a stimulation of sucrose degradation and starch synthesis when supplied to discs of growing potato tubers. Plant Physiology 125:1967−77 doi: 10.1104/pp.125.4.1967
|
[7] |
Rolland F, Winderickx J, Thevelein JM. 2001. Glucose-sensing mechanisms in eukaryotic cells. Trends in Biochemical Sciences 26:310−17 doi: 10.1016/S0968-0004(01)01805-9
|
[8] |
Gibon Y, Bläsing OE, Palacios-Rojas N, Pankovic D, Hendriks JHM, et al. 2004. Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. The Plant Journal 39:847−62 doi: 10.1111/j.1365-313X.2004.02173.x
|
[9] |
León P, Sheen J. 2003. Sugar and hormone connections. Trends in Plant Science 8:110−6 doi: 10.1016/S1360-1385(03)00011-6
|
[10] |
Smith AM, Stitt M. 2007. Coordination of carbon supply and plant growth. Plant, Cell & Environment 30:1126−49 doi: 10.1111/j.1365-3040.2007.01708.x
|
[11] |
Rolland F, Moore B, Sheen J. 2002. Sugar sensing and signaling in plants. The Plant Cell 14:S185−S205 doi: 10.1105/tpc.010455
|
[12] |
Cox EL, Dickinson DB. 1973. Hexokinase from maize endosperm and scutellum. Plant Physiology 51:960−66 doi: 10.1104/pp.51.5.960
|
[13] |
Turner JF, Chensee QJ, Harrison DD. 1977. Glucokinase of pea seeds. Biochimica et Biophysica Acta - Enzymology 480:367−75 doi: 10.1016/0005-2744(77)90029-8
|
[14] |
Turner JF, Copeland L. 1981. Hexokinase II of pea seeds. Plant Physiology 68:1123−27 doi: 10.1104/pp.68.5.1123
|
[15] |
Guglielminetti L, Perata P, Morita A, Loreti E, Yamaguchi J, et al. 2000. Characterization of isoforms of hexose kinases in rice embryo. Phytochemistry 53:195−200 doi: 10.1016/S0031-9422(99)00541-5
|
[16] |
Martinez-Barajas E, Randall DD. 1998. Purification and characterization of a glucokinase from young tomato (Lycopersicon esculentum L. Mill.) fruit. Planta 205:567−73 doi: 10.1007/s004250050357
|
[17] |
Copeland L, Morell M. 1985. Hexose kinases from the plant cytosolic fraction of soybean nodules. Plant Physiology 79:114−17 doi: 10.1104/pp.79.1.114
|
[18] |
Harrington GN, Bush DR. 2003. The bifunctional role of hexokinase in metabolism and glucose signaling. The Plant Cell 15:2493−96 doi: 10.1105/tpc.151130
|
[19] |
Jang JC, León P, Zhou L, Sheen J. 1997. Hexokinase as a sugar sensor in higher plants. The Plant Cell 9:5−19 doi: 10.1105/tpc.9.1.5
|
[20] |
Jang JC, Sheen J. 1994. Sugar sensing in higher plants. The Plant Cell 6:1665−79 doi: 10.1105/tpc.6.11.1665
|
[21] |
Thevelein JM, Hohmann S. 1995. Thevelein JM, Hohmann S. 1995. Trehalose synthase: guard to the gate of glycolysis in yeast? Trends in Biochemical Sciences 20:3−10 doi: 10.1016/S0968-0004(00)88938-0
|
[22] |
Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, et al. 2003. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332−36 doi: 10.1126/science.1080585
|
[23] |
Feng J, Zhao S, Chen X, Wang W, Dong W, et al. 2015. Biochemical and structural study of Arabidopsis hexokinase 1. Acta Crystallographica Section D, Biological Crystallography 71:367−75 doi: 10.1107/S1399004714026091
|
[24] |
Cho YH, Yoo SD, Sheen J. 2006. Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579−89 doi: 10.1016/j.cell.2006.09.028
|
[25] |
Cosio E, Bustamante E. 1984. Subcellular localization of hexokinase in pea leaves. Evidence for the predominance of a mitochondrially bound form. Journal of Biological Chemistry 259:7688−92 doi: 10.1016/S0021-9258(17)42847-X
|
[26] |
Hu D, Sun C, Zhang Q, An J, You C, et al. 2016. Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple. PLoS Genetics 12:e1006273 doi: 10.1371/journal.pgen.1006273
|
[27] |
Schnarrenberger C. 1990. Characterization and compartmentation, in green leaves, of hexokinases with different specificities for glucose, fructose, and mannose and for nucleoside triphosphates. Planta 181:249−55 doi: 10.1007/BF02411547
|
[28] |
Zhou L, Jang JC, Jones TL, Sheen J. 1998. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. PNAS 95:10294−99 doi: 10.1073/pnas.95.17.10294
|
[29] |
Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, León P. 2000. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes & Development 14:2085−96 doi: 10.1101/gad.14.16.2085
|
[30] |
Cheng WH, Endo A, Zhou L, Penney J, Chen HC, et al. 2002. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. The Plant Cell 14:2723−43 doi: 10.1105/tpc.006494
|
[31] |
Gibson SI. 2005. Control of plant development and gene expression by sugar signaling. Current Opinion in Plant Biology 8:93−102 doi: 10.1016/j.pbi.2004.11.003
|
[32] |
Yanagisawa S, Yoo SD, Sheen J. 2003. Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521−25 doi: 10.1038/nature01984
|
[33] |
Urano D, Chen J, Botella JR, Jones AM. 2013. Heterotrimeric G protein signalling in the plant kingdom. Open Biology 3:120186 doi: 10.1098/rsob.120186
|
[34] |
Matsuura E, Ishiguro N, Katsumata Y, Urano W, Yamanaka H, et al. 2012. Two young-adult female cases of dermatomyositis with antibodies for transcriptional intermediary factor 1-γ. European Journal of Dermatology 22:668−71 doi: 10.1684/ejd.2012.1824
|
[35] |
Urano D, Phan N, Jones JC, Yang J, Huang J, et al. 2012. Endocytosis of the seven-transmembrane RGS1 protein activates G-protein-coupled signalling in Arabidopsis. Nature Cell Biology 14:1079−88 doi: 10.1038/ncb2568
|
[36] |
Baena-González E, Hanson J. 2017. Shaping plant development through the SnRK1-TOR metabolic regulators. Current Opinion in Plant Biology 35:152−57 doi: 10.1016/j.pbi.2016.12.004
|
[37] |
Shi L, Wu Y, Sheen J. 2018. TOR signaling in plants: conservation and innovation. Development 145:dev160887 doi: 10.1242/dev.160887
|
[38] |
Mahfouz MM, Kim S, Delauney AJ, Verma DPS. 2006. Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. The Plant Cell 18:477−90 doi: 10.1105/tpc.105.035931
|
[39] |
Moreau M, Azzopardi M, Clément G, Dobrenel T, Marchive C, et al. 2012. Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. The Plant Cell 24:463−81 doi: 10.1105/tpc.111.091306
|
[40] |
Baena-González E, Rolland F, Thevelein JM, Sheen J. 2007. A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938−42 doi: 10.1038/nature06069
|
[41] |
Zhai Z, Keereetaweep J, Liu H, Feil R, Lunn JE, Shanklin J. 2018. Trehalose 6-phosphate positively regulates fatty acid synthesis by stabilizing WRINKLED1. The Plant Cell 30:2616−27 doi: 10.1105/tpc.18.00521
|
[42] |
Nukarinen E, Nägele T, Pedrotti L, Wurzinger B, Mair A, et al. 2016. Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Scientific Reports 6:31697 doi: 10.1038/srep31697
|
[43] |
Lastdrager J, Hanson J, Smeekens S. 2014. Sugar signals and the control of plant growth and development. Journal of Experimental Botany 65:799−807 doi: 10.1093/jxb/ert474
|
[44] |
Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J. 2013. Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496:181−86 doi: 10.1038/nature12030
|
[45] |
Das PK, Shin DH, Choi SB, Yoo SD, Choi G, et al. 2012. Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis. Molecules and Cells 34:93−101 doi: 10.1007/s10059-012-0114-2
|
[46] |
Shin DH, Choi MG, Lee HK, Cho M, Choi SB, et al. 2013. Calcium dependent sucrose uptake links sugar signaling to anthocyanin biosynthesis in Arabidopsis. Biochemical and Biophysical Research Communications 430:634−39 doi: 10.1016/j.bbrc.2012.11.100
|
[47] |
Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S. 2005. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiology 139:1840−52 doi: 10.1104/pp.105.066688
|
[48] |
Zhang C, Fu J, Wang Y, Gao S, Du D, et al. 2015. Glucose supply improves petal coloration and anthocyanin biosynthesis in Paeonia suffruticosa 'Luoyang Hong' cut flowers. Postharvest Biology and Technology 101:73−81 doi: 10.1016/j.postharvbio.2014.11.009
|
[49] |
Jaakola L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science 18:477−83 doi: 10.1016/j.tplants.2013.06.003
|
[50] |
Dai Z, Meddar M, Renaud C, Merlin I, Hilbert G, et al. 2014. Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation. Journal of Experimental Botany 65:4665−77 doi: 10.1093/jxb/ert489
|
[51] |
Zheng Y, Tian L, Liu H, Pan Q, Zhan J, et al. 2009. Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries. Plant Growth Regulation 58:251−60 doi: 10.1007/s10725-009-9373-0
|
[52] |
Koes R, Verweij W, Quattrocchio F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10:236−42 doi: 10.1016/j.tplants.2005.03.002
|
[53] |
Dixon RA, Liu C, Jun JH. 2013. Metabolic engineering of anthocyanins and condensed tannins in plants. Current Opinion in Biotechnology 24:329−35 doi: 10.1016/j.copbio.2012.07.004
|
[54] |
Feller A, Machemer K, Braun EL, Grotewold E. 2011. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal 66:94−116 doi: 10.1111/j.1365-313X.2010.04459.x
|
[55] |
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science 15:573−81 doi: 10.1016/j.tplants.2010.06.005
|
[56] |
Liu Y, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF, Bovy A. 2018. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: A review. Frontiers in Chemistry 6:52 doi: 10.3389/fchem.2018.00052
|
[57] |
Xie X, Li S, Zhang R, Zhao J, Chen Y, et al. 2012. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant, Cell & Environment 35:1884−97 doi: 10.1111/j.1365-3040.2012.02523.x
|
[58] |
Jiang S, Chen M, He N, Chen X, Wang N, et al. 2019. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Horticulture Research 6:40 doi: 10.1038/s41438-019-0118-6
|
[59] |
Shi H, Li Z, Zhang Y, Chen L, Xiang D, et al. 2014. Two pear glutathione S-transferases genes are regulated during fruit development and involved in response to salicylic acid, auxin, and glucose signaling. PLoS One 9:e89926 doi: 10.1371/journal.pone.0089926
|
[60] |
Khan SA, Beekwilder J, Schaart JG, Mumm R, Soriano JM, et al. 2013. Differences in acidity of apples are probably mainly caused by a malic acid transporter gene on LG16. Tree Genetics & Genomes 9:475−87 doi: 10.1007/s11295-012-0571-y
|
[61] |
Lee KW, Kim YJ, Kim DO, Lee HJ, Lee CY. 2003. Major phenolics in apple and their contribution to the total antioxidant capacity. Journal of Agricultural and Food Chemistry 51:6516−20 doi: 10.1021/jf034475w
|
[62] |
Wu J, Gao H, Zhao L, Liao X, Chen F, et al. 2007. Chemical compositional characterization of some apple cultivars. Food Chemistry 103:88−93 doi: 10.1016/j.foodchem.2006.07.030
|
[63] |
Feng F, Li M, Ma F, Cheng L. 2014. Effects of location within the tree canopy on carbohydrates, organic acids, amino acids and phenolic compounds in the fruit peel and flesh from three apple (Malus × domestica) cultivars. Horticulture Research 1:14019 doi: 10.1038/hortres.2014.19
|
[64] |
Fernie AR, Carrari F, Sweetlove LJ. 2004. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Current Opinion in Plant Biology 7:254−61 doi: 10.1016/j.pbi.2004.03.007
|
[65] |
Noguchi K, Yoshida K. 2008. Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8:87−99 doi: 10.1016/j.mito.2007.09.003
|
[66] |
Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL. 2009. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70:1329−44 doi: 10.1016/j.phytochem.2009.08.006
|
[67] |
Hu D, Sun C, Ma Q, You C, Cheng L, et al. 2016. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiology 170:1315−30 doi: 10.1104/pp.15.01333
|
[68] |
Mathieu Y, Guern J, Pean M, Pasquier C, Beloeil JC, Lallemand JY. 1986. Cytoplasmic pH regulation in acer pseudoplatanus cells: II. possible mechanisms involved in pH regulation during acid-load. Plant Physiology 82:846−52 doi: 10.1104/pp.82.3.846
|
[69] |
Emmerlich V, Linka N, Reinhold T, Hurth MA, Traub M, et al. 2003. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. PNAS 100:11122−26 doi: 10.1073/pnas.1832002100
|
[70] |
Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, et al. 2014. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Reports 6:32−43 doi: 10.1016/j.celrep.2013.12.009
|
[71] |
Gomez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, et al. 2009. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiology 150:402−15 doi: 10.1104/pp.109.135624
|
[72] |
Kovermann P, Meyer S, Hörtensteiner S, Picco C, Scholz-Starke J, et al. 2007. The Arabidopsis vacuolar malate channel is a member of the ALMT family. The Plant Journal 52:1169−80 doi: 10.1111/j.1365-313X.2007.03367.x
|
[73] |
Wang F, Zhu H, Chen D, Li Z, Peng R, et al. 2016. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture 125:387−98 doi: 10.1007/s11240-016-0953-1
|
[74] |
Butelli E, Licciardello C, Ramadugu C, Durand-Hulak M, Celant A, et al. 2019. Noemi Controls Production of Flavonoid Pigments and Fruit Acidity and Illustrates the Domestication Routes of Modern Citrus Varieties. Current Biology 29:158−164.E2 doi: 10.1016/j.cub.2018.11.040
|
[75] |
Berüter J. 2004. Carbohydrate metabolism in two apple genotypes that differ in malate accumulation. Journal of Plant Physiology 161:1011−29 doi: 10.1016/j.jplph.2003.12.008
|
[76] |
Chollet R, Vidal J, O'Leary MH. 1996. PHOSPHOENOLPYRUVATE CARBOXYLASE: A Ubiquitous, Highly Regulated Enzyme in Plants. Annual Review of Plant Physiology and Plant Molecular Biology 47:273−98 doi: 10.1146/annurev.arplant.47.1.273
|
[77] |
Ruffner HP, Possner D, Brem S, Rast DM. 1984. The physiological role of malic enzyme in grape ripening. Planta 160:444−48 doi: 10.1007/BF00429761
|
[78] |
Yao Y, Li M, Liu z, You C, Wang D, et al. 2009. Molecular cloning of three malic acid related genes MdPEPC, MdVHA-A, MdcyME and their expression analysis in apple fruits. Scientia Horticulturae 122:404−8 doi: 10.1016/j.scienta.2009.05.033
|
[79] |
Miller SS, Driscoll BT, Gregerson RG, Gantt JS, Vance CP. 1998. Alfalfa malate dehydrogenase (MDH): molecular cloning and characterization of five different forms reveals a unique nodule-enhanced MDH. The Plant Journal 15:173−84 doi: 10.1046/j.1365-313X.1998.00192.x
|
[80] |
Wang Q, Sun H, Dong Q, Sun T, Jin Z, et al. 2016. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotechnology Journal 14:1986−97 doi: 10.1111/pbi.12556
|
[81] |
Yao Y, Li M, Zhai H, You C, Hao Y. 2011. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. Journal of Plant Physiology 168:474−80 doi: 10.1016/j.jplph.2010.08.008
|
[82] |
Yu J, Gu K, Sun C, Zhang Q, Wang J, et al. 2021. The apple bHLH transcription factor MdbHLH3 functions in determining the fruit carbohydrates and malate. Plant Biotechnology Journal 19:285−99 doi: 10.1111/pbi.13461
|
[83] |
Adams-Phillips L, Barry C, Giovannoni J. 2004. Signal transduction systems regulating fruit ripening. Trends in Plant Science 9:331−38 doi: 10.1016/j.tplants.2004.05.004
|
[84] |
Xu J, Zhang S. 2014. Regulation of ethylene biosynthesis and signaling by protein kinases and phosphatases. Molecular Plant 7:939−42 doi: 10.1093/mp/ssu059
|
[85] |
Gazzarrini S, McCourt P. 2001. Genetic interactions between ABA, ethylene and sugar signaling pathways. Current Opinion in Plant Biology 4:387−91 doi: 10.1016/S1369-5266(00)00190-4
|
[86] |
Jia H, Wang Y, Sun M, Li B, Han Y, et al. 2013. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytologist 198:453−65 doi: 10.1111/nph.12176
|
[87] |
Oms-Oliu G, Hertog MLATM, Van de Poel B, Ampofo-Asiama J, Geeraerd AH, et al. 2011. Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life. Postharvest Biology and Technology 62:7−16 doi: 10.1016/j.postharvbio.2011.04.010
|
[88] |
Wang KLC, Li H, Ecker JR. 2002. Ethylene biosynthesis and signaling networks. The Plant Cell 14:S131−S151 doi: 10.1105/tpc.001768
|
[89] |
Christians MJ, Gingerich DJ, Hansen M, Binder BM, Kieber JJ, et al. 2009. The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. The Plant Journal 57:332−45 doi: 10.1111/j.1365-313X.2008.03693.x
|
[90] |
Lyzenga WJ, Booth JK, Stone SL. 2012. The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7. The Plant Journal 71:23−34 doi: 10.1111/j.1365-313X.2012.04965.x
|
[91] |
Han P, Wang C, Liu X, Dong Y, Jiang H, et al. 2019. BTB-BACK domain E3 ligase MdPOB1 Suppresses plant pathogen defense against Botryosphaeria dothidea by ubiquitinating and degrading MdPUB29 protein in apple. Plant and Cell Physiology 60:2129−40 doi: 10.1093/pcp/pcz106
|
[92] |
Hu D, Yu J, Han P, Xie X, Sun C, et al. 2019. The regulatory module MdPUB29-MdbHLH3 connects ethylene biosynthesis with fruit quality in apple. The New Phytologist 221:1966−82 doi: 10.1111/nph.15511
|
[93] |
Hu D, Sun C, Zhang Q, Gu K, Hao Y. 2020. The basic helix-loop-helix transcription factor MdbHLH3 modulates leaf senescence in apple via the regulation of dehydratase-enolase-phosphatase complex 1. Horticulture Research 7:50 doi: 10.1038/s41438-020-0273-9
|
[94] |
Han P, Dong Y, Gu K, Yu J, Hu D, et al. 2019. The apple U-box E3 ubiquitin ligase MdPUB29 contributes to activate plant immune response to the fungal pathogen Botryosphaeria dothidea. Planta 249:1177−88 doi: 10.1007/s00425-018-03069-z
|
[95] |
Rodriguez M, Parola R, Andreola S, Pereyra C, Martínez-Noël G. 2019. TOR and SnRK1 signaling pathways in plant response to abiotic stresses: Do they always act according to the "yin-yang" model? Plant Science 288:110220 doi: 10.1016/j.plantsci.2019.110220
|
[96] |
Yu J, Li X, Wang W, Gu K, Sun C, et al. 2022. Glucose sensor MdHXK1 activates an immune response to the fungal pathogen Botryosphaeria dothidea in apple. Physiologia Plantarum 174:e13596 doi: 10.1111/ppl.13596
|
[97] |
Shi H, Zhang Y, Chen L. 2019. Expression and regulation of PpEIN3b during fruit ripening and senescence via integrating SA, Glucose, and ACC signaling in pear (Pyrus pyrifolia Nakai. Whangkeumbae). Genes 10:476 doi: 10.3390/genes10060476
|
[98] |
Rymenants M, van de Weg E, Auwerkerken A, De Wit I, Czech A, et al. 2020. Detection of QTL for apple fruit acidity and sweetness using sensorial evaluation in multiple pedigreed full-sib families. Tree Genetics & Genomes 16:71 doi: 10.1007/s11295-020-01466-8
|